Lecture 5

Wednesday, May 17, 2017 12:37 AM

Shortest-paths problem

Problem. Given a digraph G = (V, E), edge lengths ¢. = 0, source s€ V,
and destination ¢t € V, find the shortest directed path from s to r.

1 15

v
w

/"

: 4

| @,@(
C&» \

destination t

source s

length of path =9 + 4 + 1 + 11 = 25

Shortest path applications

= PERT/CPM.

« Map routing.

« Seam carving.

« Robot navigation.

« Texture mapping.

« Typesetting in LaTeX.

= Urban traffic planning.

+ Telemarketer operator scheduling.

= Routing of telecommunications messages.
* Network routing protocols (OSPF, BGP, RIP).
« Optimal truck routing through given traffic congestion pattern,

Reference: Network Flows: Theory, Algorithms, and Applications, R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Prentice Hall, 1993,

slide_5 Page 1

Dijkstra's algorithm

Greedy approach. Maintain a set of explored nodes S for which
algorithm has determined the shortest path distance d(«) from s to u. 0
« Initialize S={s}, d(s)=0.
* Repeatedly choose unexplored node v which minimizes

n(v)= min _ du)+/(,,
ew(u,v):ueS

i

shortest path to some node u in explored part,
followed by a single edge (u, v)

Dijkstra's algorithm

Greedy approach. Maintain a set of explored nodes S for which
algorithm has determined the shortest path distance d(x) from s to u. 0

« Initialize S={s}, d(s)=0.

* Repeatedly choose unexplored node v which minimizes LA

\V) .
()= min __d@+/,, Uaooe ¥ wa
e = (u,v):uES \ 1‘ (V\ \s JQ

add v to S, and set d(v) = m(v). shortest path to some node u in explored part,

followed by a single edge (u, v) QM \ S

F
° - S NQGQ‘Z“
wan T hlv)

‘ | \:\« AzspTyWE)
Aipeshe = Sl cone 4 70N

d(v)

DTN sl e

slide_5 Page 2

_ Al |
= F+l= &

D 4

N o5 An=w = 3 =8

Dijkstra's algorithm: proof of correctness

Anvariant, For each node v €5, d(u) is the length of the shortest s—u path.

Pf. [by induction on I51]

Base case: ISI=1is easy since S={ s} and d(s) =

Inductive hypathesis: Assume true for ISI1=k = 1.
* Let v be next node added to S, and let (u,v) be the final edge.
* The shortest s~u path plus (u,v) is an s—v path of length m(v). A
* Consider any s~v path P. We show that it is no shorter than a(v). 000%'
* Let (x,y) be the first edge in P that leaves S,

and let P' be the subpath to x. @ =V
e @ .

* Pis already too long as soon as it reaches y.

0Py = 6P+ fx.y)| = Jdx)+ lx,y) = w(y) = (V) « d)
=" 494 T 'V N \\h |

nonnegative inductive definition Dijkstra chose v Ql\l

lengths hypothesis of xty) instead ofy _ d &)
3/ (,\3\ V\M\"§ (\/J\ _\‘Q‘)uq

Dijkstra's algorithm: efficient implementation

Critical optimization 1. For each unexplored node v, explicitly
maintain n(v) instead of computing directly from formula: o

", 0 ™

* For each vé& S, n(v) can only decrease (because S only increases). Lo
NN
* More specifically, suppose « is added to S and there is an edge (u,v) - Uu ,
leaving u. Then, it suffices to update:

yed

mt(v)=min { 7(v), d(u)+ E(u,v)}

Critical optimization 2. Use a priority queue to choose the unexplored node
that minimizes m(v).

Oune et wpiebs 4 s 35 O (1)

slide_5 Page 3

Dijkstra's algorithm: efficient implementation

Implementation.
» Algorithm stores d(v) for each explored node v.

* Priority queue stores x(v) for each unexplored node v. O \\’_\.

* Recall: d(u) =x(u) when u is deleted from priority queue. W
Olf);
ﬂ./\ W M DUKSTRA(V, E, 5) =z

Create an empty priority queue. V\?«.
O (\’I — FOREACHV#s: d(v) «— oo; d(s) «— 0. A
O { M) FOR EACH v € V1 insert v with key d(v) into priority queue.
WHILE (the priority queue is not empiy) ’
O (U\\ — u + delete-min from priority queue. Z O ‘Nm) { (4] ‘E\ Md -
FOR EACH edge (u, v) € E leaving u: ‘E wAL
O(l o IF dv) = d(u) + u,v) O (W. v‘) '

0 !Q “) u— decrease-key of vto d(u) + €(u, v) in priority queue. .
%() _ d(v) —dw) + Cu,v). 0 (M_%V‘ -é\ML

Priority queue data type

A min-oriented priority queue supports the following core operations:
* MAKE-HEAP(): create an empty heap.
* INSERT(H,x): insert an element x into the heap.
* EXTRACT-MIN(H): remove and return an element with the smallest key.
* DECREASE-KEY(H,x, k): decrease the key of element x to k.

