Lecture 8

Friday, June 2, 2017 5:38 PM

Greedy analysis strategies

Greedy algorithm stays ahead. Show that after each step of the greedy
algorithm, its solution is at least as good as any other algorithm's.

Structural. Discover a simple "structural" bound asserting that every
possible solution must have a certain value. Then show that your algorithm
always achieves this bound.

Exchange argument. Gradually transform any solution to the one found by

the greedy algorithm without hurting its quality.

Other greedy algorithms. Gale-Shapley, Kruskal, Prim, Dijkstra, Huffman, ...

Scheduling to minimizing lateness

Minimizing lateness problem.
» Single resource processes one job at a time.
* Job j requires ¢ units of processing time and is due at time d,.
* Ifj starts at time s;, it finishes at time f;=s; + 4.
* Lateness: ¢;=max {0, f;—d; }.
* Goal: schedule all jobs to minimize maximum lateness L = max; /.

L1234]s e
S 2 1 4 3 2

6 8 9 9 14 15

lateness = 2 lateness = 0 max lateness = 6

/ / /

d3=9 d2=8 d5=]5 d]=6 d5=l4 d4=9

24

slide_8 Page 1

Minimizing lateness: greedy algorithms

Greedy template. Schedule jobs according to some natural order.

» [Shortest processing time first] Schedule jobs in ascending order of
processing time .

« [Earliest deadline first] Schedule jobs in ascending order of deadline 4.

« [Smallest slack] Schedule jobs in ascending order of slack d, - .

25

Minimizing lateness: greedy algorithms

Greedy template. Schedule jobs according to some natural order.

» [Shortest processing time first] Schedule jobs in ascending order of

processing time !j 0
12 K)
counterexample

Y 1 10 /

— ;
C \

ateness |
« [Smallest slack] Schedule jobs in ascending order of slack d, - ¢. Q
1 10 counterexample F Z :‘ —\‘
2 10
0 o\
6

\ O 2

slide_8 Page 2

Minimizing lateness: earliest deadline first

EARLIEST-DEADLINE-FIRST (1, 11, t2, ..., ta, d1, @b, ..., dy)

SORT n jobs so that di < d» < ... < d.
t—20
FOR j=1TO n

Assign job j to interval [z, 1 +#].

sj 1t fi — 1ty

t—t+t

RETURN intervals [s1, fi], [s2, 2], -... [$m fn]-

max lateness =1

|

d]=6 d2=8 d3=9 d4=9 d5=]4 d5=|5

27

Minimizing lateness: no idle time

Observation 1. There exists an optimal schedule with no idle time.

d=4 d=6 d=12
1

%]
w
'S
wn
o
=~
oo
=
=

Observation 2. The earliest-deadline-first schedule has no idle time.

28

slide_8 Page 3

Minimizing lateness: inversions

Def. Given a schedule S, an inversion is a pair of jobs i and j such that:

i <j butj scheduled before i.
T inversion p

ez

[as before, we assume jobs are numbered so thatd, = d, s .. s 4,]

Observation 3. The earliest-deadline-first schedule has no inversions.

Observation 4. If a schedule (with no idle time) has an inversion,
it has one with a pair of inverted jobs scheduled consecutively.

43]

Minimizing lateness: inversions

Def. Given a schedule S, an inversion is a pair of jobs i and j such that:

i <jbutjscheduled before i. d\ 4 A‘ :
V=)

inversion

before swap

f
Claim. Swapping two adjacent, inverted jobs reduces the number of ~/ d \
inversions by one and does not increase the max lateness. \
Pf. Let/ be the lateness before the swap, and let ¢' be it afterwards. Z £ _ 4 ‘\
s 0= forall k#i,j. - {
s U< (.
* Ifjobjis late, €', = f' - d; (definition)
= fi—-d (j now finishes at time f;)
< fi — di (since i and j inverted)
< /;. (definition)

slide_8 Page 4

Minimizing lateness: analysis of earliest-deadline-first algorithm

Theorem. The earliest-deadline-first schedule S is optimal.
Pf. [by contradiction]
Define $* to be an optimal schedule that has the fewest number of
inversions, and let's see what happens.
» Can assume S* has no idle time.

