
Dynamic Programming Notes Fall 2011

Dynamic Programming Algorithms

The setting is as follows. We wish to find a solution to a given problem which optimizes
some quantity Q of interest; for example, we might wish to maximize profit or minimize
cost. The algorithm works by generalizing the original problem. More specifically, it works
by creating an array of related but simpler problems, and then finding the optimal value of
Q for each of these problems; we calculate the values for the more complicated problems by
using the values already calculated for the easier problems. When we are done, the optimal
value of Q for the original problem can be easily computed from one or more values in the
array. We then use the array of values computed in order to compute a solution for the
original problem that attains this optimal value for Q. We will always present a dynamic
programming algorithm in the following 4 steps.

Step 1:
Describe an array (or arrays) of values that you want to compute. (Do not say how to
compute them, but rather describe what it is that you want to compute.) Say how to use
certain elements of this array to compute the optimal value for the original problem.

Step 2:
Give a recurrence relating some values in the array to other values in the array; for the
simplest entries, the recurrence should say how to compute their values from scratch. Then
(unless the recurrence is obviously true) justify or prove that the recurrence is correct.

Step 3:
Give a high-level program for computing the values of the array, using the above recur-
rence. Note that one computes these values in a bottom-up fashion, using values that have
already been computed in order to compute new values. (One does not compute the values
recursively, since this would usually cause many values to be computed over and over again,
yielding a very inefficient algorithm.) Usually this step is very easy to do, using the recur-
rence from Step 2. Sometimes one will also compute the values for an auxiliary array, in
order to make the computation of a solution in Step 4 more efficient.

Step 4:
Show how to use the values in the array(s) (computed in Step 3) to compute an optimal
solution to the original problem. Usually one will use the recurrence from Step 2 to do this.

1



Moving on a grid example

The following is a very simple, although somewhat artificial, example of a problem easily
solvable by a dynamic programming algorithm.

Imagine a climber trying to climb on top of a wall. A wall is constructed out of square
blocks of equal size, each of which provides one handhold. Some handholds are more dan-
gerous/complicated than other. From each block the climber can reach three blocks of the
row righ above: one right on top, one to the right and one to the left (unless right or left
are no available because that is the end of the wall). The goal is to find the least dangerous
path from the bottom of the wall to the top, where danger rating (cost) of a path is the sum
of danger ratings (costs) of blocks used on that path.

We represent this problem as follows. The input is an n ×m grid, in which each cell has a
positive cost C(i, j) associated with it. The bottom row is row 1, the top row is row n. From
a cell (i, j) in one step you can reach cells (i+ 1, j − 1) (if j > 1), (i+ 1, j) and (i+ 1, j + 1)
(if j < m).

Here is an example of an input grid. The easiest path is high-
lighted. The total cost of the easiest path is 12. Note that a
greedy approach – choosing the lowest cost cell at every step –
would not yield an optimal solution: if we start from cell (1, 2)
with cost 2, and choose a cell with minimum cost at every step,
we can at the very best get a path with total cost 13.

Grid example.

2 8 9 5 8
4 4 6 2 3
5 7 5 6 1
3 2 5 4 8

Step 1. The first step in designing a dynamic programming algorithm is defining an array to
hold intermediate values. For 1 ≤ i ≤ n and 1 ≤ j ≤ m, define A(i, j) to be the cost of the
cheapest (least dangerous) path from the bottom to the cell (i, j). To find the value of the
best path to the top, we need to find the minimal value in the last row of the array, that is,
min1≤j≤m A(n, j).

Step 2. This is the core of the solution. We start with
the initialization. The simplest way is to set A(1, j) =
C(1, j) for 1 ≤ j ≤ m. A somewhat more elegant way
is to make an additional zero row, and set A(0, j) = 0
for 1 ≤ j ≤ m.
There are three cases to the recurrence: a cell might
be in the middle (horizontally), on the leftmost or on
the rightmost sides of the grid. Therefore, we compute
A(i, j) for 1 ≤ i ≤ n, 1 ≤ j ≤ m as follows:

A(i, j) for the above grid.

