Greedy analysis strategies

Greedy algorithm stays ahead. Show that after each step of the greedy algorithm, its solution is at least as good as any other algorithm’s.

Structural. Discover a simple "structural" bound asserting that every possible solution must have a certain value. Then show that your algorithm always achieves this bound.

Exchange argument. Gradually transform any solution to the one found by the greedy algorithm without hurting its quality.

Other greedy algorithms. Gale-Shapley, Kruskal, Prim, Dijkstra, Huffman, ...

Scheduling to minimizing lateness

Minimizing lateness problem.

- Single resource processes one job at a time.
- Job j requires t_j units of processing time and is due at time d_j.
- If j starts at time s_j, it finishes at time $f_j = s_j + t_j$.
- Lateness: $\ell_j = \max \{ 0, f_j - d_j \}$.
- Goal: schedule all jobs to minimize maximum lateness $L = \max_j \ell_j$.

<table>
<thead>
<tr>
<th>t_j</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>4</th>
<th>3</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_j</td>
<td>6</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>14</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$d_3 = 9$</th>
<th>$d_2 = 8$</th>
<th>$d_6 = 15$</th>
<th>$d_4 = 9$</th>
<th>$d_5 = 14$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>
Minimizing lateness: greedy algorithms

Greedy template. Schedule jobs according to some natural order.

- [Shortest processing time first] Schedule jobs in ascending order of processing time t_j.

- [Earliest deadline first] Schedule jobs in ascending order of deadline d_j.

- [Smallest slack] Schedule jobs in ascending order of slack $d_j - t_j$.
Minimizing lateness: earliest deadline first

EASIEST-DEADLINE-FIRST \((n, t_1, t_2, \ldots, t_n, d_1, d_2, \ldots, d_n)\)

Sort \(n\) jobs so that \(d_1 \leq d_2 \leq \ldots \leq d_n\).

\(t \leftarrow 0\)

FOR \(j = 1\) **TO** \(n\)

Assign job \(j\) to interval \([t, t + t_j]\).

\(s_j \leftarrow t; \quad f_j \leftarrow t + t_j\)

\(t \leftarrow t + t_j\)

RETURN intervals \([s_1, f_1], [s_2, f_2], \ldots, [s_n, f_n]\).

Max lateness = 1

\[
\begin{array}{cccccccccc}
 d_1 = 6 & d_2 = 8 & d_3 = 9 & d_4 = 9 & d_5 = 14 & d_6 = 15 \\
 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15
\end{array}
\]

Minimizing lateness: no idle time

Observation 1. There exists an optimal schedule with no **idle time**.

Observation 2. The earliest-deadline-first schedule has no idle time.
Minimizing lateness: inversions

Def. Given a schedule S, an **inversion** is a pair of jobs i and j such that: $i < j$ but j scheduled before i.

\[d_i \leq d_j \]

[as before, we assume jobs are numbered so that $d_1 \leq d_2 \leq \ldots \leq d_n$]

Observation 3. The earliest-deadline-first schedule has no inversions.

Observation 4. If a schedule (with no idle time) has an inversion, it has one with a pair of inverted jobs scheduled consecutively.

Minimizing lateness: inversions

Def. Given a schedule S, an **inversion** is a pair of jobs i and j such that: $i < j$ but j scheduled before i.

\[d_i \leq d_j \]

Claim. Swapping two adjacent, inverted jobs reduces the number of inversions by one and does not increase the max lateness.

Pf. Let ℓ be the lateness before the swap, and let ℓ' be it afterwards.

- $\ell'_k = \ell_k$ for all $k \neq i, j$.
- $\ell'_j = \ell_j$.
- If job j is late, $\ell'_j = f'_j - d_j = f_i - d_j \leq f_i - d_i \leq \ell_i$.

slide_8 Page 4
Minimizing lateness: analysis of earliest-deadline-first algorithm

Theorem. The earliest-deadline-first schedule S is optimal.

Pf. [by contradiction]

Define S^* to be an optimal schedule that has the fewest number of inversions, and let's see what happens.

- Can assume S^* has no idle time.
- If S^* has no inversions, then $S = S^*$.
- If S^* has an inversion, let $i-j$ be an adjacent inversion.
 - Swapping i and j
 - does not increase the max lateness
 - strictly decreases the number of inversions
- This contradicts definition of S^*.
Divide-and-conquer paradigm

Divide-and-conquer.
- Divide up problem into several subproblems.
- Solve each subproblem recursively.
- Combine solutions to subproblems into overall solution.

