Gödel’s Second Incompleteness Theorem

Set (consistency): A proof system \(\mathcal{P} \) is consistent if \(\mathcal{P} \) doesn’t prove (derive) both \(A \) and \(\neg A \) for some \(A \).

A proof system \(\mathcal{P} \) for arithmetic is consistent if \(\mathcal{P} \) doesn’t prove "1=2" (\(\mathcal{P} \) will prove "1≠2" from the Peano arithmetic axioms).

\[
\text{Cons} \quad \equiv \quad " \ (1=2) \text{ is not provable in } \mathcal{P} "
\]

\(\mathcal{P} \)

\[\uparrow\]

an arithmetic formula expressing that \(\mathcal{P} \) is consistent.

(We’ve seen before that provability in \(\mathcal{P} \) can be expressed by an arithmetic formula.)

\[\text{Consistent} \quad \frac{\text{syntactic}}{\text{semantic}} \quad \text{Sound} \quad \frac{\text{syntactic}}{\text{semantic}} \]

\[\text{Sound} \quad \frac{\text{syntactic}}{\text{semantic}} \]

\[\text{Not Sound} \quad \frac{\text{syntactic}}{\text{semantic}} \]

\[\text{Not Consistent} \quad \frac{\text{syntactic}}{\text{semantic}} \]
Syntax

\[\text{Cons}_S \equiv \neg \exists S \vdash "1=2" \]

... doesn't prove (derive)

Semantics

\[\forall \psi [(S \vdash \psi) \Rightarrow \text{True}(\psi)] \]

there is no ar. formula expressing the truth [Tarski's Thm (see later)]

Theorem (Gödel's 2nd Incompleteness)

Fix any proof system S powerful enough to reason about $+,\times$ & also satisfying some provability conditions.

If S is consistent, then

\[S \not\vdash \text{Cons}_S \]

(i.e., S cannot prove its own consistency)

Claim: If S is consistent, then

\[G \equiv " I'm not provable in $S" \]

(considered last time)
is not provable in \mathcal{P}.

Proof:
Let $g = \varphi(g)$ (the Gödel number of g)

Then

$$g \equiv \neg \exists x \text{ Proof}(x, [g])$$

Suppose g is provable in \mathcal{P}, i.e., $\mathcal{P} \vdash g$.

Then $\exists m \in \mathbb{N}$ s.t.

$$\text{Proof}(\left[m \right], [g])$$

is true (over \mathbb{N}).

By provability assumptions on \mathcal{P}, we get

$$\mathcal{P} \vdash \text{Proof}(\left[m \right], [g])$$

(intuitively, \exists an algorithm to check if $\text{Proof}(a,b)$ is True, for any given input numbers $a,b \in \mathbb{N}$.
\mathcal{P} can simulate this algorithm on $\left[m \right]$ and $[g]$.)
on Lmod and Lg

Then we get that

\[\exists x \text{ Proof}(x, \mathcal{L}_g) \]

\[\Downarrow \]

\[\forall \mathcal{L}_g \]

So, \[\forall \mathcal{L}_g \]

But (earlier we assumed also) \[\exists \mathcal{L}_g \]

\[\Downarrow \]

\[\forall \mathcal{L}_g (\mathcal{L}_g \land \neg \mathcal{L}_g) \]

\[\Rightarrow \]

\[\forall \mathcal{L}_g \quad "1 = 2" \]

Thus, \(\forall \mathcal{L}_g \) is inconsistent.

We conclude: \(\text{Cons} \mathcal{L}_g \rightarrow \mathcal{L}_g \)

is a true implication.
Proof of Gödel's Theorem:

The proof of claim above can be formalized within \mathcal{P} itself!

So,

$$\mathcal{P} \vdash (\text{Cons}_\mathcal{P} \rightarrow \mathcal{G})$$

Suppose $\mathcal{P} \vdash \text{Cons}_\mathcal{P}$

Then

$$\mathcal{P} \vdash \mathcal{G}$$

Moreover (by provability assumptions on \mathcal{P})

$$\mathcal{P} \vdash "\mathcal{P} \vdash \mathcal{G}"$$

$$\mathcal{P} \vdash \mathcal{G}$$
But then $\Phi \vdash \phi \land \neg \phi$, so Φ is inconsistent. Hence, consistent Φ cannot prove $\neg \neg \Phi$. \[\square\]

Computability

1. \exists undecidable problems (non-constructive)

2. Example \exists hard language (not semi-dec.)

3. Natural problems like Halting that are hard.

Logic

1. A sound Φ

2. Example \exists is true but not provable in any sound Φ.

3. Cons Φ is true but not provable in consistent Φ.

4. O ...
4. Recursion Theorem

Thm ("Recursion theorem for ar. formulas")

Let $A(x)$ be any ar. formula. Then \exists ar. sentence B s.t.

$$B = A([n_0])$$

where $n_0 = \gamma(B)$ is the Gödel number of B.

Proof: Using sub (Sub)

$$C(x) := A(Sub(x,x))$$

Let $a = \gamma(C(x))$.

Define $B = C([Ca])$.
Define \(B = C(L_{aJ}) \)

\[\equiv A \left(\text{Sub}([a], [a]) \right) \]

\[\forall (B) = \text{sub}([a], [a]) \forall (B) \]

Tarski’s Thm: There is no ar. formula \(\text{Truth}(x) \)

s.t.

\(\forall n \)

\(\text{Truth}([n]) \) holds if

sentence \([n] \) is true over \(\mathbb{N} \).

Proof: Suppose \(\text{Truth}(x) \) has ar. form.

\[A(x) = \neg \text{Truth}(x) \]

By Rec. Thm for Ar. Form’s.
\[f' \]
\[B = ? \text{Truth}(\phi(B)) \]
\[= "I am false" \]