Algorithmic paradigms
Greedy. Build up a solution incrementally, myopically optimizing some local criterion.

Divide-and-conquer. Break up a problem into independent subproblems, solve each subproblem, and combine solution to subproblems to form solution to original problem.

Dynamic programming. Break up a problem into a series of overlapping subproblems, and build up solutions to larger and larger subproblems.
fancy name for
caching away intermediate results
in a table for later reuse

Dynamic programming history

Bellman. Pioneered the systematic study of dynamic programming in 1950s.
Etymology.

- Dynamic programming = planning over time.
- Secretary of Defense was hostile to mathematical research.
- Bellman sought an impressive name to avoid confrontation.

the theory of dynamic programming micuand drumas

1. Introduction. Before turning to a diecussion of some representa ive problems which will permit us to exhibit various mathematical
features of the theory, let us proent a brief survey of the fundamental conoepts, hopes, and aspirations of dynamic programming. To begin with, the theory was created to traat the mathematioal
problems arising from the study of various multi-stage decision procexesa, which may roughly be deseribed in the following way; We
have a phyical syterm whose state at any time t is deternined by have a phyyical system whosesestate at any time t is determined by a
set of quantities which we call state parameters, of state variabies. set of quantites which we call state parameten, of state variables.
At certain times, which may be prescribed in advance, or which may be determined by the process itselfo we are called upon to make dey
 cemesion of being identical with the choecine of a transformation. The ouk some function of the parameters deccribibing the final state. Examples of processes fitting this loces dexcription are furraish
by virtually every phase of modern lifí, from the planning of ind trial production lixizs to the cestoduting of patients at a medici
clinic: from the determination of long term investment programs Cinis, from the determination of long term investment programs for
universitise to the determination of a replacement policy for ma-
chinery in factoriess from the programming of training policies for

Dynamic programming applications

Areas.

- Bioinformatics.
- Control theory.
- Information theory.
- Operations research.
- Computer science: theory, graphics, AI, compilers, systems,
- ...

Some famous dynamic programming algorithms.

- Unix diff for comparing two files.
- Viterbi for hidden Markov models.
- De Boor for evaluating spline curves.
- Smith-Waterman for genetic sequence alignment.
- Bellman-Ford for shortest path routing in networks.
- Cocke-Kasami-Younger for parsing context-free grammars.
- ...

Example 0. Fibonacci numbers

$$
F_{0}=1
$$

$$
F_{1}=1 \quad F_{i}=F_{i-2}+F_{i-1}
$$

$$
F_{2}=2 \quad(i \geqslant 2)
$$

$$
F_{3}=3
$$

Given n, compute

Example sum:
Fib (7)

Problem: Many, Fib.) values are recomputed ! \Rightarrow slow runtione Exponential

Solution: Remember \& don't recompute! Memorization.
algo 2: Fib (n) make arran
make array $F[0 . . n]$
$F[0]=1$

$$
\begin{aligned}
& \text { make ar y } \\
& F[0]=1 \\
& F[1]=1
\end{aligned}
$$

for $i=2$ to n

$$
\begin{aligned}
& F[i]=F[i-2]+F[i-1] \\
& \text { endfor } \\
& \text { return }
\end{aligned}
$$

Run time: $O(n)$

$$
\underset{\sim i b}{\operatorname{Fib}(5)} F F[2]=(2)
$$

Goal: Get from the first (bottom) row to the
 last (top) row via a cheapest path.

Cost of a path = sum of costs of the cells on the path.

Template:
(1) Describe an array of values (numbers) to compute. Each array entry corresponds to a sub-problem of the original problem.
(2) Give a recurrence to compute the values in the array: a "big" problem can be solved using the solutions to some "small" sub-problems.
(3) Give a program to compute the array values: a "bottom-up" algorithm.
(4) Using the array values, compute an optimal solution to the original problem.