C + If S* has no inversions, then S = S*b

= '
— — g ')
* If $* has an inversion, let i be an adjacent inversion.
» Swapping i and j

- does not increase the max lateness
- strictly decreases the number of inversions BV | . (
* This contradicts definition of $* = (. \

AN I%M/Q GIO./

slide_8 Page 5

n

W

L

Divide-and-conquer paradigm

Divide-and-conquer.
* Divide up problem into several subproblems.
» Solve each subproblem recursively.
* Combine solutions to subproblems into overall solution.

Most common usage.
* Divide problem of size »n into two subproblems of size n/2 in linear time.

» Solve two subproblems recursively. —
« Combine two solutions into overall solution in linear time. \I\ -
b
Consequence.
* Brute force: O(n?).

\/ Divide-and-conquer: ©(n log n).

W

attributed to Julius Caesar

Sorting problem

Problem. Given a list of n elements from a totally-ordered universe,
rearrange them in ascending order.

A g
n 'y

Y

Born In The U
Bruce Springstec:

slide_8 Page 6

Sorting applications

Obvious applications.
* Organize an MP3 library.
« Display Google PageRank results.
» List RSS news items in reverse chronological order.

Some problems become easier once elements are sorted.
« Identify statistical outliers.
* Binary search in a database.
« Remove duplicates in a mailing list.

Non-obvious applications.
» Convex hull.
» Closest pair of points.
* Interval scheduling / interval partitioning.
* Minimum spanning trees (Kruskal's algorithm).

Scheduling to minimize maximum lateness or average completion time.

Mergesort

« Recursively sort left half.
» Recursively sort right half.
« Merge two halves to make sorted whole.

input First Dratt

ofa
A L G O R I T H M s Report on the
EDVAC

John von Neumann

sort left half

A G L (0] R T H M S

sort right half

A G 1 0 R H | M S T

merge results

A G H | L M (0] R S T

slide_8 Page 7

Merging

Goal. Combine two sorted lists A and B into a sorted whole C.
* Scan A and B from left to right.
* Compare a; and b;.
* If @i < bj, append a; to C (no larger than any remaining element in B).
* If @i > b;, append b; to C (smaller than every remaining element in A).

sorted list A sorted list B

by 17 23
AN At
merge to form sorted list C

2 3 710 11

A useful recurrence relation

Def. T(n) = max number of compares to mergesort a list of size < n.
Note. T(n) is monotone nondecreasing.

Mergesort recurrence.

- ifn=1
<
() = T([n/2]) + T(|ln/2]) + n otherwise

Solution. T(n)is O(n log, n).

Assorted proofs. We describe several ways to prove this recurrence.
Initially we assume » is a power of 2 and replace < with =.

slide_8 Page 8

Divide-and-conquer recurrence: proof by recursion tree

Proposition. If T(n) satisfies the following recurrence, then T'(n) = n log: n.
/ \
0

assuming n
T(n) =

ifn=1 is a power of 2

2T((n/2) + n >otherwise

Pf 1.
@ =n
T2 W 2 (n/2) @
— — (-
2
. V' o h W .
relH N 1ea) T(n!“—l)a Tn/4) — 4nd) =n
ARV AREARYA
T(n/8) T(n/8) T(n/8) T(n/8) T(m/8) T(n/8) T(n/8) T(n/8) 8(n8) =n

fn)=nlgn 4

Proof by induction

Proposition. If T(n) satisfies the following recurrence, then T'(n) = n log: n.

. assuming n
ifn=1 is a power of 2

T = { 2T(n/2) + n otherwise

Pf 2. [by induction on #]
* Base case: whenn=1, T(1)=0.
+ Inductive hypothesis: assume 7(n) = n log, n.
« Goal: show that 7(2rn) = 2n log, (2n).

T(2n) 2T(n) +2n

2nlogan +2n

2n(log2(2n)—1) +2n
= 2nlog2(2n). =

slide_8 Page 9

Analysis of mergesort recurrence

Claim. If T(n) satisfies the following recurrence, then 7(n) <n[log:n].

0 ifn=1
Tn) = T([n/2]) + T(|n/2]) + n otherwise

Pf. [by strong induction on #]
* Base case: n=1.
* Define ny=|n/2] and ny=[n/2].

* Induction step: assume true for 1,2,..,n—1.
ng = [n/2]
T(n)

1A

Tm)+T(ma)+ n < ‘2|'log._3n'| /2‘

< ni[logani] + n2[logamz] + n _ Moyl /2
< n [l()gg nz] + a2 [logz ng] + n
= nflogam] +n < log, na < [logyn] — 1

IA

n([logan]-1) +n

n[logan]. =

Counting inversions

Music site tries to match your song preferences with others.
* You rank n songs.

