
Lecture 9
Tuesday, June 6, 2017 10:37 PM

 slide_9 Page 1

 slide_9 Page 2

 slide_9 Page 3

2 8 9 5 8

4 4 6 2 3

5 7 5 6 1

3 2 5 4 8

C(i,j) = cost of cell (i,j)

Goal: Get from the first (bottom) row to the
last (top) row via a cheapest path.

Directly above, or•

Above Left, or•
Above Right.•

can move

Cost of a path = sum of costs of the cells on the path.

Template:

(1) Describe an array of values (numbers) to compute. Each array entry

 slide_9 Page 4

(1) Describe an array of values (numbers) to compute. Each array entry
corresponds to a sub-problem of the original problem.

(2) Give a recurrence to compute the values in the array: a "big" problem can be
solved using the solutions to some "small" sub-problems.

(3) Give a program to compute the array values: a "bottom-up" algorithm.

(4) Using the array values, compute an optimal solution to the original problem.

 slide_9 Page 5

2 8 9 5 8

4 4 6 2 3

5 7 5 6 1

3 2 5 4 8

13 19 16 12 15

11 11 13 7 8

7 9 7 10 5

3 2 5 4 8

 slide_9 Page 6

 slide_9 Page 7

(1) Array: Define M[j] = the value of an optimal solution for the subset of jobs 1,…, j

(2) Recurrence: Two possibilities: (a) either job j is part of an optimal solution,
 or (b) job j is not.

 Hence, either M[j] = v[j] + M[p(j)], or

DP Algorithm

 slide_9 Page 8

 or (b) job j is not.

 Hence, either M[j] = v[j] + M[p(j)], or
 M[j] = M[j-1].

 So, the recurrence is

 M[0]=0

 M[j] = max{ v[j] + M[p(j)] , M[j-1] }

(3) Algorithm to fill in the array: M[0] = 0
 for j=1 to n
 M[j] = max { v[j] + M[p(j)], M[j-1] }
 end for

(4) Recover an actual optimal schedule from M[]:

 slide_9 Page 9

 slide_9 Page 10

 slide_9 Page 11

 slide_9 Page 12

 slide_9 Page 13

 slide_9 Page 14