Most common usage.
- Divide problem of size n into two subproblems of size $n/2$ in linear time.
- Solve two subproblems recursively.
- Combine two solutions into overall solution in linear time.

Consequence.
- Brute force: $\Theta(n^2)$.
- Divide-and-conquer: $\Theta(n \log n)$.

attributed to Julius Caesar

\[
T(n) = 2 \cdot T\left(\frac{n}{2}\right) + O(n)
\]

\[
\Rightarrow \theta(n) = O(n \log n)
\]
Sorting applications

Obvious applications.
- Organize an MP3 library.
- Display Google PageRank results.
- List RSS news items in reverse chronological order.

Some problems become easier once elements are sorted.
- Identify statistical outliers.
- Binary search in a database.
- Remove duplicates in a mailing list.

Non-obvious applications.
- Convex hull.
- Closest pair of points.
- Interval scheduling / interval partitioning.
- Minimum spanning trees (Kruskal's algorithm).
- Scheduling to minimize maximum lateness or average completion time.
- ...

Mergesort

- Recursively sort left half.
- Recursively sort right half.
- Merge two halves to make sorted whole.

```
input
ALGORITHMS

sort left half
AGLOR ITHMS

sort right half
AGLOR HIMST

merge results
AGHILMORST
```
Merging

Goal. Combine two sorted lists A and B into a sorted whole C.
- Scan A and B from left to right.
- Compare a_i and b_j.
- If $a_i \leq b_j$, append a_i to C (no larger than any remaining element in B).
- If $a_i > b_j$, append b_j to C (smaller than every remaining element in A).

\[
\begin{array}{cccc}
\text{sorted list A} & 3 & 7 & 10 & a_i & 18 \\
\text{sorted list B} & 2 & 11 & b_j & 17 & 23 \\
\text{merge to form sorted list C} & 2 & 3 & 7 & 10 & 11 \\
\end{array}
\]

A useful recurrence relation

Def. $T(n) = \max$ number of compares to mergesort a list of size $\leq n$.
Note. $T(n)$ is monotone nondecreasing.

Mergesort recurrence.

\[
T(n) \leq \begin{cases}
0 & \text{if } n = 1 \\
T\left(\lceil n/2 \rceil \right) + T\left(\lfloor n/2 \rfloor \right) + n & \text{otherwise}
\end{cases}
\]

Solution. $T(n)$ is $O(n \log_2 n)$.

Assorted proofs. We describe several ways to prove this recurrence. Initially we assume n is a power of 2 and replace \leq with $=$.
Divide-and-conquer recurrence: proof by recursion tree

Proposition. If \(T(n) \) satisfies the following recurrence, then \(T(n) = n \log_2 n \).

\[
T(n) = \begin{cases}
0 & \text{if } n = 1 \\
2 \, T(n/2) + n & \text{otherwise}
\end{cases}
\]

Pf 1.

\[
T(n) - n \log_2 n \
\]

Proof by induction

Proposition. If \(T(n) \) satisfies the following recurrence, then \(T(n) = n \log_2 n \).

\[
T(n) = \begin{cases}
0 & \text{if } n = 1 \\
2 \, T(n/2) + n & \text{otherwise}
\end{cases}
\]

Pf 2. [by induction on \(n \)]

- **Base case:** when \(n = 1 \), \(T(1) = 0 \).
- **Inductive hypothesis:** assume \(T(n) = n \log_2 n \).
- **Goal:** show that \(T(2n) = 2n \log_2 (2n) \).

\[
T(2n) = 2 \, T(n) + 2n \\
= 2 \, n \log_2 n + 2n \\
= 2 \, n (\log_2 (2n) - 1) + 2n \\
= 2 \, n \log_2 (2n). \]

\[\blacksquare\]
Analysis of mergesort recurrence

Claim. If $T(n)$ satisfies the following recurrence, then $T(n) \leq n \lfloor \log_2 n \rfloor$.

$$T(n) \leq \begin{cases} 0 & \text{if } n = 1 \\ T\left(\lfloor n / 2 \rfloor\right) + T\left(\lceil n / 2 \rceil\right) + n & \text{otherwise} \end{cases}$$

Pf. [by strong induction on n]

- Base case: $n = 1$.
- Define $n_1 = \lfloor n / 2 \rfloor$ and $n_2 = \lceil n / 2 \rceil$.
- Induction step: assume true for $1, 2, \ldots, n-1$.

$$T(n) \leq T(n_1) + T(n_2) + n \leq 2^{\lceil \log_2 n \rceil} / 2 + 2^{\lfloor \log_2 n \rfloor} / 2$$

$$= n \lfloor \log_2 n_2 \rfloor + n \leq n \lfloor \log_2 n \rfloor - 1 + n$$

Counting inversions

Music site tries to match your song preferences with others.