« Music site consults database to find people with similar tastes.

Similarity metric. number of inversions between two rankings.
* Myrank: 1,2,...,n.

* Your rank: ay, as, ..., a,,.

* Songs iandj are inverted if i < j, butg; > a;.

2 inversions: 3-2,4-2

Brute force: check all @(n?) pairs.

slide_8 Page 10

Counting inversions: applications

Voting theory.

Collaborative filtering.

Measuring the "sortedness" of an array.

Sensitivity analysis of Google's ranking function.
Rank aggregation for meta-searching on the Web.
Nonparametric statistics (e.g., Kendall's tau distance).

Rank Aggregation Methods for the Web

Cynthia Dwork: Ravi Kumar Moni Naor! D. Sivakumar'

of e work i to de
foctively comhi

At

swaarely, anlti-wored spuer

Counting inversions: divide-and-conquer

Divide: separate list into two halves 4 and B.
Conquer: recursively count inversions in each list.
Combine: count inversions (a, b) with a € 4 and b € B.
Return sum of three counts.

input

1 5 4 8 10 2 6 9 3 7

count inversions in left half A count inversions in right half B
1 5 4 8 10 2 6 9 3 7
5-4 6-3 9-3 9-7

count inversions (a, b) withac Aand b B

1 5 4 8 10 2 6 9 3 7

4-2 4-3 5-2 5-3 8-2 8-3 8-6 8-7 10-2 10-3 10-6 10-7 10-9

output 1 + 3 + 13 =17

slide_8 Page 11

Counting inversions: how to combine two subproblems?
- \I\
Q. How to count inversions (a, b) with a €4 and b € B? (L‘ \ /7/
A. Easy if 4 and B are sorted! \ 7
\

Warmup algorithm.
* Sort 4 and B.
* For each element h €B,

- binary search in 4 to find how elements in 4 are greater than b. Q \\/\

list A list B

o,

7 10 18 3 14 17 23 2 11 16

o @_‘72’*\,\,[
/1 7 7)

11 16 17 23
2]] 0
l 16

Counting inversions: how to combine two subproblems?

Count inversions (a, b) with « € 4 and b € B, assuming 4 and B are sorted.
* Scan 4 and B from left to right.
» Compare a; and b;.
* If a; < b, then a; is not inverted with any element left in B.
* If @ > b, then b; is inverted with every element left in 4.
* Append smaller element to sorted list C.

céé/inversions (a, b) with a = A and L\%

a 18 b
At > A4

merge 1o, form sorted list C

ms S 4O+

2 3 7 10 11

slide_8 Page 12

Counting inversions: divide-and-conquer algorithm implementation

Input. List L.
Qutput. Number of inversions in L and sorted list of elements L'.

SORT-AND-COUNT (L)

IF list L has one element
RETURN (0, L). 30& d
|
DIVIDE #ife list into two halves 4 and B.

1, A) < SORT-AND-COUNT(A).
(rp , B) +— SORT-AND-COUNT(B).

(r4s , L") <= MERGE-AND-COUNT(A, /
(. "2 h)| =
RETURN (r4+rp+rap, L').

\\ -0

Counting inversions: divide-and-conquer algorithm analysis

Proposition. The sort-and-count algorithm counts the number of inversions
in a permutation of size »n in O(n log n) time.

Pf. The worst-case running time T(n) satisfies the recurrence:

T(n) = T([n/2]) + T(ln/2]) + ©(n) otherwise

slide_8 Page 13

2T

4

18

Integer addition

Addition. Given two n-bit integers a and b, compute a + b.
Subtraction. Given two n-bit integers @ and b, compute a - b.

Grade-school algorithm. ©(n) bit operations.

1 1.0 1 0 1 0 1
4 [0 T I A A O (V|
1 0 1 0 1 0 O 1 O

Remark. Grade-school addition and subtraction algorithms are
asymptotically optimal.

Integer multiplication

Multiplication. Given two n-bit integers a and b, compute a x b.
Grade-school algorithm. ©(»2) bit operations.

