All-Pairs Shortest Paths
Given: Digraph $G=(\mathrm{V}, \mathrm{E})$, where $\mathrm{V}=\{1,2, \ldots, \mathrm{n}\}$,
possibly negative costs $c(i, j)$, BUT no negative cycles! ($c(i, j)=\infty$ means no edge (i, j) in G)

Compute: $D(i, j)=$ cost of cheapest path from ito j, for all i, j in V.
Later, will also want an algorithm that, given (i,j), finds a cheapest path from ito j.
Observation: Every cheapest path from i to j must be simple, ie., with no cycles!

Floyd-Warshall DP algorithm

Step 1: Array

$$
A(k, i, j)
$$

Step 2: Recurrence

Step 3: Algorithm to fill in the array.
arron g $A[K, i, j]$
$0 \leq K \leq n$
Step 4: Recover shortest paths from the array
Given (i, j),
prints out cheapest RuntmeiO(n n^{3})
$1 \leq i \leq n$
$p^{\prime} \leq j \leq n$

$$
\gamma(i, j)=A[n, i, j]
$$

Time: On)

$$
\text { PvintOpt }(k, i, j)
$$

\% Prut lo (n, i, j)
If $K=0$ \% base case root call
then if $1=j$ then return end it else return edge ($1, j$)

Shortest paths
Shortest path problem. Given a digraph $G=(V, E)$, with arbitrary edge weights or costs $c_{v w}$, find cheapest path from node s to node t.

Shortest paths: failed attempts
Dijkstra. Can fail if negative edge weights.

Reweighting. Adding a constant to every edge weight can fail.

Negative cycles

Def. A negative cycle is a directed cycle such that the sum of its edge weights is negative.

a negative cycle W : $c(W)=\sum_{e \in W} c_{e}<0$

Shortest paths and negative cycles

Lemma 1. If some path from v to t contains a negative cycle, then there does not exist a cheapest path from v to t.

Pf. If there exists such a cycle W, then can build a $v \rightarrow t$ path of arbitrarily negative weight by detouring around cycle as many times as desired.

c(W) <0

Shortest paths and negative cycles

Lemma 2. If G has no negative cycles, then there exists a cheapest path from v to t that is simple (and has $\leq n-1$ edges).

Pf.

- Consider a cheapest $v \rightarrow t$ path P that uses the fewest number of edges.
- If P contains a cycle W, can remove portion of P corresponding to W without increasing the cost.

$\mathrm{c}(\mathrm{W}) \geq 0$

Shortest path and negative cycle problems

Shortest path problem. Given a digraph $G=(V, E)$ with edge weights $c_{v w}$ and no negative cycles, find cheapest $v \rightarrow t$ path for each node v.

Negative cycle problem. Given a digraph $G=(V, E)$ with edge weights $c_{v w}$, find a negative cycle (if one exists).

shortest-paths tree

negative cycle

Shortest paths: dynamic programming cheapest
 Bellman-

 Def. $O P T(i, v)=$ cost of shortest $v \rightarrow t$ path that uses $\leq i$ edges.- Case 1: Cheapest $v \rightarrow t$ path uses $\leq i-1$ edges.
 - OPT $(i, v)=\operatorname{OPT}(i-1, v)$
- Case 2: Cheapest $v \rightarrow t$ path uses exactly i dies.
- if (v, w) is first edge, then OPT uses (v, w), and then selects best $w \rightarrow t$ path using $\leq i-1$ edges

$$
O P T(i, v)= \begin{cases}\infty \\ \min \{O P T(i-1, v), & \min _{(v, w) \in E}\{\underbrace{\left.O P T(i-1, w)+c_{w w}\right\}}\}\end{cases}
$$

$$
\operatorname{OPT}(0, t)=0
$$

$$
{ }_{i \mathrm{i} i=0} \prec v \neq t
$$

Observation. If no negative cycles, $\operatorname{OPT}(n-1, v)=$ cost of cheapest $\underset{\sim}{ }$ path. Pf. By Lemma 2, cheapest $v \rightarrow t$ path is simple. -

Shortest-Paths (V, E, c, t)
Foreach node $v \in V$

$$
M[0, v] \leftarrow \infty .
$$

$$
M[0, t] \leftarrow 0 .
$$

FOR $\mathrm{i}=1$ TO $n-1$
Foreach node $v \in V$

$$
M[i, v] \leftarrow M[i-1, v] .
$$

Foreach edge $(v, w) \in E$

$$
M[i, v] \leftarrow \min \left\{M[i, v], M[i-1, w]+c_{v w}\right\}
$$

Shortest paths: implementation

Theorem 1. Given a digraph $G=(V, E)$ with no negative cycles, the dynamic programming algorithm computes the cost of the cheapest $v \rightarrow t$ path for each node v in $\Theta(m n)$ time and $\Theta\left(n^{2}\right)$ space.

Pf.

- Table requires $\Theta\left(n^{2}\right)$ space.
- Each iteration i takes $\Theta(m)$ time since we examine each edge once. -

Finding the shortest paths.

- Approach 1: Maintain a successor (i, v) that points to next node on cheapest $v \rightarrow t$ path using at most i edges.
- Approach 2: Compute optimal costs $M[i, v]$ and consider only edges with $M[i, v]=M[i-1, w]+c_{v w}$.

Detecting negative cycles
Negative cycle detection problem. Given a digraph $G=(V, E)$, with edge weights $c_{v w}$, find a negative cycle (if one exists).

Detecting negative cycles: application

Currency conversion. Given n currencies and exchange rates between pairs of currencies, is there an arbitrage opportunity?

Remark. Fastest algorithm very valuable!

Detecting negative cycles

Lemma 5. If $\operatorname{OPT}(n, v)=\operatorname{OPT}(n-1, v)$ for all v, then no negative cycle can reach t.
Pf. Bellman-Ford algorithm. -

Lemma 6. If $\operatorname{OPT}(n, v)<\operatorname{OPT}(n-1, v)$ for some node v, then (any) cheapest path from v to t contains a cycle W. Moreover W is a negative cycle.

Pf. [by contradiction]

- Since $O P T(n, v)<\operatorname{OPT}(n-1, v)$, we know that shortest $v \rightarrow t$ path P has exactly n edges.
- By pigeonhole principle, P must contain a directed cycle W.
- Deleting W yields a $v \rightarrow t$ path with $<n$ edges $\Rightarrow W$ has negative cost.

$\operatorname{Opt}(i, v)<$

$$
c(W)<0
$$

Detecting negative cycles

Theorem 4. Can find a negative cycle in $\Theta(m n)$ time and $\Theta\left(n^{2}\right)$ space.
Pf.

- Add new node t and connect all nodes to t with 0-cost edge.
- G has a negative cycle eff G^{\prime} has a negative cycle than can reach t.
- If $O P T(n, v)=O P T(n-1, v)$ for all nodes v, then no negative cycles.
- G has a negative cycle iff G^{\prime} has a negative cycle than can reach t.
- If $O P T(n, v)=O P T \underline{(n-1, \nu)}$ for all nodes v, then no negative cycles.
- If not, then extract directed cycle from path from v to t. (cycle cannot contain t since no edges leave t) -

