Lecture 9

Tuesday, June 6, 2017 10:37 PM

Algorithmic paradigms

Greedy. Build up a solution incrementally, myopically optimizing
some local criterion.

Divide-and-conquer. Break up a problem into independent subproblems,
solve each subproblem, and combine solution to subproblems to form
solution to original problem.

Dynamic programming. Break up a problem into a series of overlapping

subproblemsjand build up solutions to larger and larger subproblems.

fancy name for
caching away intermediate results
in a table for later reuse

Dynamic programming history

Bellman. Pioneered the systematic study of dynamic programming in 1950s.

Etymology.
+ Dynamic programming = planning over time.
+ Secretary of Defense was hostile to mathematical research.
* Bellman sought an impressive name to avoid confrontation.

THE THEORY OF DYNAMIC PROGRAMMING
RICHARD BELLMAR

1. Introduction, Before turning to a discussion of some representa-
tive problems which will permit us to exhibit various mathe matical
features of the theory, let us prosent a briel survoy of the funda-
mental concepts, hopes, and aspirtions of dynamic programming.

To bogin with, the theory was created (o treat the mathematical
problems arising from the study of various multi-stage decision
processes, which may roughly be described in the following way: We
have a physical system whose state at any time ¢ is determined by a
st of quastitis which we call state paramseters, or state variabls,
At certain times, which may be prescribed in advance, or which may
be deternsined by the process itself, we are called upon to make de-
«cisions which will affect the state of the system, These decisions are
equivalent to transfoemations of the state variables, the chosce of o
decision being identical with the choice of a transformation. The cut-
come of the preceding decisiona s to be wsed ta guide the choie of
future anes, with the purpose of the whole process that of maximizing
some function of the parameters describing the final state.

Examples of processes fitting this loose description are fursished
by vistually every phase of modern life, from the planning of indus-
trial production lises to the schiduling of patients at & medical
clinic; from the determination of long-term investment programs for

iversition 1o the d i al & repl policy for ma-
chinery in factories; from the programming of training policies for
akilled ard unskilled Bsbar to the choice of optimal purchasisg and in-
wentory peolicies for department stores and military establishments.

slide_9 Page 1

Dynamic programming applications

Areas.
* Bioinformatics.
+ Control theory.
+ Information theory.
« Operations research.
« Computer science: theory, graphics, Al, compilers, systems,

Some famous dynamic programming algorithms.
» Unix diff for comparing two files.
= Viterbi for hidden Markov models.
» De Boor for evaluating spline curves.
+ Smith-Waterman for genetic sequence alignment.
+ Bellman-Ford for shortest path routing in networks.
+ Cocke-Kasami-Younger for parsing context-free grammars.

w \: '\\OOV\O\CC | V\\l\\N\\oQ S

slide_9 Page 2

[P

N

blay) Fibid) +1, ?(L(S) B
/
co() Fibiz) T«uzs Ab\(z@
wn o) valmes ate
Pm(h Qlicmm q”v\'/;;\ M1 ' ‘—>)@Qo:\\l cwnhve
%Xfowvf"\”\\
I
gogwx‘\\w\ QQM&(\MM @4 AO\/. 71
'XCCOV\/\O')\/\ y\/\QMOB o
7\—%“\ > L F\b(:\) FL0.u]
F {Ol —;AO\
g‘l) \-l'o)
¢ =2
c1i] = F U270
tb\d\:}iﬂ"
Tebwen T Y.V‘l

VV)- Directly above, or
¢ Above Left, or

\I ¢ Above Right.

w\A

>

Goal: Get from the first (bottom) row to the
last (top) row via a cheapest path.

Cost of a path = sum of costs of the cells on the path.

~

&(&0\\\3 A\ QOH‘\/\M ?

Ex, AWy C PWQ&MM‘V‘%

&Q\ﬂ

Template:

(1) Describe an array of values (numbers) to compute. Each array entry
corresponds to a sub-problem of the original problem.

(2) Give a recurrence to compute the values in the array: a "big" problem can be
solved using the solutions to some "small" sub-problems.

(3) Give a program to compute the array values: a "bottom-up" algorithm.

(4) Using the array values, compute an optimal solution to the original problem.