I 101 0 1 0 1
x 0 1. 1 1 1 1 01
I 1 01 0 1 01

0 000 O0OO0ODO

I 1.0 1 0 1 01
IR ERTN RO RIS SO BT N
@y @] @i
1 Y T O T T
(@ uj@ v
0 00 O0OOTOTP

o1 101 00O0O0OO0O0OOO0OO0ODO0I1

Conjecture. [Kolmogorov 1952] Grade-school algorithm is optimal.

Theorem. [Karatsuba 1960] Conjecture is wrong.

slide_8 Page 14

Divide-and-conquer multiplication

To multiply two n-bit integers x and y:
* Divide x and y into low- and high-order bits.

» Add and shift to obtain result.

* Multiply four %n-bit integers, recursively. j ' —

m=[n/2]
=|x/2"] b=xmod2"”
c=|y/2m| d=ymod2"

_ =2
@ma+b)2c+d) = 2mac +27 (be +ad) + bd — C: Z W A
o o090 o

use bit shifting X_/’ Q . 2 1__ b

to compute 4 terms

Ex. x =10001101 »=11100001 ZL
—_— —_— \/\
o b c d ZJ

-+ ()= | %)
T(\r\\ —— (\,\

Divide-and-conquer multiplication

MULTIPLY (x, y, #)

IF (n=1)
RETURN X x).

ELSE
me|[n/2].
a<—|x/2"|; b« xmod2".
ce|y/2m]; deymod?2".
e «— MULTIPLY (a, ¢, m).
f < MuLtipLY (b, d, m).
g < MULTIPLY (b, ¢, m).
h «— MuLTIPLY (@, d, m).
RETURN 2°" ¢ + 2" (g + h) + f.

slide_8 Page 15

Divide-and-conquer multiplication analysis

Proposition. The divide-and-conquer multiplication algorithm requires
0O(n?) bit operations to multiply two »-bit integers.

Pf. Apply case 1 of the master theorem to the recurrence:

T(n) = 4T(n/2) + ©(m) = T(n)=O@>)

recursive calls add, shift

Karatsuba trick

To compute middle term bc + ad, use identity:

— T -

m=[n/2]
a=|x/2m"| b=xmod2"

middle term
c=|y/2"| d=ymod?2” |

@7 a+b) (27 c+d) = 22fac - 27 (be + ad) N\bd

+ 2" (ac + bd — !a—b)(c—gib+@

°© oo 'J:r(\/\\;‘%JT%

Bottom line. Only three multiplication of n/2-bit integers.
,\:

slide_8 Page 16

Karatsuba multiplication

KARATSUBA-MULTIPLY (X, y, 1)

IF (n=1)
RETURN X x y.
ELSE
me—|[n/2].
a«~|x/2m]; b+ xmod2".
c—|y/2m|; d< ymod2".
e « KARATSUBA-MULTIPLY(a, ¢, m).
f— KARATSUBA-MULTIPLY (b, d, m).
g «— KARATSUBA-MULTIPLY (a — b, ¢ — d, m).
RETURN 22" ¢ + 2" (e + f— g) + f.

Karatsuba analysis

Proposition. Karatsuba's algorithm requires !g(n'-535)?it operations to
multiply two n-bit integers. |/

Pf. Apply case 1 of the master theorem to the recurrence:

T(n) = 3T(n/2) + O(n) | = T(n) = On'Ld) = O(n's%),

Practice. Faster than grade-school algorithm for about 320-640 bits.

nz3 T(L)+n

slide_8 Page 17

Integer arithmetic reductions

Integer multiplication. Given two n-bit integers, compute their product.

problem arithmetic running time
integer multiplication axb O(M(n))
integer division alb, amod b O(M(n))
integer square a? O(Mn))
integer square root [Va | Q(M(n))

integer arithmetic problems with the same complexity as integer multiplication

slide_8 Page 19

History of asymptotic complexity of integer multiplication

year algorithm order of growth
? brute force O(n?)
1962 Karatsuba-Ofman O(n'5%%)
1963 Toom-3, Toom-4 O(n'465), @(n'404)
1966 Toom-Cook On'+7)
1971 Schénhage-Strassen O(n log n log log n)
2007 Flrer n log n 2 Ollog*n)
? ? o)

number of bit operations to multiply two n-bit integers

used in Maple, Mathematica, gcc, cryptography, ...

Remark. GNU Multiple Precision Library uses one of five
different algorithm depending on size of operands.

«Arithmetic without limitations»

22

slide_8 Page 20

