Undirected graphs

Notation. G = (V, E)

- V = nodes.
- E =edges between pairs of nodes.
- Captures pairwise relationship between objects.
- Graph size parameters: n = |V|, m = |E|.

$$V = \{1, 2, 3, 4, 5, 6, 7, 8\}$$

$$E = \{ 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6, 7-8 \}$$

$$m = 11, n = 8$$

3

Some graph applications

graph	node	edge		
communication	telephone, computer	fiber optic cable		
circuit	gate, register, processor	wire		
mechanical	joint	rod, beam, spring		
financial	stock, currency	transactions		
transportation	street intersection, airport	highway, airway route		
internet	class C network	connection		
game	board position	legal move		
social relationship	person, actor	friendship, movie cast		
neural network	neuron	synapse		
protein network	protein	protein-protein interaction		
molecule	atom	bond		

Graph representation: adjacency matrix

Adjacency matrix. *n*-by-*n* matrix with $A_{uv} = 1$ if (u, v) is an edge.

- · Two representations of each edge.
- Space proportional to n^2 .
- Checking if (u, v) is an edge takes $\Theta(1)$ time.
- Identifying all edges takes $\Theta(n^2)$ time.

		_	_		_	_	_	_
	1	2	3	4	5	6	7	8
1	0	1	1	0	0	0	0	0
2	0 1	0	1	1	1	0	0	0
3	1	1	0	0	1	0	1	1
4	0	1	0	0	1	0	0	0
5	0	1	1	1	0	1	0	0
6	0	0	0	0	1	0	0	0
7	0	0	1	0	0	0	0	1
8	1 0 0 0 0 0	0	1	0	0	0	1	0

degree = number of neighbors of u

.

Graph representation: adjacency lists

Adjacency lists. Node indexed array of lists.

- · Two representations of each edge.
- -
- Space is $\Theta(m+n)$.
- Checking if (u, v) is an edge takes O(degree(u)) time.
- Identifying all edges takes $\Theta(m+n)$ time.

Size = $\leq deg(v) = 2 \cdot m$ VEV +0(n) = 0(m+n)

Paths and connectivity

Def. A path in an undirected graph G = (V, E) is a sequence of nodes $v_1, v_2, ..., v_k$ with the property that each consecutive pair v_{i-1}, v_i is joined by an edge in E.

Def. A path is simple if all nodes are distinct.

Def. An undirected graph is connected if for every pair of nodes u and v, there is a path between u and v.

10

Cycles

Def. A cycle is a path $v_1, v_2, ..., v_k$ in which $v_1 = v_k, k > 2$, and the first k - 1 nodes are all distinct.

cycle C = 1-2-4-5-3-1

Trees

Def. An undirected graph is a tree if it is connected and does not contain a cycle.

Theorem. Let G be an undirected graph on n nodes. Any two of the following statements imply the third.

- *G* is connected.
- G does not contain a cycle.
- G has n-1 edges.

12

Rooted trees

Given a tree T, choose a root node r and orient each edge away from r.

Importance. Models hierarchical structure.

Connectivity

s-t connectivity problem. Given two node s and t, is there a path between s and t?

s-t shortest path problem. Given two node s and t, what is the length of the shortest path between s and t?

Applications.

- · Friendster.
- · Maze traversal.
- · Kevin Bacon number.
- · Fewest number of hops in a communication network.

17

Breadth-first search

BFS intuition. Explore outward from s in all possible directions, adding nodes one "layer" at a time.

BFS algorithm.

- $L_0 = \{ s \}$.
- L_1 = all neighbors of L_0 .
- L₂ = all nodes that do not belong to L₀ or L₁, and that have an edge to a node in L₁.
- L_{i+1} = all nodes that do not belong to an earlier layer, and that have an edge to a node in L_i .

Theorem. For each i, L_i consists of all nodes at distance exactly i from s. There is a path from s to t iff t appears in some layer.

Breadth-first search

Property. Let T be a BFS tree of G = (V, E), and let (x, y) be an edge of G. Then, the level of x and y differ by at most 1.

19

 L_0

 L_1

 L_3

Breadth-first search: analysis

Theorem. The above implementation of BFS runs in O(m+n) time if the linear time graph is given by its adjacency representation.

Pf.

- Easy to prove $O(n^2)$ running time:
 - at most n lists L[i]
 - each node occurs on at most one list; for loop runs $\leq n$ times
 - when we consider node u, there are $\leq n$ incident edges (u, v), and we spend O(1) processing each edge
- Actually runs in O(m+n) time:
 - when we consider node u, there are degree(u) incident edges (u, v)
 - total time processing edges is $\Sigma_{u \in V} degree(u) = 2m$.

each edge (u, v) is counted exactly twice in sum: once in degree(u) and once in degree(v)

Connected component

Connected component. Find all nodes reachable from s.

Connected component containing node $1 = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

21

Connected component

Connected component. Find all nodes reachable from s.

R will consist of nodes to which s has a path Initially $R = \{s\}$

While there is an edge (u,v) where $u\in R$ and $v\not\in R$ Add v to R

Endwhile

it's safe to add v

Theorem. Upon termination, R is the connected component containing s.

