1 Polytime mapping-reductions

We say that A is \emph{polytime reducible} to B if there is a polytime computable function f (a reduction) such that, for every string x, $x \in A$ iff $f(x) \in B$. We use the notation "$A \leq_p B$." (This is the same as a notion of mapping reduction from Computability we saw earlier, with the only change being that the reduction f be \emph{polytime} computable.)

It is easy to see

\textbf{Theorem 1.} If $A \leq_p B$ and $B \in P$, then $A \in P$.

2 \mathbf{NP}-completeness

2.1 Definitions

A language B is \mathbf{NP}-\emph{complete} if

1. B is in \mathbf{NP}, and
2. every language A in \mathbf{NP} is polytime reducible to B (i.e., $A \leq_p B$).

In words, an \mathbf{NP}-complete problem is the “hardest” problem in the class \mathbf{NP}.

It is easy to see the following:

\textbf{Theorem 2.} If B is \mathbf{NP}-complete and $B \in P$, then $\mathbf{NP} = P$.

It is also possible to show (Exercise!) that

\textbf{Theorem 3.} If B is \mathbf{NP}-complete and $B \leq_p C$ for some C in \mathbf{NP}, then C is \mathbf{NP}-complete.

2.2 “Trivial” \mathbf{NP}-complete problem

The following “scaled down version of A_{NTM}” is \mathbf{NP}-complete.

$$A^p_{\text{NTM}} = \{\langle M, w, 1^t \rangle \mid \text{NTM } M \text{ accepts } w \text{ within } t \text{ steps}\}$$

\textbf{Theorem 4.} The language A^p_{NTM} defined above is \mathbf{NP}-complete.
Proof. First, \(A^{P}_{NTM} \) is in \(NP \), as we can always simulate a given nondeterministic TM \(M \) on a given input \(w \) for \(t \) steps, so that our simulation takes time \(poly(|\langle M \rangle|, |w|, t) \) (polynomial in the input size).

To argue that every language \(L \in NP \) reduces to \(A^{P}_{NTM} \), we take an NTM \(M \) deciding \(L \) in time \(n^c \), for some constant \(c > 0 \). We have that \(x \in L \) iff \(M \) accepts \(x \) within \(|x|^c \) steps. Thus, \(x \in L \) iff \(\langle M, x, 1|x|^c \rangle \in A^{P}_{NTM} \). So the required polytime reduction from \(L \) to \(A^{P}_{NTM} \) maps \(x \) to \(\langle M, x, 1|x|^c \rangle \); it is easy to see that the output of this reduction is indeed computable in deterministic time polynomial in the input size.

2.3 Natural \(NP \)-complete problems

The fact that \(A^{P}_{NTM} \) is \(NP \)-complete is pretty simple, and not surprising. What is surprising is that many natural problems (not involving Turing machines) also turn out to be \(NP \)-complete! One of the first such natural problems shown to be \(NP \)-complete was

\[
SAT = \{ \langle \phi(x_1, \ldots, x_n) \rangle \mid \text{propositional formula } \phi \text{ is satisfiable} \}.
\]

Theorem 5 (Cook-Levin Theorem). \(SAT \) is \(NP \)-complete.

Proof. (1) \(SAT \) is in \(NP \). (Easy.) (2) Every language \(L \) in \(NP \) is polytime reducible to \(SAT \). This is what we need to show.

Idea: Take any language \(L \) in \(NP \). This \(L \) is decided by some NTM \(M \) in time \(n^c \), for some constant \(c \). Given \(M \) and any input string \(x \), we will construct a formula \(\phi_x \) such that: \(M \) accepts \(x \) iff \(\phi_x \) is satisfiable.

Intuitively, we can construct such a \(\phi_x \) simulating the computation of a TM because every computer (including the TM) can be implemented using chips/circuits that are built from logical operations like AND, OR, and NOT — precisely the operations used in logical formulas like our \(\phi_x \).

In more detail, observe that \(M \) accepts \(x \) iff there is an accepting computation of \(M \) on \(x \). That is, there is a sequence of configurations \(conf_1, \ldots, conf_{nc} \) such that:

1. \(conf_1 \) is the start configuration \((q_{\text{start}}, x) \),
2. \(conf_{i+1} \) follows from \(conf_i \) according to the transition rules of \(M \),
3. some \(conf_j \) is an accepting configuration.

Our formula \(\phi_x \) will have propositional variables to encode the sequence of configurations of TM \(M \) on input \(x \). The formula \(\phi_x \) is satisfiable by an assignment to its variables iff the sequence of configurations encoded by this assignment actually corresponds to a valid accepting computation of \(M \) on \(x \). In other words, the formula \(\phi_x \) must check all condition (1)–(3) stated above.

The most interesting (and non-trivial) condition to check is (2). For this, we define a notion of a window. For each position \(i, j \) of the tableau of computation of \(M \) on \(x \), the value of cell \((i, j) \) (at time \(i \), in position \(j \) of the tape) is determined by the values of the cells \((i-1, j-1), (i-1, j), \) and \((i-1, j+1) \). Intuitively, to know what happened in position \(j \), you need to know what was there before, and whether the TM was scanning that position or one of its immediate neighbours (\(j-1 \) or \(j+1 \)). The reason is that a TM can move only one position (left or right) in a single step of computation.
We say that a window (i,j) is legal if the value of cell (i,j) (which includes both the tape contents of position j at time i, and whether that position was scanned by the TM, and if so, in what state) is consistent with the values of the cells $(i - 1, j - 1)$, $(i - 1, j)$, and $(i - 1, j + 1)$. It is not hard to see that a configuration at time i is correctly obtained from configuration at time $i - 1$ iff all windows (i,j) (over $1 \leq j \leq n^c$) are legal.

Checking if a given window is legal can be represented by a propositional formula (of constant size) which “hard-wires” the transition function of the given TM M. A conjunction of such windows over all possible positions yields a formula to check if a configuration correctly follows from a previous configuration.

All in all, we get a propositional formula ϕ_x of size $poly(n)$. This formula can be constructed efficiently (in time $poly(n)$) given the description of M and an input x of length n. Thus we get a required reduction from L to SAT.

3 Is there life between P and NP-complete?

Assuming that $P \neq NP$, one can show the existence of problems in NP that are not NP-complete and not in P. We state the following without proof; the proof is a subtle diagonalization argument.

Theorem 6 (Ladner). Assuming $NP \neq P$, there exists a language $L \in NP$ such that

1. $L \notin P$, and
2. L is not NP-complete.