Last time:
- Interactive Proofs (IP)
- Graph Non-Isomorphism ∈ IP

Def: A problem $L \in IP$ if there exists a randomized polytime verifier V such that:

1. For all $x \in \{0,1\}^*$, if $x \in L$ then there exists a prover P such that $\Pr_P \left[V^p(x) \text{ accepts} \right] = 1$.
2. For all $x \notin L$, for all provers P, $\Pr_P \left[V^p(x) \text{ accepts} \right] \leq \frac{1}{3}$.

Here, $V^p(x)$ means:

V and P have poly(n)-many rounds of communication, at the end of which V makes a decision (to accept or reject).
\[y^+ \rightarrow V \text{ makes the decision (based on } x, y_1, z_1, \ldots, y_t) \]

Thm: \(\text{PSPACE} = \text{IP} \)

\[\text{MIP} = \text{multiple provers IP} \]

\[P_1 \xleftarrow{X} V \xrightarrow{X} P_2 \]

\(V \text{ makes the decision} \)

Thm: \(\text{NEXP} = \text{MIP} \) (with 2 provers).

Nondeterministic Exponential Time \((\text{exponential-time version of NP}) \)

PCP Theorem
PCP Theorem: \(\text{NP} = \text{PCP} \)

\[\forall L \in \text{NP} \exists \text{ verifier } V \text{ such that} \]
- \(V \) is randomized polytime algo
- \(V \) reads a constant number of symbols in a given "proof"

and such that, \(\forall x \in \{0,1\}^n \)
- \(x \in L \Rightarrow \exists \pi \in \{0,1\}^n, \text{poly}(n), \Pr[V \pi(x) \text{ accepts}] \geq \frac{2}{3} \)
- \(x \notin L \Rightarrow \forall \pi \in \{0,1\}^n, \text{poly}(n), \Pr[V \pi(x) \text{ accepts}] \leq \frac{1}{3} \).

PCP Theorem has applications to Hardness of Approximation.

For many \(\text{NP} \)-hard optimization problems,
For many NP-hard optimization problems, not only are they NP-hard to solve optimally, but also NP-hard to solve approximately (to some factor of approximation).

Time/Space Hierarchy Theorems

\[\text{Time}(T(n)) \nRightarrow \text{Time}(t(n)) \]

\[\& \text{Space}(T(n)) \nRightarrow \text{Space}(t(n)) \]

E.g., In

\[\text{Time}(n^3) \nRightarrow \text{Time}(n^2) \]

\[\text{Space}(n^2) \nRightarrow \text{Space}(n^{1.5}) \]

Time/Space Hierarchy Theorems are proved using diagonalization arguments.

Application:

\[L \subseteq NL \subseteq P \subseteq NP \subseteq PSPACE \]
\[L \subseteq NL \subseteq P \subseteq NP \subseteq PSPACE \]

at least one inclusion must be strict

Proof: Otherwise, \(L = PSPACE \), but, by Space Hierarchy Theorem,
\[L = \text{Space} \left(\log n \right) \neq \text{Space} \left(n \right) \subseteq PSPACE. \]

Course Review

Computability & Logic

- Finite Automata \(\Delta FA \equiv NFA \equiv \text{Reg. Express.} \)
 - Pumping Lemma

- Turing machines \(TM \equiv \text{“algorithm”} \)
 - \(k \)-tape, \(k \)-head, etc.
 - \(\Delta TM \equiv NTM \equiv \text{semi-decidable lang.} \)
 - decidable \(\neq \text{semi-decidable} \)
 - lower bounds: diagonalization + reductions
 - self-reference: Recursion Theorem,
 - Gödel's Incompleteness
 - application: Kolmogorov complexity
Complexity

"scale down": decidable \rightarrow P
semi-decidable \rightarrow NP

$P = NP$???

- NP-completeness (tons of natural NP-complete problems)

- Space: $\text{NPSPACE} = \text{PSPACE}$
 $\text{NL} = \text{coNL}$

- Randomized Computation: $\text{RP}, \text{BPP}, \text{ZPP}$
- Interactive Proofs: $\text{IP}, \text{PCP Theorem}$

- lower bounds: Time/Space Hierarchy