Stochastic Current Account Models

Assumptions

1.) Expected Utility (+ geometric discounting \Rightarrow Dynamic Consistency)
2.) Rational Expectations (No Model Uncertainty)
3.) Quadratic Utility \Rightarrow "Certainty Equivalence"
4.) Bonds Only (No default).
5.) Small country (r is exogenous)
6.) Domestic MKts. Complete \Rightarrow Rep. Agent

Objective

$$\max_{C_s, I_s} E_t \left\{ \sum_{s=t}^{\infty} \beta^s U(C_s) \right\}$$

s.t.

$$\sum_{s=t}^{\infty} \left(\frac{1}{1+r} \right)^s (C_s + I_s) = (1+r)B_t + \sum_{s=t}^{\infty} \left(\frac{1}{1+r} \right)^s (Y_s - C_s)$$

Note: Budget constraint holds w.p. 1, i.e., for ‘all’ realizations
\[U'(C_t) = \beta (1+r) E_t \left[U'(C_{t+1}) \right] \]

Assume:
1. \(U(\cdot) = C_t - \frac{1}{2} \alpha C_t^2 \) \(\text{Ignore non-negativity constraint} \)
2. \(\beta (1+r) = 1 \)

Then, \(C_t = E_t C_{t+1} \)

Plug into budget constraint,
\[C_t = \frac{r}{1+r} \left[(1+r) B_t + \sum_{s=0}^{\infty} (1+r)^s E_t (Y_s - C_s - I_s) \right] \]

Let \(Q_t = Y_t - C_t - I_t \) and \(\tilde{Q}_t = \frac{r}{1+r} E_t \sum_{s=0}^{\infty} (1+r)^s Q_s \)

Then,
\[CA_t = Q_t - \tilde{Q}_t \]

Suppose, \(Q_t = \rho Q_{t-1} + \varepsilon_t \)

Then, \(\tilde{Q}_t = \frac{r}{1+r-\rho} Q_t \), and
\[CA_t = \rho \left[\frac{1-\rho}{1+r-\rho} \right] Q_{t-1} + \frac{1-\rho}{1+r-\rho} \varepsilon_t \]

Note: Response of \(CA \) decreases with shock persistence, \(\rho \).
Investment

\[Y_t = A_t F(K_t) \]

\[K_{t+1} = K_t + I_t \]

FOC for \(K_t \)

\[u'(C_t) = \beta E_t \{ u'(C_{t+1})(1 + A_{t+1}F'(K_{t+1})) \} \]

\[\Rightarrow 1 = E_t \left[\frac{\beta u'(C_{t+1})}{u'(C_t)} \cdot (1 + A_{t+1}F'(K_t)) \right] \] \quad \text{Standard Asset Pricing Condition}

\[= E_t \left[\frac{\beta u'(C_{t+1})}{u'(C_t)} \right] E_t \left[1 + A_{t+1}F'(K_t) \right] + \text{cov} \left(\frac{\beta u'(C_{t+1})}{u'(C_t)}, A_{t+1}F'(K_t) \right) \]

Use consumption Euler Eq.,

\[E_t \left[A_{t+1}F'(K_{t+1}) \right] = r - \text{cov} \left(A_{t+1}F'(K_{t}), \frac{u'(C_{t+1})}{u'(C_t)} \right) \] \quad \text{Breakdown of Fisherian Separation}

\[A_{t+1} \uparrow \Rightarrow C_{t+1} \uparrow \Rightarrow u'(C_{t+1}) \downarrow \Rightarrow \text{cov} < 0 \]

\[\Rightarrow E_t \left[A_{t+1}F'(K_{t+1}) \right] = r + \text{risk premium} \]

\[\Rightarrow K_{t+1} < \text{"Certainty Equivalent" \ [uncertainty discourages investment]} \]
Productivity and the Current Account

\[I_t = h(p)A_t \]
\[\uparrow \text{persistence of productivity shocks} \]

\[CA_t = S_t - I_t \]