- You rank n songs.
- Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.

- My rank: $1, 2, \ldots, n$.
- Your rank: a_1, a_2, \ldots, a_n.
- Songs i and j are inverted if $i < j$, but $a_i > a_j$.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>me</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>you</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

2 inversions: 3–2, 4–2

Brute force: check all $\Theta(n^2)$ pairs.
Counting inversions: applications

- Voting theory.
- Collaborative filtering.
- Measuring the "sortedness" of an array.
- Sensitivity analysis of Google's ranking function.
- Rank aggregation for meta-searching on the Web.
- Nonparametric statistics (e.g., Kendall's tau distance).

Rank Aggregation Methods for the Web
Cynthia Dwork, Ravi Kumar, Moni Naor, D. Sivakumar

ABSTRACT
We consider the problem of combining ranking results from various sources. In the context of the Web, some applications include building a search engine, combining search functions, and clustering documents based on similarity. We develop a set of techniques for the rank aggregation problem and compare their performance to that of well-known methods. A major goal of our work is to develop rank aggregation techniques that are efficient and effective.

Counting inversions: divide-and-conquer

- Divide: separate list into two halves A and B.
- Conquer: recursively count inversions in each list.
- Combine: count inversions (a, b) with $a \in A$ and $b \in B$.
- Return sum of three counts.

```
<table>
<thead>
<tr>
<th>input</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 5 4 8 10 2 6 9 3 7</td>
</tr>
</tbody>
</table>

count inversions in left half $A$

| 1 5 4 8 10 |
| 5-4 |

count inversions in right half $B$

| 2 6 9 3 7 |
| 6-3 9-3 9-7 |

count inversions $(a, b)$ with $a \in A$ and $b \in B$

| 1 5 4 8 10 |
| 4-2 4-3 5-2 5-3 8-2 8-3 8-6 8-7 10-2 10-3 10-6 10-7 10-9 |
| 2 6 9 3 7 |

output $1 + 3 + 13 = 17$

---
Counting inversions: how to combine two subproblems?

Q. How to count inversions \((a, b)\) with \(a \in A\) and \(b \in B\)?
A. Easy if \(A\) and \(B\) are sorted!

Warmup algorithm.
- Sort \(A\) and \(B\).
- For each element \(b \in B\),
  - binary search in \(A\) to find how elements in \(A\) are greater than \(b\).

<table>
<thead>
<tr>
<th>list A</th>
<th>list B</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 10 18 3 14</td>
<td>17 23 2 11 16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>sort A</th>
<th>sort B</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 7 10 14 18</td>
<td>2 11 16 17 23</td>
</tr>
</tbody>
</table>

binary search to count inversions \((a, b)\) with \(a \in A\) and \(b \in B\)

\[
T(n) = 2 \cdot T(\frac{n}{2}) + O(n) = \Theta(n \log n)
\]

Counting inversions: how to combine two subproblems?

Count inversions \((a, b)\) with \(a \in A\) and \(b \in B\), assuming \(A\) and \(B\) are sorted.
- Scan \(A\) and \(B\) from left to right.
- Compare \(a_i\) and \(b_j\).
- If \(a_i < b_j\), then \(a_i\) is not inverted with any element left in \(B\).
- If \(a_i > b_j\), then \(b_j\) is inverted with every element left in \(A\).
- Append smaller element to sorted list \(C\).

\[
3 > 2
\]

count inversions \((a, b)\) with \(a \in A\) and \(b \in B\)

\[
\begin{array}{c|c|c|c}
3 & 7 & 10 & a_i \\
\hline
2 & 11 & b_j & 17 & 23 \\
\hline
5 & & &
\end{array}
\]

merge to form sorted list \(C\)

\[
2 3 7 10 11
\]
Counting inversions: divide-and-conquer algorithm implementation

Input. List \( L \).
Output. Number of inversions in \( L \) and sorted list of elements \( L' \).

```plaintext
SORT-AND-COUNT (L)

IF list \(L \) has one element
RETURN (0, \(L \)).

