
CMPT 307 - Data Structures and Algorithms:
Problem Set 2

1. Unique MST. Prove that if an undirected connected graph G = (V,E) has distinct
weights c(e) ≥ 0 on its edges e ∈ E, then it has exactly one Minimum Spanning Tree.
For your proof, use the correctness analysis of Kruskal’s or Prim’s algorithm.

2. Dijkstra vs. Prim. As you may have noticed, Dijkstra’s and Prim’s algorithms are
very similar. In this question, you will explore their similarities and differences.

(a) Show that running Dijkstra’s algorithm on an undirected, connected graph G
(with non-negative edge costs) will produce a spanning tree of G.

(b) Prove or give a counter-example to the following statement: A tree produced by
Dijkstra’s algorithm on a given (undirected, connected, weighted) graph G is a
Minimum Spanning Tree.

3. Greedy hiker. Consider the Knapsack Problem: Given positive integer weights
w1, w2, . . . , wn and a positive integer W (all in binary), find a subset S ⊆ {1, 2, . . . , n}
such that

∑
i∈S wi is maximized, subject to the constraint that

∑
i∈S wi ≤ W .

A greedy algorithm for this problem is: Sort all weights wi’s from heaviest to lightest.
Go through them one by one, adding wi to the knapsack, if the resulting total weight
of the knapsack is at most W .

(a) Show that this greedy algorithm is not correct in general. That is, given an
example of an instance (w1, . . . , wn,W ) where the greedy algorithm fails to finds
an optimal solution.

(b) Consider the special case of the problem, wher the weights wi are distinct powers
of 2, i.e., each wi = 2ti , for some nonnegative integer ti. Prove that the greedy
algorithm is correct in this special case. (Your proof of correctness should argue by
induction that every partial solution produced by the algorithm can be extended
to a global optimal solution.)

4. Largest Independent Set in a Forest Consider the following problem.
Given: A forest F = (V,E) (i.e., a collection of unconnected trees).

1



Find: A largest independent set for F (i.e., a largest subset S ⊆ V of vertices of F
such that no two vertices in S are connected by an edge in F ).

Consider the following greedy algorithm that attempts to solve this problem.

Algorithm GreedyForest(F = (V,E))
S ← ∅; % initially our independent set S is empty
while V 6= ∅

find any leaf v ∈ V in the forest F; % i.e., find v ∈ V of degree ≤ 1
S ← S ∪ {v};
remove v and any neighbor w of v from V ;

endwhile
return S

(a) Assuming that a forest is given by the adjacency lists, analyze the running time of
the algorithm GreedyForest using the order notation. (Try to find the fastest
implementation for the algorithm, perhaps using an appropriate data structure
to speed up finding a leaf in the body of the while-loop.)

(b) Decide if the algorithm GreedyForest is correct. That is, either construct an
example of the forest where this algorithm fails to find a largest independent set,
or give a proof that this algorithm always succeeds in finding a largest independent
set in any given forest.

5. Circular interval scheduling. Consider the clock face, labeled by hours (from 0
to 24). You are given n circular segments (intervals on the circle), with ith segment
having a start time si and finish time fi, and occupying the segment of the circle from
time si to fi going clockwise. For example, you may have a segment from 1 to 4 (on
the clock face), or a segement from 22 to 2 (which you can think of as going from 10pm
to 2am).

Given n circular intervals (s1, f1), . . . , (sn, fn), find a maximum size collection S of
intervals (schedule) such that no two intervals in S overlap. (As for the problem of
interval scheduling considered in class, we assume that the intervals are open, so two
intervals sharing endpoints only are not overlapping; thus, e.g., it’s OK to put (1, 17)
and (17, 1) into the same schedule.) Give a poly(n)-time algorithm for this problem.

6. Recurrences Give asymptotic upper and lower bounds for T (n) in each of the follow-
ing recurrences. Assume that T (n) is constant for n ≤ 2. Make your bounds as tight
as possible, and justify your answers:

(a) T (n) = 2T (n/2) + n3.

(b) T (n) = 16T (n/4) + n2.

(c) T (n) = T (n− 1) + n.

(d) T (n) = T (
√
n) + 1.

(e) T (n) =
√
nT (
√
n) + n.

2


