Lecture 11

All-Pairs Shortest Paths S

Given: Digraph G=(V,E), where V={1,2,...,n},
possibly negative costs c(i,j), BUT no negative cycles!
(cli,j) =0 means no edge (i,j)inG)

Compute: D(i,j) = cost of cheapest path fromitoj, foralli,jinV. ) )(

Later, will also want an algorithm that, given (i,j), finds a cheapest path fromito .

Observation: Every cheapest path from i to | must be simple, i.e., with no cycles!
Floyd-Warshall DP algorithm

Step 1: Array
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Step 2: Recurrence
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Step 3: Algorithm to fill in the array. O K< W
aw‘)\n Pft‘(»')ﬂ , 12 i< u

Step 4: Recover shortest paths from the array | < ' < V)
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Shortest paths

Shortest path problem. Given a digraph G =(V, E), with arbitrary edge
weights or costs c,,, find cheapest path from node s to node .
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destination t

source s

costofpath=9-3+1+11=18
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Shortest paths: failed attempts

Dijkstra. Can fail if negative edge weights.

A=)

’\
Reweighting. Adding a constant to every edge weight can fail.
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Negative cycles

Def. A negative cycle is a directed cycle such that the sum of its edge
weights is negative.

a negative cycle W: ¢(1V) = Z ce < 0
cEW
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Shortest paths and negative cycles

Lemma 1. If some path from v to r contains a negative cycle, then there
does not exist a cheapest path from v to r.

Pf. If there exists such a cycle W, then can build a v~ path of arbitrarily
negative weight by detouring around cycle as many times as desired. =

cW) <0

Shortest paths and negative cycles

Lemma 2. If G has no negative cycles, then there exists a cheapest path

from v to ¢ that is simple (and has < n— 1 edges).
N — .

Pf.
* Consider a cheapest v~r path P that uses the fewest number of edges.

* If P contains a cycle W, can remove portion of P corresponding to W
without increasing the cost. =

cwW) =20
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Shortest path and negative cycle problems

Shortest path problem. Given a digraph G = (V, E) with edge weights ¢,,, and
no negative cycles, find cheapest v~ path for each node v.

Negative cycle problem. Given a digraph G = (V, E) with edge weights ¢,,,
find a negative cycle (if one exists).
-3
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P
Shortest paths: dynam\lc prcig‘r‘armlng w wh Giin — "D(d

CWH
Def. OPT(i,v) = cost of shertest v~r path that uses < i edges. Z q l’@

* Case 1: Cheapest v~t path uses <i—1 edges. (N 5\’>
- OPT(i,v)=OPT(i - 1,v) m\ ( \l

/ (proof via exchange argument)
* Case 2: Cheapest v~ path usedges

- if (v,w) is first edge, then OPT uses (v, w), and then selects best w-r O
path using =i -1 edges P | O
= L ¢ %eb if i= 0

min{ OPT(i-1,v), min {OPT(i-1, w)+c,, }} OthchIV
(VWIEE N o———
o )ﬁ{

Observation. If no negative cycles, OPT(n- 1,v) = cost of cheapest v
Pf. By Lemma 2, cheapest v~¢ path is simple. = ;7 ‘t&

OPT(i,v) =
i
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Shortest paths: implementation

SHORTEST-PATHS (V, E, ¢, )

FOREACH node veE V

FOREACH node vE V
M M MI[i—1 0 V‘ : (V\ ad )
] < mi i i—1, w] =+ cw §.
“ —} \ [Ia V] y{ [I! v]a [I ““] c }

M0, v] « o.
MIi, v] — M[i—1,v].
W
O( — ’,&O(V\-""‘

/
MI0, 1] — 0. ’_Q ( O\,J{O L)
Fori=1TOon-1 h ‘
A\A"Z FOREACH edge (v, w) EE

Shortest paths: implementation

Theorem 1. Given a digraph G = (V, E) with no negative cycles, the dynamic
programming algorithm computes the cost of the cheapest v~r path for
each node v in ®(mn) time and ©(n?) space.
i S
Pf.
* Table requires ©(n?) space.
* Each iteration i takes ©(m) time since we examine each edge once. =

Finding the shortest paths.
* Approach 1: Maintain a successor(i, v) that points to next node on
cheapest v~t path using at most i edges.
* Approach 2: Cormwnal costs M[i,v] and consider only ecjges

wit%zf[i,ﬂ:M[i—l,ihy A E") \‘3 % MY/ .\./' \ V}
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Detecting negative cycles

Negative cycle detection problem. Given a digraph G = (V, E), with edge
weights ¢, find a negative cycle (if one exists).



Detecting negative cycles: application

Currency conversion. Given n currencies and exchange rates between pairs
of currencies, is there an arbitrage opportunity?

Remark. Fastest algorithm very valuable!

0.741 * 1.366 * .995 = 1.00714497
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Detecting negative cycles

Lemma 5. If OPT(n,v)=0PT(n - 1,v) for all v, then no negative cycle can
reach r.
Pf. Bellman-Ford algorithm. =

Lemma 6. If OPT(n,v) < OPT(n—-1,v) for some node v, then (any) cheapest
path from v to r contains a cycle W. Moreover W is a negative cycle.

Pf. [by contradiction]
* Since OPT(n,v) < OPT(n-1,v), we know that shortest v—r path P has
exactly n edges.
* By pigeonhole principle, P must contain a directed cycle W.
* Deleting W yields a vt path with < n edges = W has negative cost. =

(e . |

Detecting negative cycles

Theorem 4. Can find a negative cycle in ®(mn) time and ©(n?) space.

Pf.
* Add new node r and connect all nodes to r with 0-cost edge.
* G has a negative cycle iff G' has a negative cycle than can reach . '
« |If OPT(n,v) = OPT(n_ L) for all nodes v, then no negative cycles. wn
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* G has a negative cycle iff G' has a negative cycle than can reach .

« |If OPT(n,v) = OPT(n _ Ly for all nodes v, then no negative cycles.
* If not, then extract directed cycle from path from v to «.
(cycle cannot contam rsmce no ed&s leave r) =

G =
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