Lecture 4

Wednesday, May 10,2017 7:22PM

Undirected graphs

Notation. G=(V,E)
* V=nodes.
* E=edges between pairs of nodes.
» Captures pairwise relationship between objects.
* Graph size parameters: n=I1VI,m=1EI

() (™
. v={1,2,3,4,5,6,7,8}
(2—(3)

E={1-2,1-3,2-3,2-4,2-5,3-5,3-7,3-8,4-5,5-6,7-8 }

m=11,n=8

Some graph applications

communication
circuit
mechanical
financial
transportation
internet
game
social relationship
neural network
protein network

molecule

slide_4 Page 1

telephone, computer
gate, register, processor
joint
stock, currency
street intersection, airport
class C network
board position
person, actor
neuron
protein

atom

fiber optic cable
wire
rod, beam, spring
transactions
highway, airway route
connection
legal move
friendship, movie cast
synapse
protein-protein interaction

bond

Graph representation: adjacency matrix

Adjacency matrix. n-by-n matrix with A, =1 if («,v) is an edge.

* Two representations of each edge. .
* Space proportional to n2. \3\/ 0
* Checking if (u,v) is an edge takes (1) time.

+ |dentifying all edges takes ©(n?) time. 8)

-’

2
c
T;)(V)
‘ [

n
0

12345678
(1) (7) 1/01100000 1,\
. 210111000

o ° 3/11001011
4101001000

" 5/01110100
° o ° 6100001000
7100100001

8/00100010

Graph representation: adjacency lists

Adjacency lists. Node indexed array of lists.
* Two representations of each edge. degree = number of neighbors of u
* Space is @(m + n). /
* Checking if (u,v) is an edge takes O(degree(u)) time.

* |dentifying all edges takes ®(m + n) time. %ibQ ~ 2 (AQ&(V) = Qm

m

1)

B
=
<

e

3
S
-

T
i

(5]
—

Y
E

:
!
;

Eﬁ

e}
=]
-]

slide_4 Page 2

Paths and connectivity

Def. A path in an undirected graph G=(V,E) is a sequence of nodes
vi, v2, ..., vk With the property that each consecutive pair vi.i, v; is joined
by an edge in E.

Def. A path is simple if all nodes are distinct.

Def. An undirected graph is connected if for every pair of nodes u and v,
there is a path between u and v.

Tisl

Def. A cycle is a path vy, v2, ..., v in which v, =v,, k> 2, and the first k-1

Cycles

nodes are all distinct.

cycle C = 1-2-4-5-3-1

slide_4 Page 3

Trees

Def. An undirected graph is a tree if it is connected and does not contain a
cycle.

Theorem. Let G be an undirected graph on n nodes. Any two of the
following statements imply the third.

*. G is connected.

* G does not contain a cycle.

* G has n—1 edges.

Rooted trees

Given a tree T, choose a root node r and orient each edge away from r.

Importance. Models hierarchical structure.

child of v

a tree the same tree, rooted at 1

L\QS V\'—'\ € S . 13

slide_4 Page 4

Connectivity

s-t connectivity problem. Given two node s and ¢, is there a path between s
and ¢?

s-t shortest path problem. Given two node s and ¢, what is the length of the

shortest path between s and ?

Applications.
 Friendster.
* Maze traversal.
« Kevin Bacon number.
* Fewest number of hops in a communication network.

Breadth-first search

BFS intuition. Explore outward from s in all possible directions, adding
nodes one "layer” at a time.

‘_’-’-’-F -'-—'-—'-— -4
H L L — cee L
BFS algorithm. ~ -

* Ly={s}.
» L, = all neighbors of L,.

* L, = all nodes that do not belong to L, or L,, and that have an edge to a
node in L,.

* L., = all nodes that do not belong to an earlier layer, and that have an
edge to a node in L.

Theorem. For each i, L, consists of all nodes at distance exactly i
from s. There is a path from s to ¢ iff r appears in some layer.

slide_4 Page 5

Breadth-first search

Property. Let T be a BFS tree of G=(V,E), and let (x,y) be an edge of G.
Then, the level of x and y differ by at most 1.

