Shortest-paths problem

Problem. Given a digraph G = (V, E), edge lengths $\ell_e \ge 0$, source $s \in V$, and destination $t \in V$, find the shortest directed path from s to t.

length of path = 9 + 4 + 1 + 11 = 25

3

Shortest path applications

- PERT/CPM.
- · Map routing.
- · Seam carving.
- · Robot navigation.
- · Texture mapping.
- $\bullet \ \ \mathsf{Typesetting} \ \mathsf{in} \ \mathsf{LaTeX}.$
- · Urban traffic planning.
- · Telemarketer operator scheduling.
- · Routing of telecommunications messages.
- Network routing protocols (OSPF, BGP, RIP).
- Optimal truck routing through given traffic congestion pattern.

Reference: Network Flows: Theory, Algorithms, and Applications, R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Prentice Hall, 1993

Dijkstra's algorithm

Greedy approach. Maintain a set of explored nodes S for which algorithm has determined the shortest path distance d(u) from s to u.

- Initialize $S = \{ s \}, d(s) = 0.$
- Repeatedly choose unexplored node v which minimizes

$$\pi(v) = \min_{e = (u,v): u \in S} d(u) + \ell_e,$$

shortest path to some node u in explored part, followed by a single edge (u, v)

6

Dijkstra's algorithm

Greedy approach. Maintain a set of explored nodes S for which algorithm has determined the shortest path distance d(u) from S to U.

- Initialize $S = \{ s \}, d(s) = 0.$
- Repeatedly choose unexplored node v which minimizes

$$\pi(v) = \min_{e = (u,v): u \in S} d(u) + \ell_e,$$

add v to S, and set $d(v) = \pi(v)$.

shortest path to some node u in explored part, followed by a single edge (u, v)

on dist (V, t)

3

#H-dW+1

Dijkstra's algorithm: proof of correctness

Invariant. For each node $u \in S$, d(u) is the length of the shortest $s \rightarrow u$ path.

Pf. [by induction on |S|]

Base case: |S| = 1 is easy since $S = \{s\}$ and d(s) = 0.

Inductive hypothesis: Assume true for $|S| = k \ge 1$.

- Let v be next node added to S, and let (u, v) be the final edge.
- The shortest $s \rightarrow u$ path plus (u, v) is an $s \rightarrow v$ path of length $\pi(v)$.
- Consider any $s \rightarrow v$ path P. We show that it is no shorter than $\pi(v)$.
- Let (x, y) be the first edge in P that leaves S, and let P' be the subpath to x.
- *P* is already too long as soon as it reaches *y*.

J (4) = with

ファレンラ d(v) いい = d(v) いい = d(v) しい = l(v,y) はい + l(v,y)

Dijkstra's algorithm: efficient implementation

Critical optimization 1. For each unexplored node ν , explicitly maintain $\pi(\nu)$ instead of computing directly from formula:

$$\pi(v) = \min_{e = (u,v): u \in S} d(u) + \ell_e$$
.

- For each $v \notin S$, $\pi(v)$ can only decrease (because S only increases).
- More specifically, suppose u is added to S and there is an edge (u, v) leaving u. Then, it suffices to update:

$$\pi(v) = \min \{ \pi(v), d(u) + \ell(u, v) \}$$

Critical optimization 2. Use a priority queue to choose the unexplored node that minimizes $\pi(v)$.

Over all updates, # updates is O (,m)

Dijkstra's algorithm: efficient implementation

Implementation.

- Algorithm stores d(v) for each explored node v.
- Priority queue stores $\pi(v)$ for each unexplored node v.
- Recall: $d(u) = \pi(u)$ when u is deleted from priority queue.

Runthe

DIJKSTRA (V, E, s)

Create an empty priority queue.

FOR EACH $v \neq s$: $d(v) \leftarrow \infty$; $d(s) \leftarrow 0$.

FOR EACH $v \in V$: *insert* v with key d(v) into priority queue.

WHILE (the priority queue is not empty)

 $u \leftarrow delete-min$ from priority queue.

FOR EACH edge $(u, v) \in E$ leaving u:

 $IF d(v) > d(u) + \ell(u, v)$

decrease-key of v to $d(u) + \ell(u, v)$ in priority queue.