∞ 0 0 0 0 0 ∞
∞ 3 2 5 4 8 ∞
∞ 7 9 7 10 5 ∞
∞ 11 11 13 7 8 ∞
∞ 13 19 16 12 15 ∞

2



A(i, j) =


C(i, j) + min{A(i− 1, j − 1), A(i− 1, j)} if j = m

C(i, j) + min{A(i− 1, j), A(i− 1, j + 1)} if j = 1

C(i, j) + min{A(i− 1, j − 1), A(i− 1, j), A(i− 1, j + 1)} if j 6= 1 and j 6= m

We can eliminate the cases if we use some extra storage. Add two columns 0 and m + 1
and initialize them to some very large number ∞; that is, for all 0 ≤ i ≤ n set A(i, 0) =
A(i,m + 1) =∞. Then the recurrence becomes, for 1 ≤ i ≤ n, 1 ≤ j ≤ m,

A(i, j) = C(i, j) + min{A(i− 1, j − 1), A(i− 1, j), A(i− 1, j + 1)}

Step 3 . Now we need to write a program to compute the array; call the array B. Let INF
denote some very large number, so that INF > c for any c occurring in the program (for
example, make INF the sum of all costs +1).

// initialization
for j = 1 to m do

B(0, j)← 0
for i = 0 to n do

B(i, 0)← INF
B(i,m + 1)← INF

// recurrence
for i = 1 to n do

for j = 1 to m do
B(i, j)← C(i, j) + min{B(i− 1, j − 1), B(i− 1, j), B(i− 1, j + 1)}

// finding the cost of the least dangerous path
cost← INF
for j = 1 to m do

if (B(n, j) < cost) then
cost← B(n, j)

return cost

Step 4. The last step is to compute the actual path with the smallest cost. The idea is to
retrace the decisions made when computing the array. To print the cells in the correct order,
we make the program recursive. Skipping finding j such that A(n, j) = cost, the first call to
the program will be PrintOpt(n, j).

procedure PrintOpt(i,j)
if (i = 0) then return

3



else if (B(i, j) = C(i, j) + B(i− 1, j − 1)) then PrintOpt(i-1,j-1)
else if (B(i, j) = C(i, j) + B(i− 1, j)) then PrintOpt(i-1,j)
else if (B(i, j) = C(i, j) + B(i− 1, j + 1)) then PrintOpt(i-1,j+1)
end if
put “Cell “ (i, j)

end PrintOpt

4



The (General) Knapsack Problem

First, recall the Simple Knapsack Problem: We are given a sequence of nonnegative integer
weights w1, · · · , wn and a nonnegative integer capacity C, and we wish to find a subset of
the weights that adds up to as large a number as possible without exceeding C.

The general knapsack problem is as follows. Let w1, · · · , wn ∈ N be weights, let g1, · · · , gn ∈
R≥0 be profits, and let C ∈ N be a weight. For each S ⊆ {1, · · · , n} let K(S) =

∑
i∈S wi

and let P (S) =
∑

i∈S gi. (Note that K(∅) = P (∅) = 0.) We call S ⊆ {1, · · · , n} feasible if
K(S) ≤ C.
The goal is to find a feasible S so that P (S) is as large as possible.

We can view a Simple Knapsack Problem as a special case of a General Knapsack Problem,
where for every i, gi = wi.

We will use a dynamic programming algorithm.
Step 1: Describe an array of values we want to compute.
For 0 ≤ i ≤ n and 0 ≤ w ≤ C, define A(i, w) = max{P (S) |S ⊆ {1, · · · , i} and K(S) ≤ w}.

Steps 2,3,4: Exercise.

5



All pairs Shortest Path Problem

We define a directed graph to be a pair G = (V,E) where V is a set of vertices and E ⊆ V ×V
is a set of (directed) edges. Sometimes we will consider weighted graphs where associated
with each edge (i, j) is a weight (or cost) c(i, j). A (directed) path in G is a sequence of one
or more vertices v1, · · · , vm such that (vi, vi+1) ∈ E for every i, 1 ≤ i < m; we say this is a
path from v1 to vm. The cost of this path is defined to be the sum of the costs of the m− 1
edges in the path; if m = 1 (so that the path consists of a single node and no edges) then
the cost of the path is 0.

Given a directed, weighted graph, we wish to find, for every pair of vertices u and v, the cost
of a cheapest path from u to v. This should be called the “all pairs cheapest path problem”,
and that is how we will refer to it from now on, but traditionally it has been called the
“all pairs shortest path problem”. We will give the Floyd-Warshall dynamic programming
algorithm for this problem.

