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How informative are unrestricted VARs
about how particular economic models respond
to preference, technology, and information
shocks?1 In the simplest possible setting, this
paper provides a check for whether a theoretical
model has the property in population that it is
possible to infer economic shocks and impulse
responses to them from the innovations and the
impulse responses associated with a vector au-
toregression (VAR). We revisit an invertibility
issue that is known to cause a potential problem
for interpreting VARs, and present a simple
check for its presence.2 We illustrate our check
in the context of a permanent income model for
which it can be applied by hand.

I. Two Recursive Representations of
Observables

A. Recursive Representation of an
Equilibrium

Let an equilibrium of an economic model or
an approximation to it have a representation for
{yt�1} in the state space form

(1) xt � 1 � Axt � Bwt � 1 ,

(2) yt � 1 � Cxt � Dwt � 1 ,

where xt is an n � 1 vector of possibly unob-
served state variables, yt is a k � 1 vector of
variables observed by an econometrician, and
wt is an m � 1 vector of economic shocks
impinging on the states and observables, i.e.,
shocks to preferences, technologies, agents’ in-
formation sets, and the economist’s measure-
ments. The shocks wt are Gaussian vector white
noise satisfying Ewt � 0, Ewtw�t � I, and
Ewtwt� j � 0 for j � 0, where the assumption of
normality is for convenience and allows us to
associate linear least squares predictions with
conditional expectations. With m shocks in the
economic model, n states, and k observables, A
is n � n, B is n � m, C is k � n, and D is k �
m. In general, k � m. The matrices A, B, C, and
D are functions of parameters that define pref-
erences, technology, and economics shocks.
They incorporate the typical cross-equation re-
strictions embedded in modern macroeconomic
models.

Equilibrium representations of the form (1)–
(2) are obtained in one of two widely used
procedures. The first is to compute a linear or
loglinear approximation of a nonlinear model as
exposited, for example, in Harald Uhlig (1999).
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It is straightforward to collect the linear or log
linear approximations to the equilibrium deci-
sion rules and to arrange them into the state
space form (1)–(2). A second way is to derive
(1)–(2) directly as a representation of a member
of a class of dynamic stochastic general equi-
librium models with linear transition laws and
quadratic preferences. For example, see Jaewoo
Ryoo and Sherwin Rosen (2004), Rosen, Kevin
M. Murphy, and Jose A. Scheinkman (1994),
and Robert Topel and Rosen (1988).3

B. The Question

Our question is: under what conditions do the
economic shocks in the state-space system (1)–
(2) match up with the shocks associated with a
VAR? That is, under what conditions is

(3) wt � 1 � ��yt � 1 � E�yt � 1�yt��,

where wt�1 are the economic shocks in (1)–(2),
yt denotes the semi-infinite history yt, yt�1, ... ,
yt�1 � E(yt�1�yt) are the one-step-ahead fore-
cast errors associated with an infinite order
VAR, and � is a matrix of constants that can
potentially be uncovered by “structural” VAR
(SVAR) analysis? When (3) holds, impulse re-
sponses from the SVAR match the impulse re-
sponses from the economic model (1)–(2).

To begin to characterize conditions under
which (3) holds, consider the prediction errors
from (2) after conditioning on yt, that is, yt�1 �
E(yt�1�yt) � C(xt � E(xt�y

t)) � Dwt�1. Evi-
dently, C(xt � E(xt�y

t)) drives a wedge between
the VAR errors yt�1 � E(yt�1�yt) and the struc-
tural errors wt�1. What is required is a condi-
tion that eliminates this wedge. In Condition 1,
we offer a simple condition that yields (3) in the
interesting “square case” in which k � m and D
has full rank.

C. A Poor Man’s Invertibility Condition

When D is nonsingular, (2) implies wt�1 �
D�1(yt�1 � Cxt). Substituting this into (1) and
rearranging gives

�4� 	I � �A � BD�1C�L
xt � 1 � BD�1yt � 1 ,

where L is the lag operator. Consider:

CONDITION 1: The eigenvalues of A � BD�1C
are strictly less than one in modulus.

