Last time: TQBF is PSPACE-complete.

$L = \text{class of logspace-computable languages}$

$NL = \text{class of nondeterministic logspace-computable languages}$

Complete problems:

1. undirected st-CONN: Given an undirected graph $G = (V, E)$, & nodes $s, t \in V$, decide if t is reachable from s.

Theorem: Undirected st-CONN is
L-complete under FO-reductions.

(2) directed st-CONN: given a directed graph \(G=(V,E) \), & nodes \(s,t \in V \), decide if \(t \) is reachable from \(s \).

Theorem: Directed st-CONN is NL-complete under logspace-reductions.

Open Question: \(L = NL \) ?
Is there a logspace algorithm for directed graph reachability?

\[
NL = co\ NL
\]

\(co\ NL \) = the complement of \(NL \)

\(co\ NL \)-complete problem: directed st- UNREACH (given a digraph \(G=(V,E) \), \(s,t \in V \), decide if \(t \) is not reachable from \(s \)).
t is not reachable from s.

Theorem [Immmerman–Szelepsényi]:

Directed st-UNREACH ∈ NL.

Hence, coNL = NL.

(was open since 1964. Proved in 1987.)

Proof Sketch:

Imagine we know

\[N = \# \text{ nodes reachable from } s \]

G has n nodes

\[N \leq n \]

uses \(O(\log n) \) bits to write down.
Algo Unreach (G, s, t)
%%% given N = # nodes reachable from s

\[
\begin{array}{cccccc}
V_1 & V_2 & V_3 & \ldots & V_n \\
\text{Yes} & \text{Yes} & \text{No} & \ldots & \text{No}
\end{array}
\]

nondet. guesses : if the node is reachable from s

The number \(N = \# \text{nodes reachable from } s \) can be computed in \(NL \), iteratively.

\[
N_i = \# \text{nodes reachable from } s \text{ in } \leq i \text{ steps}
\]
in at most c steps

\[N_0 = 1, \quad N_n = N. \]

From N_i, can compute N_{i+1}, using the approach of Alg. Unreach above.

Randomization

\[L \leq RL \leq NL \]

undirected

st.~CONN

Random walk for $O(n^3)$ steps from S will likely see t, if t is reachable from S.
P \leq \text{ RP } \leq \text{ NP}