Let us assume that V = {1, · · ·n}, and that all edges are present in the graph. We are
given n2 costs c(i, j) ∈ R≥0 ∪ {∞} for every 1 ≤ i, j ≤ n. Note that our costs are either
nonnegative real numbers or the symbol “∞”. We don’t allow negative costs, since then
cheapest paths might not exist: there might be arbitrarily small negative-cost paths from
one vertex to another. We allow ∞ as a cost in order to denote that we really view that
edge as not existing. (We do arithmetic on ∞ in the obvious way: ∞ plus ∞ is ∞, and ∞
plus any real number is ∞.)

For 1 ≤ i, j ≤ n, define D(i, j) to be the cost of a cheapest path from i to j. Our goal is to
compute all of the values D(i, j).

Step 1: Describe an array of values we want to compute.
For 0 ≤ k ≤ n and 1 ≤ i, j ≤ n, define
A(k, i, j) = the cost of a cheapest path from i to j, from among those paths from i to j
whose intermediate nodes are all in {1, · · · , k}. (We define the intermediate nodes of the
path v1, · · · , vm to be the set {v2, · · · , vm−1}; note that if m is 1 or 2, then this set is empty.)

Note that the values we are ultimately interested in are the values A(n, i, j) for all
1 ≤ i, j ≤ n.

Step 2: Give a recurrence.

• If k = 0 and i = j, then A(k, i, j) = 0.
If k = 0 and i 6= j, then A(k, i, j) = c(i, j).

This part of the recurrence is obvious, since a path with no intermediate nodes can
only consist of 0 or 1 edge.

• If k > 0, then A(k, i, j) = min{A(k − 1, i, j), A(k − 1, i, k) + A(k − 1, k, j)}.

6



The reason this equation holds is as follows. We are interested in cheapest paths from
i to j whose intermediate vertices are all in {1, · · · , k}. Consider a cheapest such path
p. If p doesn’t contain k as an intermediate node, then p has cost A(k−1, i, j); if p does
contain k as an intermediate node, then (since costs are nonnegative) we can assume
that k occurs only once as an intermediate node on p. The subpath of p from i to k
must have cost A(k−1, i, k) and the subpath from k to j must have cost A(k−1, k, j),
so the cost of p is A(k − 1, i, k) + A(k − 1, k, j).

We leave it as an exercise to give a more rigorous proof of this recurrence along the lines of
the proof given for the problem of scheduling with deadlines, profits and durations.

Step 3: Give a high-level program.
We could compute the values we want using a 3-dimensional array B[0..n, 1..n, 1..n] in a very
straightforward way. However, it suffices to use a 2-dimensional array B[1..n, 1..n]; the idea
is that after k executions of the body of the for-loop, B[i, j] will equal A(k, i, j). We will
also use an array B′[1..n, 1..n] that will be useful when we want to compute cheapest paths
(rather than just costs of cheapest paths) in Step 4.

All Pairs CP
for i : 1..n do

B[i, i]← 0
B′[i, i]← 0
for j : 1..n such that j 6= i do

B[i, j]← C(i, j)
B′[i, j]← 0

end for
end for

for k : 1..n do
for i : 1..n do

for j : 1..n do
if B[i, k] + B[k, j] < B[i, j] then
B[i, j]← B[i, k] + B[k, j]
B′[i, j]← k

end if
end for

end for
end for

We want to prove the following lemma about this program.

7



Lemma: For every k, i, j such that 0 ≤ k ≤ n and 1 ≤ i, j ≤ n, after the kth execution of
the body of the for-loop the following hold:

• B[i, j] = A(k, i, j)

• B′[i, j] is the smallest number such that there exists a path p from i to j all of whose
intermediate vertices are in {1, · · · , B′[i, j]}, such that the cost of p is A(k, i, j). (Note
that this implies that B′[i, j] ≤ k).

Proof: We prove this by induction on k. The base case is easy. To see why the induction step
holds for the first part, we only have to worry about the fact that when we are computing the
kth version of B[i, j], some elements of B have already been updated. That is, B[i, k] might
be equal to A(k − 1, i, k), or it might have already been updated to be equal to A(k, i, k)
(and similarly for B[k, j]); however this doesn’t matter, since A(k− 1, i, k) = A(k, i, k). The
rest of the details, including the part of the induction step for the second part of the Lemma,
are left as an exercise. �

This Lemma implies that when the program has finished running, B′[i, j] is the smallest
number such that there exists a path p from i to j all of whose intermediate vertices are in
{1, · · · , B′[i, j]}, such that the cost of p is D(i, j).