Lo
L
L

L;

(a)

Breadth-first search: analysis

Theorem. The above implementation of BFS runs in O(m + n) time if the
- - - - - _ -«
graph is given by its adjacency representation. . ' wQ
Q,\\/\Q.,O&(

PF. Si3¢ © /M

* Easy to prove O(n?) running time:
- at most n lists L[i]
- each node occurs on at most one list; for loop runs <n times
- when we consider node «, there are <n incident edges (u, v),
and we spend O(1) processing each edge

* Actually runs in O(m + n) time:
- when we consider node u, there are degree(u) incident edges (u, v)
- total time processing edges is =, degree(u) = 2m. =

each edge (u, v) is counted exactly twice
in sum: once in degree(u) and once in degree(v)

20

slide_4 Page 6

Connected component

Connected component. Find all nodes reachable from s.

Connected component containing node 1={1,2,3,4,5,6,7,8 }.

21

Connected component

Connected component. Find all nodes reachable from s.

R will consist of nodes to which s has a path

Initially R={s)

While there is an edge (u,v) where ueR and vgR
Add v to R

Endwhile it's safe to add v

Theorem. Upon termination, R is the connected component containing s.
* BFS = explore in order of distance from s.
* DFS = explore in a different way.

24

slide_4 Page 7

Bipartite graphs

Def. An undirected graph G = (V, E) is bipartite if the nodes can be colored
blue or white such that every edge has one white and one blue end.

Applications.
» Stable marriage: men = blue, women = white.
* Scheduling: machines = blue, jobs = white.

/

_/

a bipartite graph

Testing bipartiteness

Many graph problems become:
« Easier if the underlying graph is bipartite (matching).
» Tractable if the underlying graph is bipartite (independent set).

Before attempting to design an algorithm, we need to understand structure
of bipartite graphs.

=

a bipartite graph G another drawing of G

slide_4 Page 8

26

27

An obstruction to bipartiteness

Lemma. If a graph G is bipartite, it cannot contain an odd length cycle.

Pf. Not possible to 2-color the odd cycle, let alone G.

p @

bipartite not bipartite
(2-colorable) (not 2-colorable)

28

Bipartite graphs

Lemma. Let G be a connected graph, and let L, ..., L, be the layers produced
by BFS starting at node s. _Exactly one of the following holds.
() No edge of G@two nodes of the sam@and G is bipartite.

(ii) An edge of G joins two nodes of the same layer, and G contains an
odd-length cycle (and hence is not bipartite).

e Colme Tilz 0 o |
e & QL;; t:(kj\éE

/’—\

ﬁ‘ﬁ/\ n NP ‘r’
T !
I : : /” O(w%)lm"-?
Case (i) Case (ii) (’L> 29(‘N\)

QQO\O Q- COQ'O\JN‘
G\;\IE)I/\ (2\: (V E) (Comht&th‘)

slide_4 Page 9

J
Gy ivens G= (\/)E) (Comvxccfw‘)
I. Q\J\V\ &FS Ov) G‘\

a»:\lr'm(e) Q‘l\/us Lo :L\’Lz,...
2 Foc QVQ:J node v eV

o v O \4 v g i:'\ W ()""70(‘ /,u,
oc \ '\.{vigiv\oouqauyuL.

214+

<. Checx ‘\4 auy edaqe (u,v) €E hag CQQQ((M);Q&((V)
3 so, ouby "Nt Bipactite "

O"‘fuw'\&e) omﬁ»«d{’) 6ifmr'h4e ”.
@\w\ {‘Q\W\Q G"\“Q‘]Sig . O (M -(-v\)

(l) 6PS -' ‘é;MQ O(w.-l-v\)
(Z> ASS 1&g CJO{‘S fo hode g - O (H)
(3) Che §<iv\ he wonn cheowatc qolJng; O(W\)

QG({-C(A'V\{SS O\WRQ/QS:
V) G ot Liparkte = Q(J" seys Noa-byp

(Z> G\ l)‘\FO\r'M{ = 0‘080 SQ7S "g}f%"#{"
I\ q “
G\ (s - L\‘oqr—HQ & algo 3«7,; ‘\)Qv\-lo;laqﬂu

Wo.. W‘\u 0\‘(:1\45. ""w'{’ V\/L\Qt_f\ ’("\a qQﬁo §°~7$

WQ. w\u ofr \49_ "M"' vv"\ev\ Q <
‘\Uw\ L’Fo‘r"'\ on Qv M 0 L\ JO@\ Sn?
‘H«Q\A QD\A"‘O\»\\AS Qu ba(

G\ '\\,\A,u,o(\S Vm"l' E,(JQF‘H_('Q.