When Condition (1) is satisfied, we say that
A � BD�1C is a stable matrix. The inverse of
the operator on the left side of this equation
gives a square summable polynomial in L if and
only if Condition 1 is satisfied. In this case, xt�1
satisfies

�5� xt � 1 � �
j � 0

�

	A � BD�1C
jBD�1yt � 1�j ,

so that xt�1 is a square summable linear com-
bination of the observations on the history of y
at time t � 1. This means that the complete state
vector is in effect observed so that var(xt�y

t) �
0. Shifting (5) back one period and substituting
into (2), we obtain

(6) yt � 1

� C �
j � 0

�

	A � BD�1C
jBD�1yt � j � Dwt � 1 .

If condition (1) is satisfied, equation (6) defines
a VAR for yt�1 because the infinite sum in (6)
converges in mean square and Dwt�1 is orthog-
onal to yt� j for all j � 0.

If one of the eigenvalues of A � BD�1C is
strictly greater than unity in modulus, this argu-
ment fails because the infinite sum in (6) di-
verges. When A � BD�1C is an unstable
matrix, the VAR is associated with another cel-
ebrated state space representation for {yt�1}, to
which we now turn.

D. The Innovations Representation

Associated with any state space system (A, B,
C, D) for {yt�1}t�1

T of the form (1)–(2) is
another state space system, called the innova-
tions representation:

(7) x̂t � 1 � Ax̂t � B̂t � 1�t � 1 ,
3 Hansen and Sargent (2007) provide many other exam-

ples of this second approach.
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(8) yt � 1 � Cx̂t � D̂t � 1�t � 1 ,

where x0 � (x̂0, �0), x̂t � E(xt�{yi}i�1
t ), yt�1 �

E(yt�1�{yi}i�1
t ) � D̂t�1�t�1, �t�1 is another

i.i.d. Gaussian process with mean zero and iden-
tity covariance matrix, and the matrices B̂t�1
and D̂t�1 can be recursively computed by the
Kalman filter. Under a general set of conditions,
for any positive semi-definite �0 , as t 3 ��,
the matrices B̂t�1 and D̂t�1 converge to limits
B̂ and D̂ that satisfy the equations:4

(9) � � A�A� � BB�

� �A�C� � BD���C�C� � DD���1�A�C�

� BD���,

�10� K � �A�C� � BD���C�C� � DD���1,

(11) D̂D̂� � DD� � C�C�,

(12) B̂ � KD̂,

where � � var(xt�y
t).5 When A � BD�1C is

unstable, �  0, meaning that at least some
parts of the state xt are hidden. This means the
one-step-ahead forecast errors computed by the
VAR, yt�1 � E(yt�1�yt), contain the shocks
Dwt�1 and the error from estimating the state
C(xt � x̂t). Thus, (3) does not hold. These two
components of yt�1 � E(yt�1�yt) are uncorre-
lated, so that the variance of the VAR innova-
tions D̂�t�1 is larger than the variance of the
economic model disturbances Dwt�1. (Equiva-
lently, from equation (11) D̂D̂�  DD�.)6

II. Permanent Income Example

A state space representation for the surplus
yt�1 � ct�1 for the permanent income con-
sumption model (e.g., see Sargent 1987, chap.
XII) is:

(13) ct � 1 � ct � �w �1 � R�1�wt � 1 ,

(14) yt � 1 � ct � 1 � �ct � �wR�1wt � 1 ,

where yt�1 � �wwt�1 is an i.i.d. labor income
process and R  1 is a constant gross interest
rate on financial assets. Equations (13) and (14)
correspond to (1) and (2), where ct is the unob-
served state and yt � ct is the variable observed
by the econometrician. The impulse responses
for the model are shown in Figure 1 for the case
that R � 1.2 and �w � 1. They show the
familiar patterns: consumption increases perma-
nently by the annuity value of the transitory
increase in income; this leads to a large positive
impact effect of wt on yt � ct and small negative
values for all other periods.

