Performance analysis of 802.11ax 2.4GHz (WiFi 6)

Group 6

Katherine Lee (<u>kcl35@sfu.ca</u>, 301265784) Kurtis Lew (<u>kurtisl@sfu.ca</u>, 301384672) Owen Coukell (<u>orc@sfu.ca</u>, 301426374)

http://sfu.ca/~kcl35/ensc427

[1] K. Jirasukhanont, 2018.

CONTENTS

INTRODUCTION

1 GOALS

2 PROBLEM DESCRIPTION

3 OVERVIEW OF RELATED WORK

IMPLEMENTATION

4 SIMULATION OVERVIEW

5 RESULTS

6 ANALYSIS

CONCLUSIONS

7 DISCUSSION

8 REFERENCES

9 CONTRIBUTIONS

GOALS

1. Understand Innovations

Through this project we seek to understand significant changes added to WiFi 6 (802.11ax) from its previous versions

Find a WiFi 6 Simulator

Locate a WiFi 6 simulator ideally using ns-3 to work through and understand setup, focal points, and key variables

3. Change Current Simulation

Using the online ns-3 WiFi 6 simulator, edit the simulation parameters and compare results to expected increases from research

4. Visualize Variable Changes

Different people purchase various tiers of WiFI to meet their personal and financial needs, graphing this assists in understanding and can showcase errors more efficiently

PROBLEM DESCRIPTION

While we use WiFi on a daily basis, we don't fully understand what makes it work or what exactly it does to allow uses to connect to the internet without a direct cable connection.

WiFi has had many iterations over the years, a newer model (802.11ax/WiFi 6) must have some improvements over the past versions; what was introduced and what does it do?

More specifically, basic WiFi terminology is widely unknown as well, what are the core components of WiFi 6 and what do they contribute to the whole?

Wi-Fi 6 has proven to be superior to previous generations which has been attributed to these features:

Orthogonal Frequency Division Multiple Access

(OFDMA): Improving both network efficiency and capacity by splitting frequency bands into orthogonal subcarriers, resulting in multiple users being able to use the same frequency band simultaneously

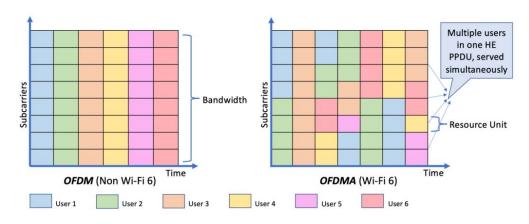


Fig. 1: OFDMA Overview [2] S. Trivedi, 2020

Wi-Fi 6 has proven to be superior to previous generations which has been attributed to these features:

Multi-User Multiple Input Multiple Output (MU-MIMO): Enables the router to simultaneously send data to multiple devices, reducing congestion and improving overall network performance

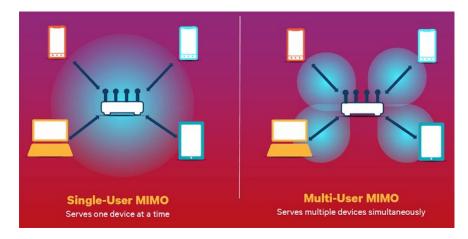


Fig. 2: MU-MIMO
Overview
[3] everything RF, 2019

Wi-Fi 6 has proven to be superior to previous generations which has been attributed to these features:

Basic Service Set (BSS) Coloring: A mechanism that improves performance and reduces interference in dense environments by assigning a colour to each BSS, allowing devices to differentiate between transmissions from their own and overlapping networks

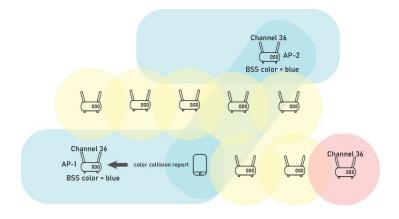


Fig. 3: BSS Overview [4] Memoona ans S.W. Kim, 2025

OFDMA in Contention-Driven Scenarios [4]

- The paper highlighted the efficiency of improving throughput and reducing latency in congested environments
- Concluded that under contentious scenarios, the OFDMA was greater