Consider 2 limiting cases:

a.) \(p = 1 \) \(\implies I \uparrow \)
\[S \downarrow \] (\(Y \uparrow \) more in future)
\[\implies CA \downarrow \]

b.) \(p = 0 \) \(\implies \Delta I = 0 \)
\[S \uparrow \] (\(Y \uparrow \) only in current period)
\[\implies CA \uparrow \]

Positive productivity shocks more likely to produce CA deficit, the more persistent they are. Empirically, productivity is very persistent.
Empirical Tests (Campbell-Shiller Methodology)

\[CA_t = Q_t - \frac{r}{1+r} E_t \sum_{s=t}^{\infty} \left(\frac{1}{1+r} \right)^s Q_s \]

Key Issue: What information do individuals use when evaluating \(E_t (\cdot) \)?

Note: Model implies \(CA_t \) is a sufficient statistic for \(E_t (\cdot) \). Can "soak up" extra info. by including \(CA_t \) when forecasting future values of \(Q_t \).
Useful representation,

Let $\alpha = \frac{1}{1+r}$. Then,

$$CA_t = Q_t - (1-\alpha)E_t \sum_{j=0}^{\infty} \alpha^j Q_{t+j}$$

$$= Q_t - \frac{1-\alpha}{1-\alpha^2} Q_t$$

$$= \frac{1-\alpha \bar{L}^{-1} - (1-\alpha)}{1-\alpha^2} Q_t$$

$$= -\alpha \frac{(\bar{L}^{-1} - 1)}{1-\alpha \bar{L}^{-1}} Q_t$$

$$\Rightarrow CA_t = -E_t \sum_{j=1}^{\infty} \alpha^j \Delta Q_{t+j}$$

This is also useful from a statistical standpoint, since empirically, Q_t often appears to have a unit root.
future values of Δt.

$$
\begin{align*}
(\Delta Q^t) &= (q_{11}, q_{12}) (\Delta Q^{t-1}) + (e_{1t}) \\
(CA^t) &= (q_{21}, q_{22}) (CA^{t-1}) + (e_{2t})
\end{align*}
$$

$$
E_{\Delta Q^t} = (1, 0) \left[\begin{array}{cc}
q_{11} & q_{12} \\
q_{21} & q_{22}
\end{array} \right] (\Delta Q^t) ^{s-f}
$$

$$
\hat{CA}^t = -(1, 0) \left[I - \frac{i}{\tau_{\Delta t}} \Psi \right] ^{-1} (\Delta Q^t)
$$

$$
= (\Gamma_0, \Gamma_1) (\Delta Q^t)
$$

Theory \Rightarrow $(\Gamma_0, \Gamma_1) = (0, 1)$
Can write as a linear restriction,

\((0, 1) = -(1, 0) Y [I - \# Y]^T\)

\[\Rightarrow (0, 1) [I - \# Y] = -(1, 0) Y \]

That is,

Bottom row of \(I - \# Y \) \(-\) Top row of \(\# Y \)

This is equivalent to,

\[E_+ \left[CA_{t+1} - \Delta Q_{t+1} - (1 + r) CA_t \right] = 0 \] \(\text{GMM orthogonality test}\)
Figure 2.5
Canada: Actual and predicted current accounts

Figure 2.7
Sweden: Actual and predicted current accounts

Figure 2.8
United Kingdom: Actual and predicted current accounts
Extensions

1.) Variable Interest Rates (and other valuation effects)
 - Couriñchak & Rey (JPE, 2007)

2.) Precautionary Saving

3.) Global vs. Country-Specific Shocks
 - Glick & Rogoff (JME, 1995)

4.) Finite Horizons ("Twin Deficits")
 - Kase (1994)

5.) Endogenous Labor

6.) Large Country

7.) Portfolio Diversification with Incomplete Markets

8.) Default + "Sudden Stops", Borrowing Constraints

9.) Trade Costs

10.) Multiple Goods (Terms of Trade & Real Exchange Rate)
Variable Interest Rates

Define
\[R_{t,s} = \frac{1}{\prod_{v=t+1}^{s} (1+r_v)} \]