The following operations are also useful:
* IS-EMPTY(H): is the heap empty?
* FIND-MIN(H): return an element with smallest key.
* DELETE(H, x): delete element x from the heap.
* MELD(H,, H»): replace heaps H, and H, with their union.

Note. Each element contains a key (duplicate keys are permitted)
from a totally-ordered universe.

slide_5 Page 4

Priority queue applications

Applications.
« A* search.
« Heapsort.
* Online median.
= Huffman encoding.
* Prim's MST algorithm.
« Discrete event-driven simulation.
* Network bandwidth management.
« Dijkstra's shortest-paths algorithm.

Idc&@ ﬂ.._‘;

http://younginc.sitel 1 .com/source/5895/fos0092 html

Complete binary tree

Binary tree. Empty or node with links to two disjoint binary trees.

Complete tree. Perfectly balanced, except for bottom level.

complete tree with n = 16 nodes (height = 4)

Property. Height of complete binary tree with » nodes is |log: n].
Pf. Height increases (by 1) only when » is a power of 2. =

slide_5 Page 5

Binary heap

Binary heap. Heap-ordered complete binary tree.

Heap-ordered tree. For each child, the key in child = key in parent.

parent

Explicit binary heap

Pointer representation. Each node has a pointer to parent and two children.
* Maintain number of elements n.
= Maintain pointer to root node.
* Can find pointer to last node or next node in O(log n) time.

root

last next

slide_5 Page 6

Implicit binary heap

Array representation. Indices start at 1.
« Take nodes in level order.
= Parent of node at k is at [k/2].
* Children of node at k are at 2k and 2k + 1.

1 2 3 4 5 [ri 8 9 10 1 12 13 14 15 16

6 10 8 12 18 11 25 21 17 19

Binary heap: insert

Insert. Add element in new node at end; repeatedly exchange new element
with element in its parent until heap order is restored.

add key to heap
(violates heap order)

slide_5 Page 7

Binary heap: extract the minimum

Extract min. Exchange element in root node with last node; repeatedly
exchange element in root with its smaller child until heap order is restored.

element to
remove

exchange
with root

sink down

violates
heap order

remove
from heap

Binary heap: decrease key

Decrease key. Given a handle to node, repeatedly exchange element with
its parent until heap order is restored.

decrease key of node x to 11

slide_5 Page 8

Binary heap: analysis

Theorem. In an implicit binary heap, any sequence of m INSERT, EXTRACT-MIN,
and DECREASE-KEY operations with n INSERT operations takes O(m log n) time.
Pf.
« Each heap op touches nodes only on a path from the root to a leaf;
the height of the tree is at most log n.
* The total cost of expanding and contracting the arrays is O(n). =

Theorem. In an explicit binary heap with n nodes, the operations INSERT,
DECREASE-KEY, and EXTRACT-MIN take O(log n) time in the worst case.

Binary heap: find-min

Find the minimum. Return element in the root node.

root

slide_5 Page 9

Binary heap: delete

Delete. Given a handle to a node, exchange element in node with last node;
either swim down or sink up the node until heap order is restored.

delete node x or y

Priority queues performance cost summary

operation

MaKE-HEAP

ISEMPTY
INSERT
EXTRACT-MIN
DECREASE-KEY
DELETE
MELD

FinD-MiIN

MA

slide_5 Page 10

linked list binary heap
o(l) o)
o(l)y o(l)
acl) O(log n)
o(n) O(log n)
acl) O(log n)
acl) O(log n)
o) O(n)
O(n) o)

anwn '\V\Q ‘R-QQ

20

(MST)

Spanning tree properties

Proposition. Let T=(V, F) be a subgraph of G=(V, E). TFAE:
* Tis a spanning tree of G.
* Tis acyclic and connected.
* Tis connected and has n -1 edges.
* Tis acyclic and has n — 1 edges.
* Tis minimally connected: removal of any edge disconnects it.
* Tis maximally acyclic: addition of any edge creates a cycle.

* T has a unique simple path between every pair of nodes. .
44,\2 ogvmdf\ v “7

Keep
A
wdiamn, 32

=F ada—lag

Minimum spanning tree

Given a connected graph G = (V, E) with edge costs ¢,, an MST is a subset of
the edges TC E such that T'is a spanning tree whose sum of edge costs is
minimized.