Optimization of IEEE 802.11ax Dense Networks [5]

- Used ns-3 simulator with three different network topologies were analyzed and compared
- Highlighted that BSS coloring can bring up to a 15% increase in throughput for dense networks

MU-MIMO Channel Sounding in ns-3 [6]

- In this study they implemented and evaluated IEEE 802.11ax's MU-MIMO in ns-3
- They found improvement in performance in multi-device scenarios

IEEE 802.11AX vs IEEE 802.11AC [7]

- Compared simulation performance of the their respective MIMO link features of WLANs
- Further, they show that 802.11AXs MIMO link outperformed 802.11ACs

The main simulation tool we used was Cisco's ns3-802.11ax-simulator [8]:

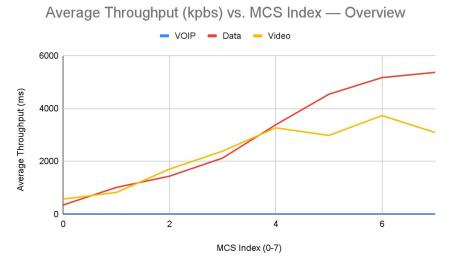
- Runs on ns-3.26
- Simulates clients running VoIP, Video, and data transfer loads
- Can modulate various parameters via command line inputs

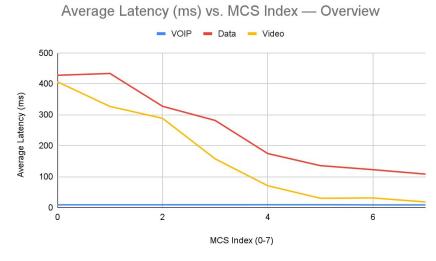
For every client type, we measured the **latency** and **throughput**, depending on the value of the **MCS index** being used.

Functionally speaking, we made as few edits to the original Cisco codebase as possible under the assumption that it provided all the tools we needed.

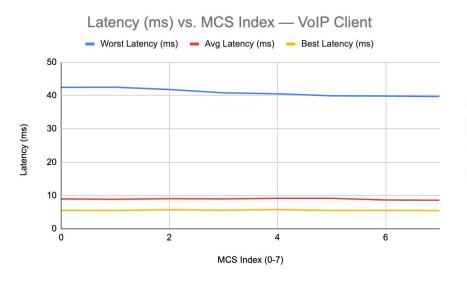
				OFDM (802.11ax)											
MCS	Spatial	Modulation	Codin	20MHz			40MHz			80MHz			160MHz		
Index	Stream	Modulation	g	0.8us GI	1.6us GI	3.2us GI	0.8us GI	1.6us GI	3.2us GI	0.8us GI	1.6us GI	3.2us GI	0.8us GI	1.6us GI	3.2us GI
0	1	BPSK	1/2	8.6	8.1	7.3	17.2	16.3	14.6	36	34	30.6	72.1	68.1	61.3
1	1	QPSK	1/2	17.2	16.3	14.6	34.4	32.5	29.3	72.1	68.1	61.3	144.1	136.1	122.5
2	1	QPSK	3/4	25.8	24.4	21.9	51.6	48.8	43.9	108.1	102.1	91.9	216.2	204.2	183.8
3	1	16-QAM	1/2	34.4	32.5	29.3	68.8	65	58.5	144.1	136.1	122.5	288.2	272.2	245
4	1	16-QAM	3/4	51.6	48.8	43.9	103.2	97.5	87.8	216.2	204.2	183.8	432.4	408.3	367.5
5	1	64-QAM	2/3	68.8	65	58.5	137.6	130	117	288.2	272.2	245	576.5	544.4	490
6	1	64-QAM	3/4	77.4	73.1	65.8	154.9	146.3	131.6	324.3	306.3	275.6	648.5	612.5	551.3
7	1	64-QAM	5/6	86	81.3	73.1	172.1	162.5	146.3	360.3	340.3	306.3	720.6	680.6	612.5
8	1	256-QAM	3/4	103.2	97.5	87.8	206.5	195	175.5	432.4	408.3	imber of Data Subcarriers	Number of Coded Bits per Subcarrier per Stream	Coding	Number of Spatial Streams
9	1	256-QAM	5/6	114.7	108.3	97.5	229.4	216.7	195	480.4	453.7		N _{SD} * N _{BPSC}	s * R * N _{SS}	
10	1	1024-QAM	3/4	129	121.9	109.7	258.1	243.8	219.4	540.4	510.4	Data Rate = -	T _{DFT} + T _{GI}		
11	1	1024-QAM	5/6	143.4	135.4	121.9	286.8	270.8	243.8	600.5	567.1	Mbps	OFDM Symbol Duration	Guard Interval Duration	