1. $A(i, j)=$ lost at the
cheapest path
than bottom row
to well (i, j)

$$
\begin{aligned}
& 1 \leq i \leq m \quad \text { to cell }(i, j) \\
& 1 \leq j \leq n \\
& \operatorname{Best} \cos \text { to get do top raw : } \\
& \min \{A(m, 1), \ldots, A(m, n)\}
\end{aligned}
$$

$\cdot 1-1$

$$
(*) A(1, j)=c(1, j), \forall j
$$

3. Use $\mid *)$.. to fill in the array
from bottom now up.
Time: $O(n \cdot m)$ (canst time per array element)
4. Recover an actual cheapest path (by "tracing" back through our array $A()$).

algo Print Opt (i, j) \% print optimal path print (i, j)
if $i=1$ then return
else find $K \in\{j-1, j, j+1\}$ such that

$$
A[i-1, k]=\min \{A[i-1, j-1], A[i-1, j], A[i-1, j+1]\}
$$

printOpt ($i-1, k$)
end Clop

The main call is: Pint $O_{p t}(m, j)$
where j is such that $A[m, j]=\min _{1 \leq k \leq 1}\{A[m, k]\}$
The runtime of $\operatorname{Print} 0 \mathrm{Op}(m, j): O(m)$.
The overall time of the $X P$ algo to find a cheapest path on the wall: $0(m, n)+0(m)$ $\leqslant 0(m \cdot n)$

Weighted interval scheduling
Weighted interval scheduling problem.

- Job j starts at s_{j}, finishes at f_{j}, and has weight or value v_{j}.
- Two jobs compatible if they don't overlap.
- Goal: find maximum weight subset of mutually compatible jobs.

Earliest-finish-time first algorithm

Earliest finish-time first.

- Consider jobs in ascending order of finish time.
- Add job to subset if it is compatible with previously chosen jobs.

Recall. Greedy algorithm is correct if all weights are 1.

Observation. Greedy algorithm fails spectacularly for weighted version.

Weighted interval scheduling

Notation. Label jobs by finishing time: $f_{1} \leq f_{2} \leq \ldots \leq f_{n}$.

Def. $p(j)=$ largest index $i<j$ such that job i is compatible with j.
Ex. $p(8)=5, p(7)=3, p(2)=0$.

DP Algorithm

(1) Array: Define $M[j]=$ the value of an optimal solution for the subset of jobs $1, \ldots, j$
(2) Recurrence: Two possibilities: (a) either job j is part of an optimal solution, or (b) job j is not.

or (b) job J is not.
value
Hence, either $M[j]=v[j]+M[p(j)]$, or $M[j]=M[j-1]$.

So, the recurrence is
 We wry

(3) Algorithm to fill in the array: $\mathrm{M}[0]=0$
for $\mathrm{j}=1$ to n

$$
M[j]=\max \{v[j]+M[p(j)], M[j-1]\}
$$

end for
(4) Recover an actual optimal schedule from M[] :

Weighted interval scheduling: finding a solution
Q. DP algorithm computes optimal value. How to find solution itself?
A. Make a second pass.

return $\{j\} \cup$ Find-Solution $(p[j])$.
else
return Find-Solution(j-1).

Analysis. \# of recursive calls $\leq n \Rightarrow O(n)$.

$$
T(n) \leq T(n-1)+O(1)
$$

Runtime:

- Preprocessinge sorting computing $p(j) \sin]:$
time $O \ln \log n)$.

- Fill in
 Tracing out the opt.

Knapsack problem

- Given n objects and a "knapsack."
- Item i weighs $w_{i}>0$ and has value $v_{i}>0$.
- Knapsack has capacity of W.
- Goal: fill knapsack so as to maximize total value.

Ex. $\{1,2,5\}$ has value 35 .
Ex. $\{3,4\}$ has value 40 .
Ex. $\{3,5\}$ has value 46 (but exceeds weight limit).

i	v_{i}	w_{i}
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

knapsack instance (weight limit $\mathrm{W}=11$)

Greedy by value. Repeatedly add item with maximum v_{i}.
Greedy by weight. Repeatedly add item with minimum w_{i}.
Greedy by ratio. Repeatedly add item with maximum ratio v_{i} / w_{i}.