4‘0 24 f

w\;jﬁ___c(

o
Ptt

MSTcost=50=4+6+8+5+11+9+7

Cayley's theorem. There are n*2 spanning trees of K,. <— can'tsolve by brute force

slide_5 Page 11

Applications

MST is fundamental problem with diverse applications.
« Dithering.
» Cluster analysis.
* Max bottleneck paths.
« Real-time face verification.
» LDPC codes for error correction.
« Image registration with Renyi entropy.
* Find road networks in satellite and aerial imagery.
« Reducing data storage in sequencing amino acids in a protein.
« Model locality of particle interactions in turbulent fluid flows.
« Autoconfig protocol for Ethernet bridging to avoid cycles in a network.
= Approximation algorithms for NP-hard problems (e.g., TSP, Steiner tree).
= Network design (communication, electrical, hydraulic, computer, road).

20

Fundamental cycle

Fundamental cycle.
* Adding any non-tree edge ¢ to a spanning tree T forms unique cycle C.
* Deleting any edge f € C from T" U { ¢ } results in new spanning tree,

T=(MF

Observation. If ¢. <¢, then T is not an MST.

Kruskal's Algorithm: G=(V,E), edge costs cost(e;)
sort ey, ey, .., ey, sothat cost(e;) < cost(e;) < -+ < cost(en)
T=0
for i=1tom
if TU{e;} hasnocycle then T :=T U {e;}
endif

endfor

return T

slide_5 Page 12

A eque Woc\ eacL\ | {i Can b
ochended 4o some MST

\I\S'\\/\& Joww Q{ He eo{ots Qi-H)e'l“’Z S)Q’VV]

'ZSJ"’\'. /rz 'GS r)(ovm'\%‘una’r'\l g"é

/\‘\“"’fp‘ Q"/\S’"S oW M ST 7}{»

Rase case | = _—T; :'53/ s
< °f‘l' £ 7—; \)?Q >-'~)eM}
T R

. s
IV\O(\AGRO"‘ &{Tl aSS\AMQ T

pro (iz0). = gt 7
: A $hg
Prova T fm SO

Case |: € % ’rz"'] . ('H\ %/’T;Io‘&

€

CQS& 2: e’i-\—\ L*‘
I
(ase 2.1 ey € /E’F{— (/

/

QQSQ_ QQ# €lx % T;f‘(' :
- C ‘F\ \)?QH’;
T, € Tod ?

! D has "\76 '{

= /,:p'?' U ?‘e'w"ﬁ lhag a chle

Fundamental cycle

Fundamental cycle.

* Adding any non-tree edge ¢ to a spanning tree T forms unique cycle C.
« Deleting any edge f €C from T U { e } results in new spanning tree.

' Sowe ed S 371-{'\ i)“;\;‘;\(:,\
2&,.1\“{ —roft — TOFt \){Q'_HB_ {Qd'g Conl€hy)
(D T"’FJ \s 10\ S(FQM‘G Fret
(2) (,og* (T ‘” = Cog\ (\: ,C> -+ C(Q;_J- Q(f\‘s)
k§ P =5

< O

ﬁaqgfdoa
< cost (Tfe).
‘C‘l Mljj) 0L>92(VL
T e T s

14\

Se T

I+ \

& prownd ;\/\6‘ u

Privwy < @\Qnﬁ)ﬂm@ : G\'} (\/)E>
seV 5 V=180 T=7

‘{Efpec\l’ ‘.!»(\\/l”l %jj\"’i \Aeg)\/é_;

kind e:(ﬁ“‘v\leg T
fom AL

/

Co,s\,g_ 2" & % /)’o‘;’"’

Fundamental cycle

Fundamental cycle.
* Adding any non-tree edge ¢ to a spanning tree T forms unique cycle C.
« Deleting any edge f €C from T U { e } results in new spanning tree.

‘30\440_ €

(234%4(0

i)

tacatiou |
Observation. If ¢. < ¢, then Tis not an MST. ’ror), = ’0‘4, U % QS" ? £

Prim's algorithm: implementation

Theorem. Prim's algorithm can be implemented in O(m log n) time.
Pf. Implementation almost identical to Dijkstra's algorithm.
[d(v) = weight of cheapest known edge between v and 5]

PriM (F, E, ©) <-

(\ Create an empty priority queue.
SN~ any node in V.

(V\ FOREACH V# 5 : d(v) «— oo; d(s) «— 0.
LV\ FOR EACH v : insert v with key d(v) into priority queue.