Step 4: Compute an optimal solution.
For this problem, computing an optimal solution can mean one of two different things. One
possibility is that we want to print out a cheapest path from i to j, for every pair of vertices
(i, j). Another possibility is that after computing B and B′, we will be given an arbitrary
pair (i, j), and we will want to compute a cheapest path from i to j as quickly as possible;
this is the situation we are interested in here.

Assume we have already computed the arrays B and B′; we are now given a pair of vertices i
and j, and we want to print out the edges in some cheapest path from i to j. If i = j then we
don’t print out anything; otherwise we will call PrintOpt(i, j). The call PrintOpt(i, j)
will satisfy the following Precondition/Postcondition pair:
Precondition: 1 ≤ i, j ≤ n and i 6= j.
Postcondition The edges of a path p have been printed out such that p is a path from i to
j, and such that all the intermediate vertices of p are in {1, · · · , B′[i, j]}, and such that no
vertex occurs more than once in p. (Note that this holds even if there are edges of 0 cost in
the graph.)

The full program (assuming we have already computed the correct values into B′) is as
follows:

procedure PrintOpt(i, j)
k ← B′[i, j]

8



if k = 0 then
put “edge from”,i,“to”,j

else
PrintOpt(i, k)
PrintOpt(k, j)

end if
end PrintOpt

if i 6= j then PrintOpt(i, j) end if

Exercise:
Prove that the call PrintOpt(i, j) satisfies the above Precondition/Postcondition pair.
Prove that if i 6= j, then PrintOpt(i, j) runs in time linear in the number of edges printed
out; conclude that the whole program in Step 4 runs in time O(n).

Analysis of the Running Time
The program in Step 3 clearly runs in time O(n3), and the Exercise tells us that the program
in Step 4 runs in time O(n). So the total time is O(n3). We can view the size of the input
as n – the number of vertices, or as n2 – an upper bound on the number of edges. In any
case, this is clearly a polynomial-time algorithm. (Note that if in Step 4 we want to print
out cheapest paths for all pairs i, j, this would still take just time O(n3).)

Remark: The recurrence in Step 2 is actually not as obvious as it might at first appear.
It is instructive to consider a slightly different problem, where we want to find the cost of
a longest (that is, most expensive) path between every pair of vertices. Let us assume that
there is an edge between every pair of vertices, with a cost that is a real number. The notion
of longest path is still not well defined, since if there is a cycle with positive cost, then there
will be arbitrarily costly paths between every pair of points. It does make sense, however, to
ask for the length of a longest simple path between every pair of points. (A simple path is
one on which no vertex repeats.) So define D(i, j) to be the cost of a most expensive simple
path from i to j. Define A(k, i, j) to be the cost of a most expensive path from i to j from
among those whose intermediate vertices are in {1, 2, . . . , k}. Then it is not necessarily true
that A(k, i, j) = max{A(k − 1, i, j), A(k − 1, i, k) + A(k − 1, k, j)}. Do you see why?

9



Longest Common Subsequence

The input consists of two sequences ~x = x1, . . . , xn and ~y = y1, . . . , ym. The goal is to find a
longest common subsequence of ~x and ~y, that is a sequence z1, . . . , zk that is a subsequence
both of ~x and of ~y. Note that a subsequence is not always substring : if ~z is a subsequence
of ~x, and zi = xj and zi+1 = xj′ , then the only requirement is that j′ > j, whereas for a
substring it would have to be j′ = j + 1.

For example, let ~x and ~y be two DNA strings ~x = TGACTA and ~y = GTGCATG; n = 6
and m = 7. Then one common subsequence would be GTA. However, it is not the longest
possible common subsequence: there are common subsequences TGCA, TGAT and TGCT
of length 4.

To solve the problem, we notice that if x1 . . . xi and y1 . . . yj are prefixes of ~x and ~y re-
spectively, and xi = yj, then the length of the longest common subsequence of x1 . . . xi

and y1 . . . yj is one plus the length of the longest common subsequence of x1 . . . xi−1 and
y1 . . . yj−1.

