Lecture 11 Monday, June 12, 2017 11:10 PM All-Pairs Shortest Paths

Given: Digraph G=(V,E), where V={1,2,...,n}, possibly negative costs c(i,j), BUT no negative cycles! ($c(i,j) = \infty$ means no edge (i,j) in G)

Compute: D(i,j) = cost of cheapest path from i to j, for all i, j in V.

Later, will also want an algorithm that, given (i,j), finds a cheapest path from i to j.

Observation: Every cheapest path from i to j must be simple, i.e., with no cycles!

15 mde K 2. (1)...,K-K-1, K, il A(k-1,i,k)Å Step 3: Algorithm to fill in the array. AEK, i, jand 5 Step 4: Recover shortest paths from the array Rundme; O(n³) (i,i)Given cheapest prints and 5. ろ(), $= A[n_{i}]$ 1 Time: O(n) PrintOpt(K, i, j) % Cq ·oot case % base 1 = edge (1; j)

else 8 $A(K_{,i},j) = A(K-1,i,j)$ Roud Opt (K-1, i,j) Roud Opt (K-1, i,K) Roud Opt (K-1, K, j) j Shortest paths Shortest path problem. Given a digraph G = (V, E), with arbitrary edge weights or costs c_{vw} , find cheapest path from node s to node t. 12 source s (0 2 6 10 destination t cost of path = 9 - 3 + 1 + 11 = 1822

26

Shortest p	oaths: implementation			
	SHORTEST-PATHS (V, E, c, t) FOREACH node $v \in V$ $M[0, v] \leftarrow \infty$. $M[0, t] \leftarrow 0$. FOR i = 1 TO $n - 1$ FOREACH node $v \in V$	n í.	tecatt	03
(m)	$M[i, v] \leftarrow M[i-1, v].$ FOREACH edge $(v, w) \in E$ $M[i, v] \leftarrow \min \{ M[i, v], M[i]\}$	$-1, w] + c_{vw}$	$O(n \cdot l) \approx O(n \cdot l)$	(n+m) n.m)

Shortest paths: implementation

Theorem 1. Given a digraph G = (V, E) with no negative cycles, the dynamic programming algorithm computes the cost of the cheapest $v \rightarrow t$ path for each node v in $\Theta(mn)$ time and $\Theta(n^2)$ space.

Pf.

- Table requires $\Theta(n^2)$ space.
- Each iteration *i* takes $\Theta(m)$ time since we examine each edge once.

Finding the shortest paths.

- Approach 1: Maintain a successor(i, v) that points to next node on cheapest $v \rightarrow t$ path using at most *i* edges.
- Approach 2: Compute optimal costs M[i, v] and consider only edges with $M[i, v] = M[i-1, w] + c_{vw}$.

30 (* opT (1-1, OP i, v) =

slide_11 Page 8

Detecting negative cycles

Lemma 5. If OPT(n, v) = OPT(n - 1, v) for all v, then no negative cycle can reach t.

Pf. Bellman-Ford algorithm.

Lemma 6. If OPT(n, v) < OPT(n - 1, v) for some node v, then (any) cheapest path from v to t contains a cycle W. Moreover W is a negative cycle.

Pf. [by contradiction]

- Since OPT(n, v) < OPT(n-1, v), we know that shortest $v \rightarrow t$ path *P* has exactly *n* edges.
- By pigeonhole principle, *P* must contain a directed cycle *W*.
- Deleting W yields a $v \rightarrow t$ path with < n edges \Rightarrow W has negative cost.

(t)w c(W) < 0 48 ause enough? Detecting negative cycles

Theorem 4. Can find a negative cycle in $\Theta(mn)$ time and $\Theta(n^2)$ space. Pf.

- Add new node *t* and connect all nodes to *t* with 0-cost edge.
- *G* has a negative cycle iff *G*' has a negative cycle than can reach *t*.

w' - 1

• If OPT(n, v) = OPT(n-1, v) for all nodes v, then no negative cycles.

has n+1 nodes n' oue , and connect an nodes to , man o cost edger • *G* has a negative cycle iff *G*' has a negative cycle than can reach *t*. • If OPT(n, v) = OPT(n - 1, v) for all nodes v, then no negative cycles. • If not, then extract directed cycle from path from v to t. (cycle cannot contain t since no edges leave t) • n nodes as G' 5 6 (t)2 -3 -3 49