For this example, it is easy to compute that
A � BD�1C � R  1, so that Condition 1 does
not hold. This failure of Condition 1 is part and
parcel of the permanent income model because
it is needed to verify that the present value of
the coefficients describing the response of the
surplus yt�1 � ct�1 to an endowment innova-
tion must be zero, an outcome that embodies the
present value budget balance that is built into
the permanent income model.

The innovations representation of the model
is

(15) ĉt � 1 � ĉt � �w �R�1 � 1��t � 1 ,

(16) yt � 1 � ct � 1 � �ĉt � �w�t � 1 .

Equations (15) and (16) correspond to the steady-
state version of (7) and (8), where ĉt � E(ct�y

t �
ct) is the estimate of consumption constructed
from the history of yt � ct. Because Condition 1 is
not satisfied, ct cannot be estimated perfectly from
yt � ct, so that ĉt � ct. Indeed, a simple calculation
shows that � � var(ct�y

t � ct) � �w
2 (1 � R�2).

Because A � B̂D̂�1C � R�1, which is stable, the
errors computed by a VAR for yt � ct are �w�t�1.

4 Alternative conditions for the existence of this time
invariant innovations representation and for convergence of
iterations on the Riccati equation are stated in Brian D. O.
Anderson and John B. Moore (1979, chap. 4), Sargent
(1980, chap. 5 and 6), Evan Anderson et al. (1996), and
Hansen and Sargent (2007).

5 With m shocks in the economic model, n states, and k
observables, K, the steady-state Kalman gain, is n � k, D̂ is
k � k, and B̂ is n � k.

6 Hansen and Sargent (2007, chap. 9) discuss the inno-
vations representation, prove that A � B̂D̂�1C is a stable
matrix, and derive a general formula that describes the
mapping from the economic shocks wt�1 to the VAR
shocks �t�1.
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(Of course, since yt � ct is a scalar, the VAR is
just a univariate autoregression.)

Figure 2 shows the impulse responses of ŷt,
ĉt, and yt � ct with respect to the VAR shocks,
�t. These are markedly different from the im-
pulse responses shown in Figure 1. Notably,
while ct responds positively and permanently to
a shock in wt in Figure 1, ĉt responds negatively
and permanently to a VAR shock �t. The reason
is simple: forecast errors in yt � ct arise from
shocks to income, �wR�1wt, or from estimation
errors in past consumption, ct � ĉt, and the
Kalman filter optimally allocates �t to these two
possible sources. In Figure 1, the impulse re-
sponse of the surplus yt � ct has a present value
of zero, implying present value budget balance;
in Figure 2, the impulse response of the surplus
has a positive present value so that the present
value of the impulse response of consumption

falls short of the present value of the impulse
response of income.7

This example can be modified in instructive
ways by altering what is observed. For example,
if ct, yt�1, or if the value of the consumer’s
accumulated assets were observed, then Condi-
tion 1 would be satisfied.8

III. Concluding Remarks

We hesitate to draw sweeping conclusions
about VARs. Some applications of VARs

7 For more discussion of this example, see Sargent
(1987), Hansen, William Roberds, and Sargent (1991), and
Roberds (1991).

8 See Watson (1994) for a more extensive discussion of
how what is observed affects whether Condition 1 is likely
to be satisfied.

FIGURE 1. IMPULSE RESPONSES OF yt�h, ct�h, AND yt�h � ct�h TO A SHOCK IN wt
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are informative about the shapes of impulse-
responses to some economic shocks that theo-
ries should attempt to match, while others are
not.

It is easy to reiterate the recommendation to
estimate the deep parameters of a complete and
fully trusted model by likelihood-function-
based methods. If you trust your model, you
should accept that recommendation. The enter-
prise of identifying economic shocks and their
impulse-response functions from VAR innova-
tions aims, however, to coax interesting patterns
from the data that will prevail across a set of
incompletely specified and not fully trusted
models. Despite pitfalls, it is easy to sympathize
with the enterprise of identifying economic
shocks from VAR innovations if one is not
dogmatic in favor of a particular fully specified
model.
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