 $d(v) \leftarrow d(u) + \ell(u, v).$

0(h)+0(m.logn)
=0(h+m).logn)
input stze

O(n.logn) time) (m.logn) time

Priority queue data type

A min-oriented priority queue supports the following core operations:

- MAKE-HEAP(): create an empty heap.
- INSERT(H, x): insert an element x into the heap.
- EXTRACT-MIN(H): remove and return an element with the smallest key.
- DECREASE-KEY(H, x, k): decrease the key of element x to k.

The following operations are also useful:

- Is-EMPTY(H): is the heap empty?
- FIND-MIN(H): return an element with smallest key.
- DELETE(H, x): delete element x from the heap.
- MELD (H_1, H_2) : replace heaps H_1 and H_2 with their union.

Note. Each element contains a key (duplicate keys are permitted) from a totally-ordered universe.

Priority queue applications

Applications.

- A* search.
- Heapsort.
- · Online median.
- · Huffman encoding.
- Prim's MST algorithm.
- · Discrete event-driven simulation.
- · Network bandwidth management.
- · Dijkstra's shortest-paths algorithm.
- ...

http://younginc.site11.com/source/5895/fos0092.html

3

Complete binary tree

Binary tree. Empty or node with links to two disjoint binary trees.

Complete tree. Perfectly balanced, except for bottom level.

Property. Height of complete binary tree with n nodes is $\lfloor \log_2 n \rfloor$. Pf. Height increases (by 1) only when n is a power of 2. •

.

Binary heap

Binary heap. Heap-ordered complete binary tree.

Heap-ordered tree. For each child, the key in child \geq key in parent.

7

Explicit binary heap

Pointer representation. Each node has a pointer to parent and two children.

- Maintain number of elements n.
- · Maintain pointer to root node.
- Can find pointer to last node or next node in $O(\log n)$ time.

Implicit binary heap

Array representation. Indices start at 1.

- Take nodes in level order.
- Parent of node at k is at $\lfloor k/2 \rfloor$.
- Children of node at k are at 2k and 2k + 1.

9

Binary heap: insert

Insert. Add element in new node at end; repeatedly exchange new element with element in its parent until heap order is restored.

Binary heap: extract the minimum

Extract min. Exchange element in root node with last node; repeatedly exchange element in root with its smaller child until heap order is restored.

12

Binary heap: decrease key

Decrease key. Given a handle to node, repeatedly exchange element with its parent until heap order is restored.

decrease key of node x to 11

Binary heap: analysis

Theorem. In an implicit binary heap, any sequence of m INSERT, EXTRACT-MIN, and DECREASE-KEY operations with n INSERT operations takes $O(m \log n)$ time. Pf.

- Each heap op touches nodes only on a path from the root to a leaf; the height of the tree is at most $\log_2 n$.
- The total cost of expanding and contracting the arrays is O(n).

Theorem. In an explicit binary heap with n nodes, the operations INSERT, DECREASE-KEY, and EXTRACT-MIN take $O(\log n)$ time in the worst case.

14

Binary heap: find-min

Find the minimum. Return element in the root node.

Binary heap: delete

Delete. Given a handle to a node, exchange element in node with last node; either swim down or sink up the node until heap order is restored.

delete node x or y

16

Priority queues performance cost summary

operation	linked list	binary heap
Маке-Неар	O(1)	<i>O</i> (1)
ISEMPTY	O(1)	O(1)
INSERT	O(1)	$O(\log n)$
EXTRACT-MIN	O(n)	$O(\log n)$
DECREASE-KEY	O(1)	$O(\log n)$
DELETE	O(1)	$O(\log n)$
MELD	O(1)	O(n)
FIND-MIN	O(n)	O(1)

20

Min Spanning Tree (MST)

Spanning tree properties

Proposition. Let T = (V, F) be a subgraph of G = (V, E). TFAE:

- T is a spanning tree of G.
- *T* is acyclic and connected.
- T is connected and has n-1 edges.
- T is acyclic and has n-1 edges.
- T is minimally connected: removal of any edge disconnects it.
- T is maximally acyclic: addition of any edge creates a cycle.
- T has a unique simple path between every pair of nodes.

Keep the connectivity but whin 30 # edge.S

18

Minimum spanning tree

Given a connected graph G=(V,E) with edge costs c_e , an MST is a subset of the edges $T\subseteq E$ such that T is a spanning tree whose sum of edge costs is minimized.

 $MST\ cost = 50 = 4 + 6 + 8 + 5 + 11 + 9 + 7$

Cayley's theorem. There are n^{n-2} spanning trees of K_n . \longleftarrow can't solve by brute force

Applications

MST is fundamental problem with diverse applications.