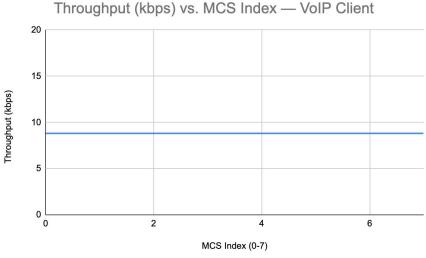
Fig. 4: MCS Table (Data Rate) [9] F. Vergès

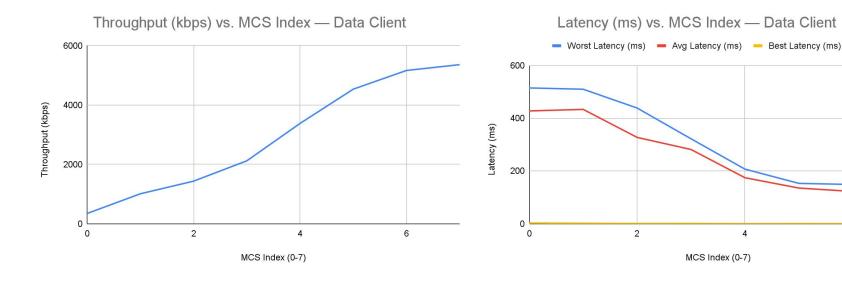

Output results to another text file


```
// Initialization: Provide a list of nodes in a text file and specify
// - Node type (Access Point, VoIP Client, Video Client, Data Client)
// - MAC Address
// - Node Position
Parse "scenario.txt" to initialize nodes
Determine MCS index from command line arguments
Set up WiFi 6 network using ns3 builtins
For every Node that is not an AP:
    Send the appropriate packet type to and from each Node
    Measure performance metrics: throughput, latency, jitter
```

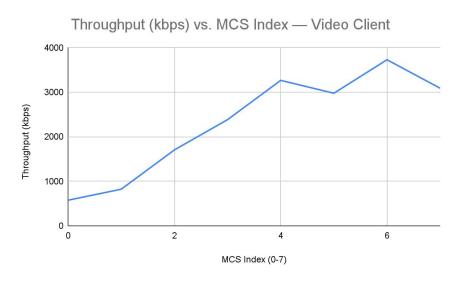
The simulation parameters were as follows:

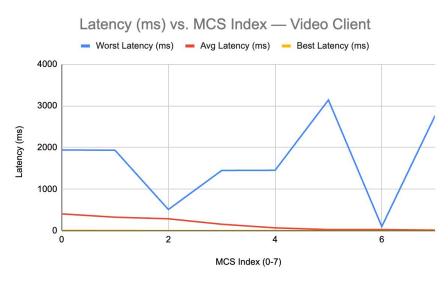

- 1 AP, 8 total clients
 - (2 VoIP, 3 Data, 3 Video)
 - Each client placed roughly equidistant from the AP
- Plot the average throughput and the best-case, worst-case, and average latency for each type of client


RESULTS — OVERVIEW



RESULTS — VoIP CLIENT





RESULTS — DATA CLIENT

RESULTS — VIDEO CLIENT

ANALYSIS

The results match what we expect from the Transport layer protocols [10]

VoIP: Throughput and latency does not change much with MCS index

• Realtime audio prioritizes robustness and reliability over speed

Data: Throughput and latency significantly increase and decrease respectively as MCS index increases