HQ\ALQ

Bipartite graphs

Lemma. Let G be a connected graph, and let L, ..., L, be the layers produced
by BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) An edge of G joins two nodes of the same layer, and G contains an
odd-length cycle (and hence is not bipartite).
PF. (i) Case 1+ no edgs " Same lq"‘f&('
L (i
* Suppose no edge joins two nodes in same layer.
» By BFS property, each edge join two nodes in adjacent levels.
» Bipartition: white = nodes on odd levels, blue = nodes on even levels.

5 TWs D\\OQO
2 - wlaes WL‘
L L, L W haeg 2\ ’uolO\ Q,’C\Q

un lees
Case (i)

slide_4 Page 11

Bipartite graphs

Lemma. Let G be a connected graph, and let L, ..., L, be the layers produced
by BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) An edge of G joins two nodes of the same layer, and G contains an
odd-length cycle (and hence is not bipartite).

Cage 2 :/S Qo(&o_ Tw SOe ,W

Pf. (ii) —

* Suppose (x,y) is an edge with x, y in same level L,
* Let z=Ilca(x,y) = lowest common ancestor. z = lca(x, y)
* Let L, be level containing z.
* Consider cycle that takes edge from x to y, Layer L;

then path from y to z, then path from z to x.

* ltslengthis 1 + (j—i) + (j—i), whichis odd. =

- —— —\— {
(x,y) path from path from Layer L; °—°
ytoz Z1to X -

31

Thobsrruction to bipartiteness

Corollary. A graph G is bipartite iff it contain no odd length cycle.

+«—— 5-cycle C

bipartite not bipartite
(2-colorable) (not 2-colorable)

32

slide_4 Page 12

Directed graphs

Notation. G=(V,E).
* Edge (u,v) leaves node u and enters node v.

Ex. Web graph: hyperlink points from one web page to another.
» Orientation of edges is crucial.
« Modern web search engines exploit hyperlink structure to rank web
pages by importance.

34

World wide web

Web graph.
* Node: web page.
» Edge: hyperlink from one page to another (orientation is crucial).
* Modern search engines exploit hyperlink structure to rank web pages

by importance.

cnn.com

netscape.com novell.com cnnsi.com timewarner.com

v
hbo.com
A

sorpranos.com
35

slide_4 Page 13

Some directed graph applications

directed graph directed edge

transportation street intersection one-way street

web web page hyperlink
food web species predator-prey relationship
WordNet synset hypernym
scheduling task precedence constraint
financial bank transaction
cell phone person placed call
infectious disease person infection
game board position legal move
citation journal article citation
object graph object pointer
inheritance hierarchy class inherits from
control flow code block jump

Graph search

39

Directed reachability. Given a node s, find all nodes reachable from s.

U
d)s-t shortest path problem. Given twed
length of the shortest path from s and ?

Graph search. BFS extends naturally to directed graphs.

& BFS

Web crawler. Start from web page s. Find all web pages linked from s,
either directly or indirectly.

slide_4 Page 14

Strong connectivity

Def. Nodes « and v are mutually reachable if there is a both path from u to v
and also a path from v to «.

Def. A graph is strongly connected if every pair of nodes is mutually
reachable.

Lemma. Let s be any node. G is strongly connected iff every node is
reachable from s, and s is reachable from every node.

Pf. = Follows from definition.
Pf. < Path from u to v: concatenate u~s path with s~v path.
Path from v to u: concatenate v~s path with s~u path. =

\

ok if paths overlap

4

Strong connectivity: algorithm

Theorem. Can determine if G is strongly connected in O(m + n) time.

Pr. Chete S5 a Lrulo Q\m""\\mg’

* Pick any node
_a * Run BFS from sinG. \/ reverse orientation of every edge in G Q (\/\/\J(V\

9° Run BFS from s in

« Return true iff all nodes reached in both BFS executions.

2SS foII@r\vi'mmediately from previous lemma. q
7 al
2 > Yo%

SR A —— owé/_)?NLVS -

ISl O (m)

42

slide_4 Page 15

Strong components

Def. A strong component is a maximal subset of mutually reachable
nodes.