- · Dithering.
- · Cluster analysis.
- · Max bottleneck paths.
- · Real-time face verification.
- LDPC codes for error correction.
- Image registration with Renyi entropy.
- · Find road networks in satellite and aerial imagery.
- · Reducing data storage in sequencing amino acids in a protein.
- · Model locality of particle interactions in turbulent fluid flows.
- · Autoconfig protocol for Ethernet bridging to avoid cycles in a network.
- $\bullet \ \ Approximation \ algorithms \ for \ NP-hard \ problems \ (e.g., \ TSP, \ Steiner \ tree).$
- Network design (communication, electrical, hydraulic, computer, road).

20

Fundamental cycle

Fundamental cycle.

- Adding any non-tree edge e to a spanning tree T forms unique cycle C.
- Deleting any edge $f \in C$ from $T \cup \{e\}$ results in new spanning tree.

Observation. If $c_e < c_f$, then T is not an MST.

```
Kruskal's Algorithm: G=(V,E), edge costs cost(e_i)

sort e_1,e_2,...,e_m so that cost(e_1) \leq cost(e_2) \leq \cdots \leq cost(e_m)

T \coloneqq \emptyset

for i=1 to m

if T \cup \{e_i\} has no cycle then T \coloneqq T \cup \{e_i\}

endif

endfor
```

Example:

Cost = 11

Topt

Correctness of Kruskal's algo:

 $T_{\alpha} = \emptyset$

T: = Tafter iteration i

Need to prove: Ty is MST.

Proof strategy:

arque that each Ti can be

arque that each li can be extended to some MST, using some of the edges eit; eitz, ..., em. Defn: Ti is promising it s.t. there exists some MST Topt s.t. Ti = Topt = Ti U{ei+1,...,em}. Claim: \ti, Ti is promising. ⇒ T_m is promising

⇒ J MST T_{opt}: T_m = T_{opt}

⇒ T_m is MST.

T_m=T_{opt} Base case: i=0. To=\$ is

Promising: To = Topt = To User, emily

some MST

Ussume promissing (i 20). Ties Prove Titl is promising. opt U Peix, 4 has a

Fundamental cycle

Fundamental cycle.

- Adding any non-tree edge $\it e$ to a spanning tree $\it T$ forms unique cycle $\it C$.
- Deleting any edge $f \in C$ from $T \cup \{e\}$ results in new spanning tree.

Some e; j>i+1 > W

Lettre Topt = Topt U {e;+1} - {e; }.

(1) Topt is a spanning tree.

(2) cost (Topt) = cost (Topt) + c(e;+1) - c(e;) by the edge ordering. Finally, observe Titl GT opt CTitl Useitz, ..., emg.

So Titl is promising.

Prim's algorithm: G=(V,E) 3 ∈ V; S= {3}; T=Ø repeat for |V|-1 steps and e=(4,v), EE with u ES, veS

Aind e=(4,v) EE with u c 2, ...

2 add v to S; add e to T end repeat return

Correctness of Prims algo
Using promising
Sitistic Stratter
iteration i

iteration i Xef: (S; Ti) is propursing MST using edges with at Sill ! most one and point in Si Claim: Hi, (5:, Ti) is promising Cor: (Sn-1, Tn-1) is MST Proof of Claim; By induction on i.

Base case: i=0 (So, To) is promising is promising

JMST Topt And Step. Assume Rove 1+1. extending T; added to Edge e 15 Tito form Titi. Case !: e E Topt.

Case 2: e 4 Topt

Fundamental cycle

Fundamental cycle.

- Adding any non-tree edge e to a spanning tree T forms unique cycle C.
- Deleting any edge $f \in C$ from $T \cup \{e\}$ results in new spanning tree.

softe) ≤ costl

Observation. If $c_e < c_f$, then T is not an MST.

Topt = Top Useg- 3 f 3

Prim's algorithm: implementation

Theorem. Prim's algorithm can be implemented in $O(m \log n)$ time.

Pf. Implementation almost identical to Dijkstra's algorithm.

[d(v) = weight of cheapest known edge between v and S]

(1)O (n)C PRIM(V, E, c)

Create an empty priority queue.

 $s \leftarrow$ any node in V.

FOR EACH $v \neq s$: $d(v) \leftarrow \infty$; $d(s) \leftarrow 0$.