-

.4.;\’)\4/\ IOON'LFOM oo VVP
Tiwe @ . W\>

(W#aﬁ@e Q,eww\ﬂ)

A\ Q&w\ﬂ—/ Cn & c\\mQ nes, Fe o 1Po\J(\/\
(b 7 Hong! Joac\<

oW ())
1o b
gzgié‘@ ;23}@? { 3‘,‘
» ﬁ \ MW\?F\(|,)
o 345,) = feng AlH),
o Z*< /} A(\ly‘)]

. A "
'O‘\%Q P\;\n{QPt L> \\) ?WTL " wﬁﬁ (i)

/ €V\ V\C')
(\\44)
P L= |)d‘f\“"\ e
JLQSQ eQ«nG\ K & {\\-‘\ \VAH} such Huak

ALi-1, k1 = min TAL-LAT) AL, A[u\vﬂ}

P(\V\‘\Oﬁ - K>
‘Q.V\O\ Ql@

ine v call is: Pt Opt (1) 1)
whe. e 3 1S Suda 'HMC[' ALW\)\T)}: Min {'ALW\,K]I

1€ K2wn

W (\A\/\/bW\Q., OL Pdv\‘{'()f‘l' (M)&\‘_ O(W\).
Te ovacall twe ol e BP O\Qpc o \AAO{

n theapest padn 0w fwe wall 2 9 won)+ O(w\)
< 0(wm- n)

Weighted interval scheduling

Weighted interval scheduling problem.

* Job j starts at s;, finishes at f;, and has weight or valu

+ Two jobs compatible if they don't overlap.
» Goal: find maximuubset of mutually compatible jobs.

> time

Earliest-finish-time first algorithm

Earliest finish-time first.
+ Consider jobs in ascending order of finish time.
+ Add job to subset if it is compatible with previously chosen jobs.

Recall. Greedy algorithm is correct if all weights are 1.

Observation. Greedy algorithm fails spectacularly for weighted version.

weight = 999 —» b
weight = 1 —— a
h
> time
1] 1 2] 4 5 6 7 8 9 10 11
7
Weighted interval scheduling
Notation. Label jobs by finishing time: f, < £, <...<f,.
Def. p(j)=largest index i < j such that job i is compatible with ;.
Ex. p(8)=5,p(7)=3,p(2)=0.
1
2
3
4
5
6
7
8)
time
0 1 2 3 4 5 6 7 8 9 10 11
B
DP Algorithm

(1) Array: Define M[j] = the value of an optimal solution for the subset of jobs 1,..., j /\/\ [V\/)
Q

(2) Recurrence: Two possibilities: (a) either job j is part of an optimal solution,

\
or (b) job j is not. \J o 9«:\.(

Hence, either M[j] = v[j] + M[p(j)], or JAF\ / \NMA

slide_9 Page 8

or (b) job j is not. \J s YA

Hence, either M[j] = v[j] + M[p(j)], or) \NMA

So, the recurrence is

M[0]=0 (__\ \N
M = max{ v[j] + MIp(j)] , M[j-1] } \P(d) 3

(3) Algorithm to fill in the array: M[0]=0
for j=1ton
M[j]=max{Vv[jl + M[p(j) |, M[j-1]}
end for

(4) Recover an actual optimal schedule from M[]:

Weighted interval scheduling: finding a solution

Q. DP algorithm computes optimal value. How to find solution itself?
A. Make a second pass.

Eln;ﬂ—iogution(j) Mié\l P, /U\T/&/\X T/_{\’\A" ge(z\,. (2

else if (v[j] + M[p[31] > M[j-11) Wiy lh (o /

return {j } U Find-Solution(p[jl).

\ h«\\ + O (>
R\A’(\} W @ KV\ V\)
. Pee Imwb&wg[S ot Q .

(/OW\(M ‘“
+\\M€ (v\ Qze\v\

else

return Find-Solution(j-1).

]:’)u % M):J, e O (4

- ouT X Opt. soWhon,
T{QM\N@ P—\ Fwe O V‘\

Knapsack problem

* Given n objects and a "knapsack."
* Item i weighs w; >0 and has value v; > 0.
* Knapsack has capacity of w.

.

Goal: fill knapsack so as to maximize total value.

Ex. {1,2,5} has value 35. 2 6 2
Ex. {3,4} has value 40. 3 18 5
Ex. {3,5} has value 46 (but exceeds weight limit). 4 2 6

5 28 7

knapsack instance
(weight limit W = 11)

Greedy by value. Repeatedly add item with maximum v..
Greedy by weight. Repeatedly add item with minimum w;.
Greedy by ratio. Repeatedly add item with maximum ratio v;/ w;.

Observation. None of greedy algorithms is optimal.

24

Dynamic programming: false start (\

Defmax profit subset of items 1, ..., 1. PQ-
Case 1. OPT does not select iten@ P l ()

* OPT selects best of {1,2,...,i~1}.