A q@@% % @
\

Theorem. [1

Z{F"n-— Fiest Seacch (Z‘F SB‘

s (& =(V,E))

(;%J;:c\m v € \/ marK Vv st &xﬂvfeo(
QE -Q,Qk()"\ vV E ’v

| ilovois ot %PQM‘ |

e BV:'S-\/\ ik (v
lw. Sk (v

evddoc

BFES-V, SFk (‘4\ 0&

WK U\ pploce

= fi S Q?‘r“‘"“k

o/ N\

™ Vv It %P\O'\'QCA

,\}\,\m »r€eQ -Visit (v)

s +«FS Ao

T2

D

' <s‘;(]

L"'UA r
(J .
\ N
\@ @\(

(

Q_L)QMVQ_:’ — ®g25?3 teea |

5O

AFS-Vigt (W)

o spleced

w ol

,E\% j/ Qxi‘f' XFS- Vst (\4)
dQSO;‘r\’AGVL"S T

FS Trw (P(Qfgﬁ :
T wFs te o 6 =(V,E)

BT ot Q(Aac 0\[T
Thewy ONe ok .XKV___‘F cn oS TO

Ao ot ")
397 stS/x\ 15 called W

\j wWos 0(|S(,<,L/-°.('-¢O(

/]\/\,Q/n S o\AS%V&(Qﬂ(V‘)\A"lo'

. 2ES (K CHeaa va\,\j

4

Directed acyclic graphs

Def. A DAG is a directed graph that contains no directed cycles.

Def. A topological order of a directed graph G =(V,E) is an ordering of its
nodes as v;,v,, ..., v, so that for.every edge (v;,v) we have i <.

45

Precedence constraints

Precedence constraints. Edge (v;,v) means task v; must occur before v,
Applications.
* Course prerequisite graph: course v, must be taken before v,.

» Compilation: module v; must be compiled before v;. Pipeline of
computing jobs: output of job v, needed to determine input of job v,

46

Directed acyclic graphs

Lemma. If G has a topological order, then G is a DAG.

Pf. [by contradiction]
» Suppose that G has a topological order v, v,, ...,v, and that G also has a
directed cycle C. Let's see what happens.
Let v; be the lowest-indexed node in C, and let v; be the node just
before v; thus (v;,v) is an edge.
* By our choice of i, we have i <.
* On the other hand, since (v, v, is an edge and v, v,, ..., v, is a topological
order, we must have j<i, a contradiction. =

the directed cycle C
® O @O @ » O ®

the supposed topological order: vy, .., v,

47

slide_4 Page 19

Directed acyclic graphs

Lemma. If G has a topological order, then G is a DAG.

Q.

Q.

Does every DAG have a topological ordering?

If so, how do we compute one?

Directed acyclic graphs

Lemma. If Gis a DAG, then G has a node with no entering edges.

Pf.

[by contradiction]

Suppose that G is a DAG and every node has at least one entering edge.
Let's see what happens.

Pick any node v, and begin following edges backward from v. Since v
has at least one entering edge (u,v) we can walk backward to u.

Then, since « has at least one entering edge (x, u), we can walk
backward to x.

Repeat until we visit a node, say w, twice.

Let C denote the sequence of nodes encountered between successive
visits to w. C is a cycle. =

slide_4 Page 20

48

49

Directed acyclic graphs

Lemma. If Gis a DAG, then G has a topological ordering.

Pf. [by induction on #] E

* Base case: true if n=1.

* Given DAG on n > 1 nodes, find a node v with no entering edges.

* G- {v}is aDAQG, since deleting v cannot create cycles.

* By inductive hypothesis, G- { v} has a topological ordering.

* Place v first in topological ordering; then append nodes of G- { v}
* in topological order. This is valid since v has no entering edges. =

To compute a topological ordering of G: DAG
Find a node v with no incoming edges and order it first
Delete v from G %{

Recursively compute a topological ordering of G—{v}
and append this order after v

Topological sorting-algorithm: running time

Theorem. Algorithm finds a topological order in O(m + n) time.
Pf.
* Maintain the following information:
- count(w) = remaining number of incoming edges O
- §=set of remaining nodes with no incoming edges \‘
* Initialization: O(m + n) via single scan through graph.
* Update: to delete v
- remove v from §
- decrement count(w) for all edges from v to w;
and add w to S if count(w) hits 0
- this is O(1) per edge =

slide_4 Page 21

. B‘F S cuUSe cVA{v‘eS

Wse Sloeks

AFS:
A 675 G=(%E), =<V

.eo(e.acL\ vV € \/
L E%fo‘@(ed vl = °‘\ e

Exp s = Toue Z _)_ — ¢

LLO’_\ <s>

w\'\h Ltl'_\ 75@/

L[l«\—() =
k each \AG L[-]
bie eadn ehge W,V) ¢t

—

ﬁ E‘Kr‘o\’-to\ {\Il = valse

w € lg,, Cvi=Tvu . _.__—-
e Ltan <vs> 5 1= | & (U,V)

QA
ad
il
V= 14\
md w\«\l,,