Now get,
\[C_t = (1+r_t)B_t + \sum_{s=t}^{\infty} R_{t,s} (Y_s - I_s - G_s) \]
\[\frac{\sum_{s=t}^{\infty} R_{t,s} \left[R_{t,s}^{-\alpha} \beta^{\alpha(s-t)} \right]}{\sum_{s=t}^{\infty} R_{t,s} } \]

Now annuity values are,
\[\sum_{s=t}^{\infty} R_{t,s} \tilde{X}_s = \sum_{s=t}^{\infty} R_{t,s} X_s \]

CA\(_t\) = \[(r_t - \tilde{r}_t)B_t + (Y_t - \tilde{Y}_t) - (I_t - \tilde{I}_t) - (G_t - \tilde{G}_t)\]
\[+ \left(\frac{\tilde{r}_t - 1}{\tilde{r}_t} \right) (\tilde{r}_t B_t + \tilde{Y}_t - \tilde{I}_t - \tilde{G}_t) \]

\[\tilde{r}_t = \frac{\sum_{s=t}^{\infty} R_{t,s} \left[R_{t,s}^{-\alpha} \beta^{\alpha(s-t)} \right]}{\sum_{s=t}^{\infty} R_{t,s} } \],
discount rate weighted average of consumption growth
Precautionary Saving: \(U'''' > 0 \)

\[U'(c_t) = E_t U'(c_{t+1}) > U'(E_t c_{t+1}) \]
\[\Rightarrow E_t c_{t+1} > c_t \]

finite horizons

Let \(\tau = \text{Survival probability} \)

\[CA_t = \tau CA_{t-1} + \frac{1}{\tau} E_{t-1} \left(\Delta y_t - \Delta c_t \right) + \frac{\left(\frac{\tau - \lambda}{\tau} \right) E_{t-1} \sum_{s=1}^{\infty} \left(\frac{\tau}{\tau - 1} \right)^s \lambda^s (1+\gamma)^s \right] \]
\[+ (1-\tau) \left[\frac{\tau - \lambda}{\tau} \right] E_{t-1} \sum_{s=1}^{\infty} \left(\frac{\tau}{\tau - 1} \right)^s \beta^s BS_{t+s} + \psi_t \]

Endogenous Labor

Suppose \(U(c, L) = \frac{1}{1 - \lambda} \left[C^\lambda (c - L)^{1-\lambda} \right] \]

Now get static efficiency condition \(W = \frac{1-\tau}{\tau} \frac{c}{L} \)

Euler Eq. becomes,

\[C_{t+1} = \left(\frac{W_t}{W_{t+1}} \right)^{(1-\gamma)(\sigma-1)} (1+\gamma)^\sigma \beta^\sigma C_t \]
Real Exchange Rates

Now assume more than one good.

Easy case first: Non-traded Goods

NT Goods \Rightarrow Prices don't need to be the same across countries.

Real Ex. Rate = Relative Cost of a common basket of goods in 2 countries.

If price indices use the same weights, just the ratio of national price levels (expressed in common currency).

Thus, \(q_t = \frac{P_t}{P_t^*} \) \(q_t \uparrow \Rightarrow \) Home real appreciation

PPP: Cost of living is the same everywhere

\(\Rightarrow q_t = 1 \forall t \) (Absolute PPP)

Problem: Price levels are index numbers, expressed relative to a base year.

Weaker version: \(q_t = \text{constant} \)

\(\Rightarrow \hat{E} = \hat{\rho} - \hat{\rho}^* \)
Figure 3.1 Log nominal exchange rates (boxes) and CPI-based PPPs (solid lines).
(a) US-UK; (b) US-Germany; (c) US-Japan; (d) US-Switzerland.

such as house empirical and
PPP is cle
and 3.2 sugg
the Redux m
is that we do
altered
Perhaps
are false af
not by the re
Relative price level (U.S. = 100)

Per capita real income, 1992

Figure 4.1
Real per capita incomes and price levels, 1992. (Source: Penn World Table)