\ optimal substructure property

. . (proof via exchange argument)
OPT selects item i. ’ geare

+ Selecting item i does not immediately imply that we will have to reject
other items.

* Without knowing what other items were selected before i,
we don't even know if we have enough room for i.

Conclusion. Need more subproblems! ()

25

slide_9 Page 10

Dynamic programming: adding a new variable

Def. OPT(i,w) = max profit subset of items 1, ...,/ with weight limit w. O P\"
0 P (w
o —~ b
Case 1. OPT does not select item i. P —))
* OPT selects best of {1,2,...,i—1} using weight limit w. 06]) w/) VJ
. % \ optimal substructure property
Case 2. OPT selects item i. / (proof via exchange argument)

* New weight limit = w —w;.

FT— | W-W >
* OPT selects best of {1,2,...,i—1} using this new weight limit. 0 (| ‘
+ V3

0 if i=0
OPT(i,w)=40PT(i-1,w) if w,>w
max{ OPT(i-1,w), v;+ OPT(i-1,w-w,;)} otherwise \ay |‘ Z W

I/ QPT | & UPY

26

Knapsack problem: bottom-up

<

KNAPSACK (1, W, w1, ..., Wa, V1, ..., Vi)
FOR w=0TO W O\ 27 K

T N

Yow s
FOR i=1TOn
FOR w=0TO W

IF (wi>w) M[i,w] « M[i-1,w]. Q) |,
ELSE M[i,w] «— max {M[i—-1,w], vi t M[i—1,w—wi] }. - _—
l=h
RETURN M([n, W]. | SE———
=L -

o W X A=
MLLW < 2 >w T

WL g W

27

slide_9 Page 11

Knapsack problem: bottom-up demo

)

i v wi

: : : 0 if =0

z o 2 OPT(i,w)=1O0PT(i-1,w) if w,>w
3 18 5 {max{ OPT(i-1,w), v,+ OPT(i-1,w- w,)} otherwise
4 22 6)

5 28 7

welght limit w

(VO {} 0
?
— | (13 0 | 4 | & | & | ¥ | @ ["Ww | % | §|m| €|
I t
subset 0 6 7 7 7 % 7 7 7 7 7
of items

o
(o2}
~
~
o]
N
s
N
v
N
v
N
w
N
v

; PO | {1,2,3}

£1,2,3,4} 0 1 6 7 7 18 22 24 28 29 2 40

OPT(i, w) = max profit subset of items 1, ..., i with weight limit w.
28

O\\g\o
U 7, n@‘\w/\ NS

. X < W
S M'Wtﬁl Qewd\gae . P OFJ(()

‘% /I\,\Q wao\ C
r&l"\/\\"")

Pat Ot (1, w),

§ QQ WK VO\\\AQ-«

W a=

O A hay

fe\% '_;!(

MY Wl Mta«\ V‘/l

Py, T @dh—m *(l" w)
elSQ Wv\\f\\rv\ 21\) P\&/\+O§l'(\~|

w-wy

w’o(l_. W/

=9

s

Knapsack problem: running time .

\‘ .‘;l

SRR\

it \ weights are integers " 7
i b 1 and W
* Takes O(1) time per table entry. sl

Theorem. There exists an algorithm to solve the knapsack problem with »
items and maximum weight W in ®(n W) time and O(n W) space.

* There are @(n W) table entries.

/r\(,\

s Aftar romnntinn nntimal valiiee ran trara harlk tn find caliitinn-

slide_9 Page 12

* Takes O(1) time per table entry. T :
* There are @(n W) table entries.
« After computing optimal values, can trace back to find solution: } O ((/\)
take item i in OPT(i,w)iff M[i,w] > M[i-1,w]. =
\/ ‘) R)V 12 \)\/
V\) w S ey Y A3 _}'
=22

fn (ot V1 \j

ion of knapsack pro bI m is NP-Comp (\Mo\)(

\AS;E;EH ;Lth\”&fém oo Lh"lih‘p)j] e 'J:\/)
L_,&/ n
iv\r\/x’(%&,3@

(7 < é»@ i+ qyﬂ + L@\X/

1=\

l
W/ £ n ©<v\5>
q&\:o\x&“rs I h = @(%A)
1000= N L

W
%Od\gté 1090 AmeA

— /Q, RDQK

\oq
0’96#\ I\M{ @/719

A

"o Al

I\W‘lb
] \V¥
A OXY

coaw\q
o (g A
R

> -/

