Lecture 20

Tuesday, July 25, 2017 10:46 PM

Coping with NP-completeness

Q. Suppose | need to solve an NP-complete problem. What should | do?
A. Theory says you're unlikely to find poly-time algorithm.

Must sacrifice one of three desired features.
« Solve problem to optimality.
« Solve problem in polynomial time.
 Solve arbitrary instances of the problem.

This lecture. Solve some special cases of NP-complete problems.




Vertex cover

Given a graph G = (V,E) and an integer k, is there a subset of vertices SCV
such that IS|< k, and for each edge (u,v) either u €S or v €S or both?
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S$={3,6,7,101}is a vertex cover of size k = 4



Finding small vertex covers

Q. VERTEX-COVER is NP-complete. But what if k is small? \ MO‘J';JJDQO)A’S
On S\
Brute force. O(knt+). n -Kn

N
* Try all C(n, k) = O(n*) subsets of size «. A VN — /L‘,, l('
- Takes O(kn) time to check whether a subset is a vertex coyver. \é, - ¢ £ S*C(S
Goal. Limit exponential dependency on %, say to O(2t kn). (\{l |<
s
Ex. n=1,000,%=10. V\

Brute. knktl =103 = infeasible.
Better. 2kkn=107 = feasible.

Remark. If kis a constant, then the algorithm is poly-time;
if £ is a small constant, then it’s also practical.



Finding small vertex covers

Claim. Let («,v) be an edge of G. G has a vertex cover of size < k iff
at least onéoTG— {u} and G-{v} has a vertex cover of size < k- 1.
delete v and all incident edges
Pf. =
* Suppose G has a vertex cover S of size <«k.
* § contains either u or v (or both). Assume it contains u.
« S—{u}is avertex cover of G- {u}.

Pf. <
. Suppose S is a vertex cover of G- {u} of size < k- 1.

« ThenSU{u}is avertex cover of G. =

Claim. If G has a vertex cover of size k, it has <k (n-1) edges.

Pf. Each vertex covers at most n—1 edges. = gﬁ
¢ B MV

Finding small vertex covers: algorithm

Claim Tha fallawinAa alanrithm AdAatarminac if r2 hac a viartav raviar nf e —



Claim. The following algorithm determines if G has a vertex cover of

size < ki
Vertex-Cover(G, k) {
if (G contains no edges) return true
if (G contains = kn edges) return false
et gu! v) be any edge of G
a = Vertex—CovergG - {u}, k-1)
b = Vertex-Cover(G - {v}, k-1) =
—
return a or b p - - -
} Z
Pf.

« Correctness follows from previous two claims.
* There are <21 nodes in the recursion tree; each invocation
takes O(kn) time. =



Finding small vertex covers: recursion tree

c ifk=0
T(n,k)<{cn ifk=1 = T(n,k)=<2"ckn
2T(n.k-=1)+ckn ifk>1
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Independent set on trees

Independent set on trees. Given a tree, find a maximum cardinality subset
of nodes such that no two share an edge.

Fact. A tree on at least two nodes has at least two leaf nodes.

/
degree =1 / \
Key observation. If v is a leaf, there exists
a maximum size independent set containing v. /u

Pf. (exchange argument) v
« Consider a max cardinality independent set S.
If vE S, we're done.
If uSand v S, then SU {v} is independent = S not maximum.
If ueSand v S, then SU {v}—-{u}is independent. =



Independent set on trees: greedy algorithm

Theorem. The following greedy algorithm finds a maximum cardinality
independent set in forests (and hence trees).

Independent-Set-In-A-Forest(F) {
S < ¢
while (F has at Teast one edge) {
Let e = (u, v) be an edge such that v is a leaf
Add v to S

Delete from F nodes u and v, and all edges

incident to them.

ieturn S U é oJ;i \(':&VV‘O\‘—\M\’\& V\OM}

}

Pf. Correctness follows from the previous key observation. =

Remark. Can implement in O(n) time by considering nodes in postorder.



Weighted independent set on trees ne?

Weighted independent set on trees. Given a tree and node weights w, >0, v \

find an independent set S that maximizes = w,. ( %T‘e (/\QQ

Observation. If (u,v) is an edge such that v is a leaf node, then either OPT
includes u or OPT includes all leaf nodes incident to .

