
CMPT 307 - Data Structures and Algorithms:
Problem Set 1

Reminder: The homework assignment will not be collected and graded. However, the
quiz given in class will be based on the material covered in the homework. If you solve the
homework, you should be well-prepared for the quiz. You’ll be able to check your solutions
against the ones posted on the course webpage a week before the quiz.

1. Asymptotics Rank the following functions by order of growth; that is, arrange the
following 7 functions g1, . . . , g7 so that g1 = O(g2), g2 = O(g3), . . . , g6 = O(g7). Here
are the functions: 2

√
logn, 2n, n4/3, n(log n)3, nlogn, 22n , 2n2

.

2. Stable matchings There are m hospitals, each with a certain number of available
positions. There are n medical students looking for a position at a hospital. Each
hospital has its ranking of the students in order of preference, and each student has
the ranking of the hospitals in order of preference. Let us assume that the number n
of students is greater than the total number of available positions (in all hospitals).

We want an assignment where each student is assigned to at most one hospital so that
all available positions in all hospitals are filled. Of course, since there are more students
than positions, some students will end up without a position.

We say that an assignment is stable if no instability of the following two types exists:

• There is a hospital h and students s and s′ so that: s is assigned to h; s′ is not
assigned to any hospital; and h prefers s′ to s.

• There are hospitals h and h′, and students s and s′ so that: s is assigned to h; s′

is assigned to h′; h prefers s′ to s; and s′ prefers h to h′.

Show that there is always a stable assignment of students to hospitals, and give an
efficient algorithm to find one.

3. Stable marriage There are n men named 1, 2, . . . , n, and n women named 1′, 2′, . . . , n′.
Suppose that all n men have the same preference list of women: 1′, 2′, . . . , n′, but women
may have different preference lists of men. Prove that in this case there is only one
stable matching. Describe this stable matching.

1

4. A binary tree is a rooted tree in which each node has at most two children. Show by
induction that in any binary tree the number of nodes with two children is exactly one
less than the number of leaves.

5. Let G = (V,E) be a connected graph, and let u ∈ V be some vertex. Suppose we
compute a DFS tree rooted at u, and obtain T that includes all nodes of G. Suppose
then we compute a BFS tree rooted at u, and obtain the same tree T . Show that in
this case G = T (i.e., the graph G cannot contain any edges that are not in T).

6. Counting shortest paths. Write an algorithm for the following problem: Given an
undirected graph G = (V,E), and two nodes s, t ∈ V , find the number of shortest
paths from s to t in G. (The algorithm should not list all the paths, but rather just
compute the number of such paths.)

The running time of your algorithm should be linear in the graph representation, i.e.,
O(|V | + |E|). (Write an algorithm in pseudocode, argue its correctness, and analyze
its running time.)

7. Topological ordering The algorithm for topological ordering of a given DAG that
we saw in class repeatedly finds a node with no incoming edges and deletes it. It works
if the input graph is indeed a DAG.

But now suppose that the input graph may or may not be a DAG. Extend the topolog-
ical ordering algorithm so that, given an input graph G, it outputs one of two things:
(a) a topological ordering, thus establishing that G is a DAG; or (b) a cycle in G, thus
establishing that G is not a DAG.

The running time of your algorithm should be O(m + n) for directed graphs with n
nodes and m edges.

8. Building Min-Heaps Give a O(n) time algorithm for building a Min-Heap, given an
array of n numbers as input. (You need to present an algorithm in pseudo-code (as
we do in class), prove that your algorithm is correct, and analyze its running time,
proving that the algorithm always terminates within O(n) steps.)

2