Step 1. We define an array to hold partial solution to the problem. For 0 ≤ i ≤ n and
0 ≤ j ≤ m, A(i, j) is the length of the longest common subsequence of x1 . . . xi and y1 . . . yj.
After the array is computed, A(n,m) will hold the length of the longest common subsequence
of ~x and ~y.

Step 2. At this step we initialize the array and give the recurrence to compute it.

For the initialization part, we say that if one of
the two (prefixes of) sequences is empty, then
the length of the longest common subsequence is
0. That is, for 0 ≤ i ≤ n and 0 ≤ j ≤ m,
A(i, 0) = A(0, j) = 0.
The recurrence has two cases. The first is when the
last element in both subsequences is the same; then
we count that element as part of the subsequence.
The second case is when they are different; then
we pick the largest common sequence so far, which
would not have either xi or yj in it. So, for 1 ≤ i ≤
n and 1 ≤ j ≤ m,

A(i, j) for the above example.

∅ G T G C A T G

∅ 0 0 0 0 0 0 0 0
T 0 0 1 1 1 1 1 1
G 0 1 1 2 2 2 2 2
A 0 1 1 2 2 3 3 3
C 0 1 1 2 3 3 3 3
T 0 1 2 2 3 3 4 4
A 0 1 2 2 3 4 4 4

A(i, j) =

{
A(i− 1, j − 1) + 1 if xi = yj

max{A(i− 1, j), A(i, j − 1)} if xi 6= yj

Step 3. Skipped.

Step 4. As before, just retrace the decisions.

10



Longest Increasing Subsequence

Now let us consider a simpler version of the LCS problem. This time, our input is only one
sequence of distinct integers ~a = a1, a2, . . . , an., and we want to find the longest increasing
subsequence in it. For example, if ~a = 7, 3, 8, 4, 2, 6, the longest increasing subsequence of ~a
is 3, 4, 6.

The easiest approach is to sort elements of ~a in increasing order, and apply the LCS algorithm
to the original and sorted sequences. However, if you look at the resulting array you would
notice that many values are the same, and the array looks very repetitive. This suggest that
the LIS (longest increasing subsequence) problem can be done with dynamic programming
algorithm using only one-dimensional array.

Step 1: Describe an array of values we want to compute.
For 1 ≤ i ≤ n, let A(i) be the length of a longest increasing sequence of ~a that end with ai.
Note that the length we are ultimately interested in is max{A(i) | 1 ≤ i ≤ n}.

Step 2: Give a recurrence.
For 1 ≤ i ≤ n,
A(i) = 1 + max{A(j) | 1 ≤ j < i and aj < ai}.
(We assume max ∅ = 0.)
We leave it as an exercise to explain why, or to
prove that, this recurrence is true.
Step 3: Give a high-level program to compute the
values of A.
This is left as an exercise. It is not hard to design
this program so that it runs in time O(n2). (In fact,
using a more fancy data structure, it is possible to
do this in time O(n log n).)

LCS and LIS arrays for the example

A(i,j) ∅ 7 3 8 4 2 6

∅ 0 0 0 0 0 0 0
2 0 0 0 0 0 1 1
3 0 0 1 1 1 1 1
4 0 0 1 1 2 2 2
6 0 0 1 1 2 2 3
7 0 1 1 1 2 2 3
8 0 1 1 2 2 2 3

A(i) 1 1 2 2 1 3

Step 4: Compute an optimal solution.
The following program uses A to compute an optimal solution. The first part computes a
value m such that A(m) is the length of an optimal increasing subsequence of ~a. The second
part computes an optimal increasing subsequence, but for convenience we print it out in
reverse order. This program runs in time O(n), so the entire algorithm runs in time O(n2).

11



m← 1
for i : 2..n

if A(i) > A(m) then
m← i

end if
end for

put am
while A(m) > 1 do

i← m− 1
while not(ai < am and A(i) = A(m)− 1) do

i← i− 1
end while
m← i
put am

end while

Dynamic Programming Summary:

• An algorithm follows the “bottom-up” approach, and it is based on a recurrence for
filling in an array (or arrays). The array usually contains the value of an optimal
solution.

• The correctness of the algorithm relies on the correctness of the recurrence, which in
turn relies on the “principle of optimality” (and is usually proved by case analysis).

• Usually, we can get not just the value of an optimal solution, but also an optimal
solution itself (sometimes, may need to use an additional array for that).

12