U - Qead

Dynamic programming solution. Root tree at some node, say r.

« OPT, (1) = max weight independent set OPJ*, {\4\7 wu
of subtree rooted at u, containing u. r N
 OPT,, (1) = max weight independent set / (M\‘: @
of subtree rooted at u, not containing u. \ 7"4“1 /
u
OPT, (u) = w,+ > OPT, , (v)
v € children(u) t V/ W\ X
OPT,,, (1) = > max {OPT,,(v), OPT,,, ()}

v € children(u)

children(u) = { v, w, x }



Weighted independent set on trees: dynamic programming algorithm

Theorem. The dynamic programming algorithm finds a maximum weighted

independent set in a tree in O(n) time. N\ can also find

independent set itself
(not just value)

Weighted-Independent-Set-In-A-Tree(T) {
Root the tree at a node r
foreach (node u of T 1in postordgr) {
if (u is a Teaf) {

ensures a node is visited

Mip, [ul = w, after all its children
Mout [l = 0
}
else {
Min [ul = wy + Zycchitdrencuy Mout[V]
Mout LUl = Zicchitdrency Max(MinLv], Mo [VI)
}

}

return max(M;,[r], M,.Lrl)



Context

Independent set on trees. This structured special case is tractable because
we can find a node that breaks the communication among the
subproblems in different subtrees.
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see Chapter 10.4
(but proceed with caution)
Graphs of bounded tree width. Elegant generalization of trees that:
« Captures a rich class of graphs that arise in practice.
* Enables decomposition into independent pieces.



Vertex cover

Given a graph G=(V,E) and an integer k, is there a subset of vertices SCV
such that ISl < %, and for each edge (u,v) either u € S or v €S or both?

vertex coverS ={3,4,5,1', 2"}

22



Vertex cover and matching

Weak duality. Let M be a matching, and let S be a vertex cover.

Then, Ml < |ISI.

Pf. Each vertex can cover at most one edge in any matching.

matching M: 1-1', 2-2', 3-4', 4-5'
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Vertex cover in bipartite graphs: Kénig-Egervary Theorem

Theorem. [Konig-Egervary] In a bipartite graph, the max cardinality of a
matching is equal to the min cardinality of a vertex cover.

matching M: 1-1', 2-2', 3-4', 4-5'

vertex cover S ={3,4,5,1' 2"} 24



Proof of Kénig-Egervary theorem

Theorem. [Konig-Egervary] In a bipartite graph, the max cardinality of a
matching is equal to the min cardinality of a vertex cover.

* Suffices to find matching M and cover S such that IM| = [SI.

« Formulate max flow problem as for bipartite matching.

* Let M be max cardinality matching and let (4, B) be min cut.

25



Proof of Kénig-Egervary theorem

Theorem. [Konig-Egervary] In a bipartite graph, the max cardinality of a
matching is equal to the min cardinality of a vertex cover.

- Suffices to find matching M and cover S such that IMI| = |SI.
Formulate max flow problem as for bipartite matching.
Let M be max cardinality matching and let (4, B) be min cut.
Define L,=LNA, Ly=LNB, Ry=RNA, Rz=RNB.

Claim 1. S=LgUR, is a vertex cover.

- consider (u,v) EE

- u€L,,vERgimpossible since infinite capacity
- thus, either u € Lyor vE R, or both

Claim 2. IMI = ISI.

- max-flow min-cut theorem = IMI=cap(A, B)

- only edges of form (s, u) or (v, 1) contribute to cap(A, B)
- IMl=cap(A,B)=ILgl + R, = ISI. =

26
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Remarks:

e The classification of algorithms into Greedy, DP, etc. is just for convenience. It's OK to
create hybrid algorithms.

e NP-complete problems provide a source of many natural problems we don't know how
to solve with efficient algorithms. A common belief is that no such algorithms exist (i.e.,
that P is not equal to NP), but we don't really know!

e Randomized (and quantum) polytime algorithms extend our notion of efficient



algorithms (from the usual deterministic polytime algorithms).

e Our ideal algorithm for a given problem is
o fast (polytime), and
o correct on all inputs of that problem.
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