Decidability & Semi-Decidability for NTMs

Computation tree on input x

Configuration:
- Next state of Q
- The contents of all tapes
- Positions of tape head on all tapes

Computation of a TM on input x: a sequence of configurations
$c_1 \rightarrow c_2 \rightarrow c_3 \rightarrow \ldots \rightarrow c_t \rightarrow \ldots$

where
c_1 = initial config.
$c_i \rightarrow c_{i+1}$ follows from c_i using S of TM.

L is decidable by an NTM M if
$\forall x \in L \Rightarrow M$ on x accepts
(on some branch)
∀ x ∈ L \Rightarrow M\text{ on } x\text{ accepts (on some branch)}

∀ x \notin L \Rightarrow M\text{ on } x\text{ rejects on all branches} \cup \text{halt (semi)}

Claim: \text{L decidable by an NTM} \quad \iff \quad \text{L decidable by a DTM.}

\text{BFS-style exploration & check if all leaves are rejects.}

\text{L is semi-decidable by an NTM } M \text{ if}

∀ x ∈ L \Rightarrow M\text{ on } x\text{ accepts (on some branch)}

∀ x \notin L \Rightarrow M\text{ on } x\text{ does not accept (could be inf. branches)} \cup \text{halt (semi)}

\text{NTM decidability} \equiv \text{L (semi)
\[\text{DTM (semidecidable)} \]

Claim: \(L \) semi-decidable
\[\Rightarrow \quad L = \text{poly}^{-1} - L \quad \text{semi-decidable} \]
\[\Rightarrow \quad L \quad \text{decidable.} \]

\[\begin{array}{c}
X \\
\Rightarrow \\
\rightarrow \\
\text{TA}_L \\
\downarrow \\
\rightarrow \\
\text{A}_L \\
\rightarrow \\
\text{Yes} \\
\end{array} \quad \begin{array}{c}
\text{Yes} \quad \text{(x \in L)} \\
\text{No} \quad \text{(x \notin L)} \\
\end{array} \]

Cor.: \(\overline{A}_{TM} \) is not semi-decidable.

Pf.: \(A_{TM} \) is semi-decidable.
\[= \{ \langle M, w \rangle \mid TM \text{ accepts } w \} \]

On the other hand, we know
\[A_{TM} \text{ is not decidable.} \]

Thus, (1) The class of decidable lang's
is closed under complementation.
(2) The class of semi-decidable lang's
(2) The class of semi-decidable lang's is NOT closed under complement.

Proof:
(1) \(q_{acc} \leftrightarrow q_{reg} \) \(\checkmark \)
(2) \(A_{TM} \) \(\checkmark \) \(\Box \)

Examples of undecidable problems

\[
E_{TM} = \{ \langle M \rangle \mid L(M) = \emptyset \}
\]

is undecidable.

Proof: Suppose \(E_{TM} \) is decidable.
Then can decide \(A_{TM} \).

\[<M, w> \]

1. Construct \(M' \): "On input \(x \), simulate \(M \) on \(w \).
 If \(M \) acc \(w \), then accept."

2. Check if \(\langle M' \rangle \notin E_{TM} \)

\((1) \) \(M \) acc \(w \) \(\Rightarrow \) \(L(M') = \Sigma^* \neq \emptyset \)

\((2) \) \(M \) not acc \(w \) \(\Rightarrow \) \(L(M') = \emptyset \)

...
\[\text{ALL}_{TM} = \{ \langle M \rangle \mid L(M) = \Sigma^+ \} \]
is undecidable.

\[\text{EQ}_{TM} = \{ \langle M_1, M_2 \rangle \mid L(M_1) = L(M_2) \} \]
is undecidable.

Proof: Suppose \(\text{EQ}_{TM} \) is decidable.

Then \(\text{E}_{TM} \) is decidable.

1. Define \(M_{\phi} \): "Reject"

2. \(\langle M, M_{\phi} \rangle \in \text{EQ}_{TM} \)

\(\text{E}_{TM} \)-decider