DIVIDE the list into two halves \(A \) and \(B \).
\((r_A, A) \leftarrow \text{SORT-AND-COUNT}(A).\)
\((r_B, B) \leftarrow \text{SORT-AND-COUNT}(B).\)
\((r_{AB}, L') \leftarrow \text{MERGE-AND-COUNT}(A, B).\)
RETURN \((r_A + r_B + r_{AB}, L')\).
```

Counting inversions: divide-and-conquer algorithm analysis

Proposition. The sort-and-count algorithm counts the number of inversions in a permutation of size \( n \) in \( O(n \log n) \) time.

Pf. The worst-case running time \( T(n) \) satisfies the recurrence:

\[
T(n) = \begin{cases} 
\Theta(1) & \text{if } n = 1 \\
T \left( \lfloor n / 2 \rfloor \right) + T \left( \lceil n / 2 \rceil \right) + \Theta(n) & \text{otherwise}
\end{cases}
\]
Integer addition

**Addition.** Given two \( n \)-bit integers \( a \) and \( b \), compute \( a + b \).

**Subtraction.** Given two \( n \)-bit integers \( a \) and \( b \), compute \( a - b \).

**Grade-school algorithm.** \( \Theta(n) \) bit operations.

\[
\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
+ & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 \\
\hline
1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0
\end{array}
\]

**Remark.** Grade-school addition and subtraction algorithms are asymptotically optimal.

Integer multiplication

**Multiplication.** Given two \( n \)-bit integers \( a \) and \( b \), compute \( a \times b \).

**Grade-school algorithm.** \( \Theta(n^2) \) bit operations.

\[
\begin{array}{cccccccc}
\times & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 \\
\hline
1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}
\]

**Conjecture.** [Kolmogorov 1952] Grade-school algorithm is optimal.

**Theorem.** [Karatsuba 1960] Conjecture is wrong.
Divide-and-conquer multiplication

To multiply two $n$-bit integers $x$ and $y$:
- Divide $x$ and $y$ into low- and high-order bits.
- Multiply four $\frac{n}{2}$-bit integers, recursively.
- Add and shift to obtain result.

\[
m = \left\lfloor \frac{n}{2} \right\rfloor \\
a = \left\lfloor \frac{x}{2^m} \right\rfloor \quad b = x \mod 2^m \\
c = \left\lfloor \frac{y}{2^m} \right\rfloor \quad d = y \mod 2^m
\]

\[
(2^m a + b) (2^m c + d) = 2^{2m} ac + 2^m (bc + ad) + bd
\]

Ex. $x = 10001101$ \hspace{1cm} $y = 11100001$

\[
\begin{align*}
T(n) &= 4 \cdot T\left(\frac{n}{2}\right) \\
     &+ (1) = 1 \\
T(n) &= \Theta(n^2)
\end{align*}
\]

MULTIPLY($x, y, n$)

IF $(n = 1)$
RETURN $x \times y$.
ELSE
\[
m = \left\lfloor \frac{n}{2} \right\rfloor .
\]
\[
a = \left\lfloor \frac{x}{2^m} \right\rfloor ; \quad b = x \mod 2^m.
\]
\[
c = \left\lfloor \frac{y}{2^m} \right\rfloor ; \quad d = y \mod 2^m.
\]
\[
e \leftarrow \text{MULTIPLY}(a, c, m).
\]
\[
f \leftarrow \text{MULTIPLY}(b, d, m).
\]
\[
g \leftarrow \text{MULTIPLY}(b, c, m).
\]
\[
h \leftarrow \text{MULTIPLY}(a, d, m).
\]
RETURN $2^{2m} e + 2^m (g + h) + f$. 
Divide-and-conquer multiplication analysis

**Proposition.** The divide-and-conquer multiplication algorithm requires \(\Theta(n^2)\) bit operations to multiply two \(n\)-bit integers.

**Pf.** Apply case 1 of the master theorem to the recurrence:

\[
T(n) = \frac{4T(n/2)}{\text{recursive calls}} + \frac{\Theta(n)}{\text{add, shift}} \Rightarrow T(n) = \Theta(n^2)
\]

---

Karatsuba trick

**To compute middle term** \(bc + ad\), use identity:

\[
b c + a d = a c + b d - (a - b)(c - d)
