All-Pairs Shortest Paths

Given: Digraph $G=(V,E)$, where $V=\{1,2,\ldots,n\}$, possibly negative costs $c(i,j)$, BUT no negative cycles! ($c(i,j) = \infty$ means no edge (i,j) in G)

Compute: $D(i,j) =$ cost of cheapest path from i to j, for all i,j in V.

Later, will also want an algorithm that, given (i,j), finds a cheapest path from i to j.

Observation: Every cheapest path from i to j must be simple, i.e., with no cycles!

Floyd-Warshall DP algorithm

Step 1: Array

$$A(k,i,j)$$

Step 2: Recurrence

$$A(0,i,i) = 0, \forall i$$
$$A(0, i, j) = c(i,j)$$

$$A(k, i, j) = \min \{ A(k-1, i, j), A(k-1, i, k') + A(k-1, k', j) \}$$

Case 1: node k is not used

node k is not used
Step 3: Algorithm to fill in the array.

array $A[K, i, j]$, $0 \leq K \leq n$,
$1 \leq i \leq n$,
$1 \leq j \leq n$

Runtime: $O(n^3)$

Given (i, j) points out cheapest

$x(i, j) = A[n, i, j]$

$\text{time: } O(1(n))$

Step 4: Recover shortest paths from the array

PrintOpt(K, i, j) % Print Opt

if $K = 0$ % base case
then if $i = j$ then return
else return edge (i, j)

root call

If $K = 0$ % base case
then if $i = j$ then return
else return edge (i, j)
Shortest paths

Shortest path problem. Given a digraph $G = (V,E)$, with arbitrary edge weights or costs c_{uv}, find cheapest path from node s to node t.

cost of path = $9 - 3 + 1 + 11 = 18$
Shortest paths: failed attempts

Dijkstra. Can fail if negative edge weights.

Reweighting. Adding a constant to every edge weight can fail.

Negative cycles

Def. A negative cycle is a directed cycle such that the sum of its edge weights is negative.
Shortest paths and negative cycles

Lemma 1. If some path from \(v \) to \(t \) contains a negative cycle, then there does not exist a cheapest path from \(v \) to \(t \).

Pf. If there exists such a cycle \(W \), then can build a \(v \rightarrow t \) path of arbitrarily negative weight by detouring around cycle as many times as desired. ■

\[c(W) < 0 \]

Shortest paths and negative cycles

Lemma 2. If \(G \) has no negative cycles, then there exists a cheapest path from \(v \) to \(t \) that is simple (and has \(\leq n-1 \) edges).

Pf.
- Consider a cheapest \(v \rightarrow t \) path \(P \) that uses the fewest number of edges.
- If \(P \) contains a cycle \(W \), can remove portion of \(P \) corresponding to \(W \) without increasing the cost. ■

\[c(W) \geq 0 \]
Shortest path and negative cycle problems

Shortest path problem. Given a digraph $G=(V,E)$ with edge weights c_{vw} and no negative cycles, find cheapest $v\to t$ path for each node v.

Negative cycle problem. Given a digraph $G=(V,E)$ with edge weights c_{vw}, find a negative cycle (if one exists).

![Shortest-paths tree and negative cycle]

Shortest paths: dynamic programming

Def. $OPT(i, v) = \text{cost of shortest } v\to t \text{ path that uses } \leq i \text{ edges.}$

- **Case 1:** Cheapest $v\to t$ path uses $\leq i - 1$ edges.
 - $OPT(i, v) = OPT(i-1, v)$

- **Case 2:** Cheapest $v\to t$ path uses exactly i edges.
 - if (v, w) is first edge, then OPT uses (v, w), and then selects best $w\to t$ path using $\leq i - 1$ edges

$$OPT(i, v) = \begin{cases} \infty & \text{if } i = 0 \\ \min \{ OPT(i-1, v), \min_{(v, w) \in E} \{ OPT(i-1, w) + c_{vw} \} \} & \text{otherwise} \end{cases}$$

Observation. If no negative cycles, $OPT(n-1, v) = \text{cost of cheapest } v\to t \text{ path}.$

Pf. By Lemma 2, cheapest $v\to t$ path is simple. •
Shortest paths: implementation

Algorithm: Shortest Paths (V, E, c, t)

FOR each node $v \in V$

- $M[0, v] \leftarrow \infty.$
- $M[0, t] \leftarrow 0.$

FOR $i = 1$ **TO** $n - 1$

FOR each node $v \in V$

- $M[i, v] \leftarrow M[i-1, v].$

FOR each edge $(v, w) \in E$

- $M[i, v] \leftarrow \min \{ M[i, v], M[i-1, w] + c_{vw} \}.$

Theorem 1. Given a digraph $G = (V, E)$ with no negative cycles, the dynamic programming algorithm computes the cost of the cheapest $v \rightarrow t$ path for each node v in $\Theta(mn)$ time and $\Theta(n^2)$ space.

Pf.
- Table requires $\Theta(n^2)$ space.
- Each iteration i takes $\Theta(m)$ time since we examine each edge once.

Finding the shortest paths.
- **Approach 1:** Maintain a $\text{successor}(i, v)$ that points to next node on cheapest $v \rightarrow t$ path using at most i edges.
- **Approach 2:** Compute optimal costs $M[i, v]$ and consider only edges with $M[i, v] = M[i-1, w] + c_{vw}.$

$$\text{OPT}(i, v) = \text{OPT}(i-1, v) \lor v \quad (\ast)$$

$$\text{OPT}(i, \cdot) = \text{E}(\text{OPT}(i-1, \cdot))$$
Detecting negative cycles

Negative cycle detection problem. Given a digraph \(G = (V, E) \), with edge weights \(c_{vw} \), find a negative cycle (if one exists).
Detecting negative cycles: application

Currency conversion. Given \(n \) currencies and exchange rates between pairs of currencies, is there an arbitrage opportunity?

Remark. Fastest algorithm very valuable!

Detecting negative cycles

Lemma 5. If \(OPT(n, v) = OPT(n - 1, v) \) for all \(v \), then no negative cycle can reach \(r \).

Pf. Bellman-Ford algorithm.

Lemma 6. If \(OPT(n, v) < OPT(n - 1, v) \) for some node \(v \), then (any) cheapest path from \(v \) to \(r \) contains a cycle \(W \). Moreover \(W \) is a negative cycle.

Pf. [by contradiction]

- Since \(OPT(n, v) < OPT(n - 1, v) \), we know that shortest \(v \rightarrow r \) path \(P \) has exactly \(n \) edges.
- By pigeonhole principle, \(P \) must contain a directed cycle \(W \).
- Deleting \(W \) yields a \(v \rightarrow r \) path with < \(n \) edges \(\Rightarrow \) \(W \) has negative cost.

Detecting negative cycles

Theorem 4. Can find a negative cycle in \(\Theta(nm) \) time and \(\Theta(n^2) \) space.

Pf.

- Add new node \(r \) and connect all nodes to \(r \) with 0-cost edge.
- \(G \) has a negative cycle iff \(G' \) has a negative cycle than can reach \(r \).
- If \(OPT(n, v) = OPT(n - 1, v) \) for all nodes \(v \), then no negative cycles.
Add new node \(n \) and connect all nodes to \(n \) with \(0 \)-cost edges.

- \(G \) has a negative cycle iff \(G' \) has a negative cycle that can reach \(n \).
- If \(OPT(n, v) = OPT(n - 1, v) \) for all nodes \(v \), then no negative cycles.
- If not, then extract directed cycle from path from \(v \) to \(n \).

(cycle cannot contain \(n \) since no edges leave \(n \))