Observation. None of greedy algorithms is optimal.

Dynamic programming: false start

Def. $O P T(i)=\max$ profit subset of items $1, \ldots, i$.
Case 1. $O P T$ does not select item i.

- $O P T$ selects best of $\{1,2, \ldots, i-1\}$.
 proof via exctucture property

Case 2. $O P T$ selects item i.

- Selecting item i does not immediately imply that we will have to reject other items.
- Without knowing what other items were selected before i, we don't even know if we have enough room for i.

Conclusion. Need more subproblems!

Dynamic programming: adding a new variable
Def. $O P T(i, w)=\max$ profit subset of items $1, \ldots, i$ with weight limit w.

$$
-\cap P T(1, w)
$$

Case 1. $O P T$ does not select item i.

- OPT selects best of $\{1,2, \ldots, i-1\}$ using weight limit w.

OP TI n, W

Case 2. OPT selects item i.

- New weight limit $=w-w_{i}$.
- OPT selects best of $\{1,2, \ldots, i-1\}$ using this new weight limit.

$$
O p-\left(i, w-w_{i}\right)
$$

$$
+V i
$$

$$
O P T(i, w)= \begin{cases}0 & \text { if } \mathrm{i}=0 \\ O P T(i-1, w) & \text { if } \mathrm{w}_{\mathrm{i}}>\mathrm{w} \\ \max \left\{O P T(i-1, w), \quad v_{i}+\operatorname{OPT}\left(i-1, w-w_{i}\right)\right\} & \text { otherwise }\end{cases}
$$

$$
w_{i} \leq w
$$

$$
i \notin O P T
$$

$j \in$ OPT

Knapsack problem: bottom-up
$\operatorname{KNAPSACK}\left(n, W, w_{1}, \ldots, w_{n}, v_{1}, \ldots, v_{n}\right)$
FOR $w=0$ TO W o
FOR $i=1$ TO n

FOR $w=0$ TO W
IF $\left(w_{i}>w\right) \quad M[i, w] \leftarrow M[i-1, w]$.
ELSE $\quad M[i, w] \leftarrow \max \left\{M[i-1, w], v_{i}+M\left[i-1, w-w_{i}\right]\right\}$.

Return $M[n, W]$.

$$
M[1, w]=\left\{\begin{array}{l}
0 \\
v_{1}
\end{array}\right.
$$

$$
i \leq \eta
$$

\qquad
\qquad $1=8$

Knapsack problem: bottom-up demo

i	v_{i}	w_{i}
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

$$
\operatorname{OPT}(i, w)= \begin{cases}0 & \text { if } \mathrm{i}=0 \\ \operatorname{OPT}(i-1, w) & \text { if } \mathrm{w}_{\mathrm{i}}>\mathrm{w} \\ \max \left\{\operatorname{OPT}(i-1, w), v_{i}+\operatorname{OPT}\left(i-1, w-w_{i}\right)\right\} & \text { otherwise }\end{cases}
$$

weight limit w

$$
\begin{aligned}
& \text { if } i=0 \quad \text { then return } \varnothing \\
& \left(\begin{array}{l}
\text { else } \\
\text { if } \\
\text { if }[i, w] \\
\text { then return } \\
\text { Print opt }(i-1, w) \\
\text { else return }\{i] \cup \operatorname{Ronh}+O_{p} t(i-1, \\
\left.w-w_{i}\right)
\end{array}\right. \\
& \text { end it }
\end{aligned}
$$

Knapsack problem: running time
Theorem. There exists an algorithm to solve the knapsack problem with n items and maximum weight W in $\Theta(n W)$ time and $\Theta(n W)$ space. Pf.

- Takes $O(1)$ time per table entry.
- There are $\Theta(n W)$ table entries.
- After romnutino ontimal values ran trace hark to find colııtion. $1 \cap 1.1$

$$
\left.{ }^{\prime} \operatorname{lime}^{\prime}{ }^{\prime \prime} \operatorname{lod}^{\prime} \text { alpo: poly }(\log A, \log B)^{\prime \prime \prime}\right)
$$