\]

\[
m = \left\lfloor \frac{n}{2} \right\rfloor
\]

\[
a = \left\lfloor \frac{x}{2^m} \right\rfloor \quad b = x \mod 2^m
\]

\[
c = \left\lfloor \frac{y}{2^m} \right\rfloor \quad d = y \mod 2^m
\]

\[
(2^m a + b)(2^m c + d) = 2^{2m} ac + 2^{m} (bc + ad) + bd
\]

\[
= 2^{2m} ac + 2^{m} (ac + bd - (a - b)(c - d)) + bd
\]

**Bottom line.** Only three multiplication of \(n/2\)-bit integers.
Karatsuba multiplication

**Karatsuba-Multiply** \((x, y, n)\)

**IF** \((n = 1)\)

**RETURN** \(x \times y.\)

**ELSE**

\(m \leftarrow \lfloor n / 2 \rfloor.\)

\(a \leftarrow \lfloor x / 2^m \rfloor;\) \(b \leftarrow x \mod 2^m.\)

\(c \leftarrow \lfloor y / 2^m \rfloor;\) \(d \leftarrow y \mod 2^m.\)

\(e \leftarrow \text{Karatsuba-Multiply}(a, c, m).\)

\(f \leftarrow \text{Karatsuba-Multiply}(b, d, m).\)

\(g \leftarrow \text{Karatsuba-Multiply}(a - b, c - d, m).\)

**RETURN** \(2^m e + 2^m (e + f - g) + f.\)

---

Karatsuba analysis

**Proposition.** Karatsuba’s algorithm requires \(O(n^{1.585})\) bit operations to multiply two \(n\)-bit integers.

**Pf.** Apply case 1 of the master theorem to the recurrence:

\[T(n) = 3 \cdot T(n/2) + \Theta(n)\]  \(\Rightarrow\) \(T(n) = \Theta(n^{\lg 3}) = O(n^{1.585}).\)

**Practice.** Faster than grade-school algorithm for about 320-640 bits.

\[T(n) = 3 \cdot T\left(\frac{n}{2}\right) + n \]
\[ T(n) = 3 \cdot \frac{1}{2} T(n) + n \]

Total time:

\[ n + \frac{3}{2} n + (\frac{3}{2})^2 n + \ldots 
\]

\[ = n \cdot \left[ 1 + \frac{3}{2} + \left(\frac{3}{2}\right)^2 + \ldots + \left(\frac{3}{2}\right)^t \right] \]

\[ \sum_{i=0}^{t} q^i = \frac{1-q^{t+1}}{1-q} \]

\[ q = \frac{3}{2} \quad t = \log_2 \frac{n}{1 - \left(\frac{3}{2}\right)^{n+1}} \]

Time:

\[ = n \cdot \frac{1 - \left(\frac{3}{2}\right)^t}{1 - \frac{3}{2}} \approx n \]
### Integer arithmetic reductions

**Integer multiplication.** Given two $n$-bit integers, compute their product.

<table>
<thead>
<tr>
<th>problem</th>
<th>arithmetic</th>
<th>running time</th>
</tr>
</thead>
<tbody>
<tr>
<td>integer multiplication</td>
<td>$a \times b$</td>
<td>$\Theta(M(n))$</td>
</tr>
<tr>
<td>integer division</td>
<td>$a \div b, a \mod b$</td>
<td>$\Theta(M(n))$</td>
</tr>
<tr>
<td>integer square</td>
<td>$a^2$</td>
<td>$\Theta(M(n))$</td>
</tr>
<tr>
<td>integer square root</td>
<td>$\sqrt[n]{a}$</td>
<td>$\Theta(M(n))$</td>
</tr>
</tbody>
</table>

*integer arithmetic problems with the same complexity as integer multiplication*
**History of asymptotic complexity of integer multiplication**

<table>
<thead>
<tr>
<th>year</th>
<th>algorithm</th>
<th>order of growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td>brute force</td>
<td>$\Theta(n^2)$</td>
</tr>
<tr>
<td>1962</td>
<td>Karatsuba-Ofman</td>
<td>$\Theta(n^{1.585})$</td>
</tr>
<tr>
<td>1963</td>
<td>Toom-3, Toom-4</td>
<td>$\Theta(n^{1.465}), \Theta(n^{1.37})$</td>
</tr>
<tr>
<td>1966</td>
<td>Toom-Cook</td>
<td>$\Theta(n^{1.36})$</td>
</tr>
<tr>
<td>1971</td>
<td>Schönhage–Strassen</td>
<td>$\Theta(n \log n \log \log n)$</td>
</tr>
<tr>
<td>2007</td>
<td>Fürer</td>
<td>$n \log n 2^{O(\log^* n)}$</td>
</tr>
<tr>
<td>?</td>
<td>?</td>
<td>$\Theta(n)$</td>
</tr>
</tbody>
</table>

**Remark.** GNU Multiple Precision Library uses one of five different algorithms depending on the size of operands.