WHILE (the priority queue is not empty)

u «— delete-min from priority queue. \/
FOR EACH edge (u, v) € E incident to u: >
IF d(v) > c(u,v)
% \/V\ decrease-key of v to ¢(u, v) in priority queue. M‘/‘
.z
dev) — c(u,). (\/ ‘

slide_5 Page 19

3

Kruskal's algorithm: implementation

Theorem. Kruskal's algorithm can be implemented in O(m log m) time.

« Sort edges by weight.
» Use union-find data structure to dynamically maintain connected v
R ————————————
components. \J\

KRUSKAL (F E, ¢)

O(\M ‘ Wy ' SORT m edges by weight so that c(e1) = c(e2) = ... <clep), /
N UNES IRV,

S—¢
FOREACH v € F: MAKESET(v).

— “ v
FOR i = 1710 m / e d\beg;/:’i. A 9%‘\/

(1, v) — e

. g_.(2
IF FINDSET(1t) # FINDSET(V) «— _2etandvin d 2
.

same component?

S SUial \
UNION(u, v), +— make u and v in

same component

RETURN § _— {’Q((Q/ 'HW

olfgm) -

Disjoint-sets data structure

Representation. Represent each set as a tree of elements.
« Each element has a parent pointer in the tree.
« The root serves as the canonical element.
* FIND(x). Find the root of the tree containing x.
* UNION(x,y). Make the root of one tree point to root of other tree.

X

parent of 1 is 2

Note. For brevity, we suppress arrows and self loops in figures.

slide_5 Page 20

Link-by-size

Link-by-size. Maintain a subtree count for each node, initially 1.
Link root of smaller tree to root of larger tree (breaking ties arbitrarily).

union(7, 3)
size = 4 size = 6
O 0.
ONONO © () &
O @
Link-by-size

Link-by-size. Maintain a subtree count for each node, initially 1.
Link root of smaller tree to root of larger tree (breaking ties arbitrarily).

union(7, 3)

size = 10

slide_5 Page 21

Link-by-size

Link-by-size. Maintain a subtree count for each node, initially 1.
Link root of smaller tree to root of larger tree (breaking ties arbitrarily).

UNION-BY-SIZE (x, ¥)

MAKE-SET () r — FND(),
parent(x) < Xx. s «— FIND ().
size(x) « 1. IF (r =s) RETURN.

ELSEIF (size(r) = size(s))

parent(s) «— r.

FIND (x) size(r) « size(r) + size(s).

WHILE (x # parent(x)) ELSE

x < parent(x).

parent(r) « s.

RETURN x. size(s) « size(r) + size(s).

Link-by-size: analysis

p— 4

Property. Using link-by-size, for every root node

Pf. [by induction on number of links]

*_Base case: singleton tree has size |1 and height0. \/ @
* Inductive hypothesis: assume true after first i links.

» Tree rooted at r changes only when a smaller tree rooted at s

is linked into r,
* Case 1. [height(r) > height(s)] size'(r)

altoc
*mvaa

size = 8

(height = 2)

size =3
(height = 1)

slide_5 Page 22

=

[\

size(r)

2 heightir)

= 2 height'(r),

+«—— inductive hypothesis

\
f Sfo.’(!‘) = 2 heighiir) ? L‘ e f]

1l

Link-by-size: analysis

Al
Property. Using link-by-size, for every root node @
Pf. [by induction on number of links]

* Base case: singleton tree has size 1 and height 0.
* Inductive hypothesis: assume true after first i links.

* Tree rooted at r changes only when a smaller tree rooted at s
is linked into r.

* Case 2. [height(r) = height(s)] size'(r) = size(r) + size(s) . Z { (f)
s (9 ENF

2 size(s) «—— link-by-size

v

= 2 - 2heightls) «—— inductive hypothesis

size = 6
(height = 1) = 7 height(s) + 1

size =
(height = 2)

-
-
-

= 2 height'ir) w

Link-by-size: analysis

Theorem. Using link-by-size, any UNION or FIND operations takes O(log n)
time in the worst case, where n is the number of elements.
Pf.

« The running time of each operation is bounded by the tree height.

* By the previous property, the heightis < [lgn]. =

f

lg n=log:n

(r\q%(«xl‘((
Sme(c)z 2
[

Q\e(f\7 \""QS("A(\(-
1

slide_5 Page 23

A matching lower bound

Theorem. Using link-by-size, a tree with n nodes can have height = Ig n.
Pf.

* Arrange 2¢— 1 calls to UNION to form a binomial tree of order &.

* An order-k binomial tree has 2f nodes and height k. =

T ATl

B,

slide_5 Page 24

