Lecture 16 Monday, June 17, 2019 12:15 PM Last time: Gödel's Incompletiness Trearen
"Any (powerful enough) proof System
Last time: Godel's Incompleteness Theorem "Any (powerful enough) proof system for arithmetic cannot be both sound and complete."
We used a computability-based proof. Provable = $5 < 97$ 9 is provable in a 3 given proof system }
True = {24> q is true over IN }
Claim 1: Provable is semi-decidable.
Claim 2: True is not semi-decidable.
Hence, Provable + True.
Hence, Provable & True. So, for any sound proof system P, we have
We have True True provable
True provable
Provable
Today Coother wood of the
Today: another proof of the

Incompletiness Theorem. We'll construct an explicit true but not provable a vithmetic sentence G = "G is not provable in P" "I am not provable Suppose we have such a sentence Gr. Case 1: Gris false. =>

Case 1: Gris provable in P =>

P proves a false sentence => P not sound. Case 2! Gis true. G 1s not provable in P =>
P doesn't prove a true sentence G So, if P is Sound, then
P is incomplete (can't prove G).

Gödel numbers Every arithmetic formula (sequence of formulas) is assigned a unique number $\varphi(A)$. Yual role of numbers (1) a number n is just a number n (an input for a formula A(x))

So can have sentences A (n)

that could talk about other formulas (with Go'del number 4),

formulas (with Godel number 4), and, in particular, could talk about themselves (self-reference). $\sum_{proof} (n, m) = \begin{cases} 1 & \text{if } n \text{ is a proof} \\ 0 & \text{o. w.} \end{cases}$ This for is computable. As we've seen before, TMs > asithm. formulas
Simulating these TMs Hence Jar. Jornala Proof (x,y) K 9,6 EN Proof $(a_1b) \equiv T$ iff

Softne
Thun
$$(b) \equiv J \times Prod(x,b)$$

Want: $G \equiv 7 \text{ Thun } (n)$
where n is $\varphi(G)$.

 $7 \text{ Thun } (x)$
 $2 \text{ Thun } (x)$

Thun $(x) \neq 2 \text{ Thun } (x)$

Softne
Sub $(m, n) = j$

Where

Where j= y (A (m)) is Computable! Henre, Jan. Jarnula Sub ([m],[m]) = [j] iff sub(m,n) = j SUB(cm3,cn3,cin3,cij3) $= T \iff sub(m,n) = j$ Define

Lecture_16 Page 6

Define = 7 Thm (Sub(x,x)) I. A(x) $n_0 = \emptyset \left(A(X) \right)$ be the G number
of A(X). 2. Let 3 Seffre $G \equiv A([n, 3))$ = 7 Thm (Sub ([n.],[no])) A(x) y_0 $m_0 = \frac{9nb(n_0, n_0)}{m_0} \left(A(k_0)\right)$ $= 4(k_0)$

Gödels 2 nd Incompleteness Thm

"He proof system P for arithmetic (powerful enough*)

If is consistent (doesn't prove contradictions),

then P cannot prove

its own consistency."