File transfers have elastic throughput and latency is not a concern

Video: Throughput generally increases, latency is erratic

Video streaming has elastic throughput and best-effort latency

DISCUSSION

In summary, the Cisco ns-3 WiFi 6 simulator provided a great framework for our throughput and latency measurements but was also limited by:

- No change in performance when channel bandwidth was changed
- Inability to change guard index

Setting up the existing simulator was difficult because:

- Install instructions were not complete
- OOP abstractions made it difficult to isolate the parameters of interest

Future work may include:

- Designing our own simulator
- Increasing the number of clients
- Modulating the packet size for different client types

CONTRIBUTIONS

References and literature review

33% Kurtis Lew - Provided multiple references and cited them accordingly, especially thorough investigation of Cisco Wi-Fi 6 simulation website
33% Katherine Lee - Provided the most references and communicated details to groupmates for project development

33% Owen Coukell - Provided multiple references and cited them in report

Simulation scenarios, implementation, analysis, and discussion of simulation results

55% Kurtis Lew - Performed various tests, shared output with team and proposed future edits to facilitate project development, Tested additional variables, Graphed output data 12.5% Katherine Lee - Assisted in finding simulation code, Graphed outputted data 32.5% Owen Coukell - Assisted in finding simulation code, Tested additional variables, Graphed output data

Presentation

33% Katherine Lee - Overview of Related Works, Problem Description 33% Kurtis Lew - Simulation Overview, Results, Analysis, Discussion 33% Owen Coukell - Introduction, Goals, Problem Statement, References

REFERENCES

- [1] K. Jirasukhanont, "3D rendering router with blue Wi-Fi Sign Stock Photo," Alamy, https://www.alamy.com/3d-rendering-router-with-blue-wi-fi-sign-image225066121.html (accessed Apr. 7, 2025).
- [2] S. Trivedi, "Wi-Fi 6 OFDMA: Resource unit (RU) allocations and mappings," Cisco Blogs, May 15, 2020. [Online]. Available: https://blogs.cisco.com/networking/wi-fi-6-ofdma-resource-unit-ru-allocations-and-mappings
- [3] "What is MU-MIMO?", everything RF, Jul. 7, 2019. [Online]. Available: https://www.everythingrf.com/community/what-is-mu-mimo
- [4] Memoona and S. W. Kim, "Performance and simulation analysis of 802.11ax ofdma in contention-driven scenarios," Peer J. Computer science, https://pmc.ncbi.nlm.nih.gov/articles/PMC11888924/ (accessed Apr. 7, 2025).
- [5] M. Natkaniec and M. Kras, "An optimization of network performance in IEEE 802.11ax dense networks," Int. J. Electron. Telecommun., vol. 69, no. 1, pp. 169–176, 2023. [Online]. Available: https://ijet.pl/index.php/ijet/article/view/10.24425-ijet.2023.144347
- [6] Implementation and evaluation of IEEE 802.11ax channel sounding frame exchange in NS-3 | proceedings of the 2023 workshop on NS-3, https://dl.acm.org/doi/10.1145/3592149.3592152 (accessed Apr. 7, 2025).
- [7] M. D. Hossain et al., "Comparative performance analysis of the IEEE802.11ax and 802.11ac MIMO link for WLANs," Int. J. AdHoc Netw. Syst., vol. 13, no. 4, pp. 1–15, Oct. 2023. [Online]. Available: https://www.ijans.org/ijans-vol-13-no-4-october-2023/
- [8] Cisco, "Cisco/NS3-802.11ax-simulator: NS3 simulator of 802.11ax," GitHub, https://github.com/cisco/ns3-802.11ax-simulator/tree/master (accessed Mar. 2, 2025).
- [9] F. Vergès, "MCS Index MCS Index Table, Modulation and Coding Scheme index 11N, 11AC, and 11ax," MCS Index, https://mcsindex.com/ (accessed Apr. 8, 2025).
- [10] J. F. Kurose and K. W. Ross, Computer networking: a top-down approach, Eighth edition. Hoboken, NJ: Pearson, 2021.