FOR EACH v: insert v with key d(v) into priority queue.

WHILE (the priority queue *is not empty*)

 $u \leftarrow delete-min$ from priority queue.

FOR EACH edge $(u, v) \in E$ incident to u:

IF d(v) > c(u, v)

decrease-key of v to c(u, v) in priority queue.

 $d(v) \leftarrow c(u, v)$.

21

d(v):= num
{ d(v), c(u,v)

Can assume

m >, n-

Kruskal's algorithm: implementation

Theorem. Kruskal's algorithm can be implemented in $O(m \log m)$ time.

- Sort edges by weight.
- Use union-find data structure to dynamically maintain connected components.

O(m logur) 1

Disjoint-sets data structure

Representation. Represent each set as a tree of elements.

- · Each element has a parent pointer in the tree.
- · The root serves as the canonical element.
- FIND(x). Find the root of the tree containing x.
- UNION(x, y). Make the root of one tree point to root of other tree.

Note. For brevity, we suppress arrows and self loops in figures.

Link-by-size

Link-by-size. Maintain a subtree count for each node, initially 1. Link root of smaller tree to root of larger tree (breaking ties arbitrarily).

union(7, 3)

Link-by-size

Link-by-size. Maintain a subtree count for each node, initially 1. Link root of smaller tree to root of larger tree (breaking ties arbitrarily).

union(7, 3)

Link-by-size

Link-by-size. Maintain a subtree count for each node, initially 1. Link root of smaller tree to root of larger tree (breaking ties arbitrarily).

MAKE-SET(x)

$$parent(x) \leftarrow x.$$
$$size(x) \leftarrow 1.$$

FIND(x)

WHILE
$$(x \neq parent(x))$$

 $x \leftarrow parent(x)$.

RETURN x.

UNION-BY-SIZE (x, y)

$$r \leftarrow \text{FIND}(x).$$
 $s \leftarrow \text{FIND}(y).$
If $(r = s)$ RETURN.
ELSE If $(size(r) > size(s))$
 $parent(s) \leftarrow r.$
 $size(r) \leftarrow size(r) + size(s).$
ELSE
 $parent(r) \leftarrow s.$
 $size(s) \leftarrow size(r) + size(s).$

9

Link-by-size: analysis

Property. Using link-by-size, for every root node k $size(r) \ge 2^{height(r)}$.

Pf. [by induction on number of links]

- Base case: singleton tree has size 1 and height 0.
- Inductive hypothesis: assume true after first *i* links.
- Tree rooted at r changes only when a smaller tree rooted at s is linked into r.

• Case 1. [
$$height(r) > height(s)$$
] $size'(r) \ge size(r)$

$$\begin{array}{ccc}
\text{3.12e}(f) & \geq & \text{3.12e}(f) \\
\text{3.12e}(f) & \geq & \text{2.12e}(f) \\
\text{4.12e}(f) & \geq & \text{2.12e}(f) \\
\text{5.12e}(f) & \geq & \text{3.12e}(f) \\
\text{6.12e}(f) & \geq & \text{6.12e}(f) \\
\text{6.12e}(f) & \geq & \text{$$

Link-by-size: analysis

Property. Using link-by-size, for every root node ℓ , $size(r) \ge 2^{height(r)}$.

Pf. [by induction on number of links]

- Base case: singleton tree has size 1 and height 0.
- Inductive hypothesis: assume true after first i links.
- Tree rooted at r changes only when a smaller tree rooted at s is linked into r.

• Case 2. [$height(r) \le height(s)$]

$$size'(r) = size(r) + size(s)$$

← link-by-size : size(s) ≤ size(r) $\geq 2 size(s)$

> 2 · 2 height(s) inductive hypothesis

2 height(s) + 1

= 2 height'(r).

Link-by-size: analysis

Theorem. Using link-by-size, any UNION or FIND operations takes $O(\log n)$ time in the worst case, where n is the number of elements.

- The running time of each operation is bounded by the tree height.
- By the previous property, the height is $\leq \lfloor \lg n \rfloor$.

 $\lg n = \log_2 n$

3e(r) = 2 height(r)

513e(r) = height

A matching lower bound

Theorem. Using link-by-size, a tree with n nodes can have height = $\lg n$.

- Arrange $2^k 1$ calls to UNION to form a binomial tree of order k.
- An order-k binomial tree has 2^k nodes and height k. •