- BFS = explore in order of distance from s.
- · DFS = explore in a different way.

Bipartite graphs

Def. An undirected graph G = (V, E) is bipartite if the nodes can be colored blue or white such that every edge has one white and one blue end.

Applications.

- Stable marriage: men = blue, women = white.
- Scheduling: machines = blue, jobs = white.

a bipartite graph

26

Testing bipartiteness

Many graph problems become:

- · Easier if the underlying graph is bipartite (matching).
- Tractable if the underlying graph is bipartite (independent set).

Before attempting to design an algorithm, we need to understand structure of bipartite graphs.

a bipartite graph G

another drawing of G

An obstruction to bipartiteness

Lemma. If a graph G is bipartite, it cannot contain an odd length cycle.

Pf. Not possible to 2-color the odd cycle, let alone G.

28

Bipartite graphs

Lemma. Let G be a connected graph, and let $L_0, ..., L_k$ be the layers produced by BFS starting at node s. Exactly one of the following holds.

- (i) No edge of G joins two nodes of the same layer, and G is bipartite.
- (ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

2-Colour G=(VE) (connected)

Given G = (V, E) (connected)

1. Run BFS on G,

getting layers Lo, L, Lz,... 3. Check if any edge (4,v) (E has Color (4) = Color (v) It so, output "Not Bipartite".

Otherwise, output "Bipartite". Runtime analysis: 0 (m+n) (1) BFS: time O(m+n)
(2) Assigning Colors to nodes: O(n)
(3) Checking for mono chromatic edges: O(m) Correctness Analysis:

(1) Go not bipartite => algo says Non-bip." (2) G bipartite => algo says "Bipartite" Gis not bipartite = algo says "Non-biparth"
We will argue that when the algo says

slide_4 Page 1

We will argue that when the algo says "Non-bipartitle" on an input graph of then G contains an odd oycle. Hence, G indeed is not bipartite.

Bipartite graphs

Lemma. Let G be a connected graph, and let $L_0, ..., L_k$ be the layers produced by BFS starting at node s. Exactly one of the following holds.

- (i) No edge of G joins two nodes of the same layer, and G is bipartite.
- (ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

Pf. (i) <u>Case 1:</u> no edges in Same layer.

- · Suppose no edge joins two nodes in same layer.
- By BFS property, each edge join two nodes in adjacent levels.
- Bipartition: white = nodes on odd levels, blue = nodes on even levels.

Bipartite graphs

Lemma. Let G be a connected graph, and let $L_0, ..., L_k$ be the layers produced by BFS starting at node s. Exactly one of the following holds.

- (i) No edge of G joins two nodes of the same layer, and G is bipartite.
- (ii) An edge of *G* joins two nodes of the same layer, and *G* contains an odd-length cycle (and hence is not bipartite).

Pf. (ii)

- Suppose (x, y) is an edge with x, y in same level L_i .
- Let z = lca(x, y) = lowest common ancestor.
- Let L_i be level containing z.
- Consider cycle that takes edge from x to y, then path from y to z, then path from z to x.
- Its length is $\underbrace{1}_{(x, y)} + \underbrace{(j-i)}_{\text{path from path from}} + \underbrace{(j-i)}_{\text{path from path from}}$, which is odd. •

31

The only obstruction to bipartiteness

Corollary. A graph *G* is bipartite iff it contain no odd length cycle.

bipartite (2-colorable)

not bipartite (not 2-colorable)

Directed graphs

Notation. G = (V, E).

• Edge (u, v) leaves node u and enters node v.

Ex. Web graph: hyperlink points from one web page to another.

- · Orientation of edges is crucial.
- Modern web search engines exploit hyperlink structure to rank web pages by importance.

34

World wide web

Web graph.

- · Node: web page.
- · Edge: hyperlink from one page to another (orientation is crucial).
- Modern search engines exploit hyperlink structure to rank web pages by importance.

Some directed graph applications

directed graph	node	directed edge		
transportation	street intersection	one-way street		
web	web page	hyperlink		
food web	species	predator-prey relationship		
WordNet	synset	hypernym		
scheduling	task	precedence constraint		
financial	bank	transaction		
cell phone	person	placed call		
infectious disease	person	infection		
game	board position	legal move		
citation	journal article	citation		
object graph	object	pointer		
inheritance hierarchy	class	inherits from		
control flow	code block	jump		

39

Graph search

Directed reachability. Given a node s, find all nodes reachable from s.

Directed)s-t shortest path problem. Given two node s and t, what is the length of the shortest path from s and t?

Graph search. BFS extends naturally to directed graphs.

& SFS

Web crawler. Start from web page s. Find all web pages linked from s, either directly or indirectly.

Strong connectivity

Def. Nodes u and v are mutually reachable if there is a both path from u to v and also a path from v to u.

Def. A graph is strongly connected if every pair of nodes is mutually reachable.

Lemma. Let s be any node. G is strongly connected iff every node is reachable from s, and s is reachable from every node.

Pf. ⇒ Follows from definition.

Pf. \Leftarrow Path from u to v: concatenate $u \rightarrow s$ path with $s \rightarrow v$ path.

Path from v to u: concatenate $v \rightarrow s$ path with $s \rightarrow u$ path.

ok if paths overlap

41

Strong connectivity: algorithm

Strong components

Def. A strong component is a maximal subset of mutually reachable

nodes.

Theorem. [7

SIAM J. COMPUT. Vol. 1, No. 2, June 1972 1 O(m+n) time.

DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS*

ROBERT TARJAN†

Abstract. The value of depth-first search or "backtracking" as a technique for solving problems is illustrated by two examples. An improved version of an algorithm for finding the strongly connected components of a directed graph and an algorithm for finding the biconnected components of an undirect graph are presented. The space and time requirements of both algorithms are bounded by $k_1V + k_2E + k_3$ for some constants k_1, k_2 , and k_3 , where V is the number of vertices and E is the number of edges of the graph being examined.

all strong womponents

43

Depth-First Search (DFS)

XFS (G = (V, E))

Abr each $v \in V$, mark v not explored

for each ve V

if v is not explored

then XFS-VIsit (v)

end if

Mark u explored

for each edge u-v

it v not explored

slide_4 Page

A the other in T.

Proof: Say SFS(X) is called before

Then y is discovered while still within

the SFS(X) call. Hence, X my in the SFS tree.

Directed acyclic graphs

Def. A DAG is a directed graph that contains no directed cycles.

Def. A topological order of a directed graph G = (V, E) is an ordering of its nodes as $v_1, v_2, ..., v_n$ so that for every edge (v_i, v_i) we have i < j.

Precedence constraints

Precedence constraints. Edge (v_i, v_i) means task v_i must occur before v_i .

Applications.

- Course prerequisite graph: course v_i must be taken before v_i .
- Compilation: module v_i must be compiled before v_j . Pipeline of computing jobs: output of job v_i needed to determine input of job v_j .

46

Directed acyclic graphs

Lemma. If G has a topological order, then G is a DAG.

Pf. [by contradiction]

- Suppose that G has a topological order $v_1, v_2, ..., v_n$ and that G also has a directed cycle C. Let's see what happens.
- Let v_i be the lowest-indexed node in C, and let v_j be the node just before v_i ; thus (v_i, v_i) is an edge.
- By our choice of i, we have i < j.
- On the other hand, since (v_j, v_i) is an edge and $v_1, v_2, ..., v_n$ is a topological order, we must have j < i, a contradiction.

the supposed topological order: $v_1, ..., v_n$

Directed acyclic graphs

Lemma. If G has a topological order, then G is a DAG.

- Q. Does every DAG have a topological ordering?
- Q. If so, how do we compute one?

48

Directed acyclic graphs

Lemma. If G is a DAG, then G has a node with no entering edges.

Pf. [by contradiction]

- Suppose that G is a DAG and every node has at least one entering edge.
 Let's see what happens.
- Pick any node v, and begin following edges backward from v. Since v has at least one entering edge (u, v) we can walk backward to u.
- Then, since *u* has at least one entering edge (*x*, *u*), we can walk backward to *x*.
- Repeat until we visit a node, say w, twice.
- Let C denote the sequence of nodes encountered between successive visits to w. C is a cycle.

Directed acyclic graphs

Lemma. If G is a DAG, then G has a topological ordering.

Pf. [by induction on n]

- Base case: true if n = 1.
- Given DAG on n > 1 nodes, find a node v with no entering edges.
- $G \{v\}$ is a DAG, since deleting v cannot create cycles.
- By inductive hypothesis, $G \{v\}$ has a topological ordering.
- Place v first in topological ordering; then append nodes of $G \{v\}$
- in topological order. This is valid since *v* has no entering edges. •

To compute a topological ordering of G:

Find a node v with no incoming edges and order it first Delete v from ${\cal G}$

Recursively compute a topological ordering of $G-\{v\}$ and append this order after v

50

Topological sorting-algorithm: running time

Theorem. Algorithm finds a topological order in O(m + n) time. Pf.

- · Maintain the following information:
 - count(w) = remaining number of incoming edges
 - S = set of remaining nodes with no incoming edges
- Initialization: O(m + n) via single scan through graph.
- Update: to delete v
 - remove v from S
 - <u>decrement count(w)</u> for all edges from v to w;
 and add w to S if count(w) hits 0
 - this is O(1) per edge

51

BFS & XFS Implementations

. BFS: use queues . XFS: use stacks Algo BFS: G=(V,E), s eV alox each V & V Explored [V] = False end for Explored [S] = True L[O] = < S> $T = \emptyset$ while L [i] + 9 L[i+1] = Ø

for each $u \in L[i]$ for each edge $(u, v) \in E$ if Explored [v] = Falcethen Explored [v] = True $L[i+1] = L[i+1] + \langle v \rangle$ and an endial L [1+1] = Ø

Algo XFS (s)

Stack S = < s > (set Explored Ev] = False,

while S # Ø

"= pop (S)

It Explored (u) = False

then Explored (u) = True T = T + (parent (u), u)

then Explored (u) = True (u), v) + E

push (S, v); parent (v) = u

endulie