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1. Introduction 

This paper describes recent advances for rapidly and accurately solving matrix Riccati 
and Sylvester equations and applies them to devise efficient computational methods 
for solving and estimating dynamic linear economies. The paper surveys the most 
promising solution methods available and compares their speed and accuracy for 
some particular economic examples. Except for the simplest dynamic linear models, 
it is necessary to compute solutions numerically. In estimation contexts, computation 
speed is important because climbing a likelihood function can require that a model be 
solved many times. We describe methods that are faster than direct iterations on the 
Riccati equation and are more reliable than solutions based on eigenvalue-eigenvector 
decompositions of the state-costate evolution equation. Our survey of these methods 
draws heavily on Anderson (1978), Gardiner and Laub (1986), Golub, Nasb and Van 
Loan (1979), Laub (1979, 1991) and Pappas, Laub and Sandell (1980). 

This paper is organized as follows. Section 2 decomposes the optimal linear regula- 
tor into sub-problems that are more efficient to solve and describes classes of economic 
problems that give rise to such problems. Sections 3-6 describe recent algorithms for 
solving these sub-problems. Section 7 extends the range of the basic algorithms to 
the domain of "distorted economies" whose equilibria do not correspond to solutions 
of optimum problems. Section 8 describes three particular economic models, one of 
which is the cattle cycle model of Rosen, Murphy and Scheinkman (1994). Section 9 
uses each of these models as contexts for speed and accuracy comparisons of al- 
ternative algorithms. Sections 10 and 11 briefly describe innovations representations 
and recursive computation of Gaussian likelihood functions. Two appendices (A and 
B) provide formulas for computing derivatives of a Gaussian likelihood with respect 
to a set of unknown parameters governing the tastes, technology, and information 
flows of our economic models. These formulas, which build directly from the work 
of Zadrozny (1988a, 1989), are designed to make numerical search algorithms for 
maximizing a likelihood function more reliable and to assist in making statistical in- 
ferences about the parameters of interest. Section 12 uses these formulas to estimate 
Rosen, Murphy, and Scheinkman's model. 

2. Control problems 

In this section, we pose three optimal control problems. We begin with a problem close 
to the much studied time-invariant deterministic optimal linear regulator problem. 
We label this problem the deterministic regulator problem. We then consider two 
progressively more general problems. 

The first generalization introduces forcing sequences or "uncontrollable states" into 
the deterministic regulator problem. While this generalization is also a deterministic 
regulator problem, there are computational gains to exploiting the a priori knowledge 
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that some components of  the state vector are uncontrollable. We refer to this gener- 
alization as the augmented regulator problem. As we will see, a convenient first step 
for solving an augmented regulator problem is to solve a corresponding deterministic 
regulator problem in which the forcing sequence is "zeroed out". In other words, we 
obtain a piece of  the solution to the augmented regulator problem by initially solving 
a problem with a smaller number of state variables. 

The second generalization introduces, among other things, discounting and uncer- 
tainty into the augmented regulator problem. We refer to the resulting problem as the 
discounted stochastic regulator problem. Using well known transformations of the 
state and control vectors, we show how to convert this problem into a corresponding 
undiscounted augmented regulator problem without uncertainty. Therefore, while our 
original problem is a discounted stochastic regulator problem, we solve it by first 
solving a deterministic regulator problem with a smaller number of  state variables, 
then solving a corresponding augmented regulator problem, and finally using this lat- 
ter solution to construct the solution to the original problem in the manner described 
below. 

2.1. Deterministic regulator problem 

Choose a control sequence {vt} to maximize 

oo 

t 2 - + w G y w ) ,  
t = 0  

subject to 

yt+l = Ayyyt + Byvt, 

~-~ (Ivtl 2 + lytl 2) < oo. (2.1) 
t = 0  

This control problem is a standard time-invariant, deterministic optimal linear reg- 
ulator problem with one modification. We have added a stability condition, (2.1), that 
is absent in the usual formulation. This stability condition plays a central role in at 
least one important class of  dynamic economic models: permanent income models. 
More will be said about these models subsequently. In these models, the stability 
condition can be viewed as an infinite horizon counterpart to a terminal condition on 
the capital stock. 

Following the literature on the time-invariant optimal linear regulator problem, we 
impose the following: 

DEFINITION. The pair (Ayy, By) is stabilizable if y'B~ = 0 and ytAyy = Ay' for 
some complex number A and some complex vector y implies that IAI < 1 or y = 0. 
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ASSUMPTION 1. (Ayv, By) is stabilizable. 

Stabilizabil i ty is equivalent to the existence of a t ime-invariant  control law that 
stabilizes the state [see Anderson and Moore (1979, Appendix C)]. For  our applica- 
tions, it can often be verified by showing that a trivial control law, such as setting 
investment equal to zero, achieves this stability. 

In solving this problem, we are primarily interested in specifications for which all 
of  the state variables are "endogenous", and hence the following stronger restriction 
is met: 

DEFINITION. The pair (Avy, By) is controllable if y~By = 0 and y~Ay u = Ay ~ for 
some complex number A and some complex vector y implies that y is zero. 

When (Ayy, By) is controllable, starting from an initialization of  zero, the state 
vector can attain any arbitrary value in a finite number of  time periods by an appro- 
priate setting of the controls [see Anderson and Moore (1979, Appendix  C)]. 1 For  this 
reason, we can think of  a state vector sequence with evolution equation governed by 
a pair (Auy , By) that is controllable as being an endogenous state vector sequence. 

While  Assumption 1 gives us a nonempty constraint set, it is still possible that the 
supremum of the objective is not attained. We assume the following: 

ASSUMPTION 2. The matrix Qyv is positive semidefinite, and the matrix R is positive 
definite. 

Among other things, this concavity assumption puts an upper bound of zero on the 
criterion function. Therefore, the supremum is finite (and nonpositive). We require 
that the supremum is attained. 

ASSUMPTION 3. There exists a solution to the deterministic regulator problem for each 
initialization of Yo. 

A commonly used sufficient condition in the control theory literature for there to 
exist a solution is detectability. Factor Qvy = DyDy t. 

DEFINITION. The pair (Avv , Dy) is detectable if Dv~y = 0 and Ayyy ~- Ay for some 
complex number A and some complex vector y implies that IA[ < 1 or y = 0. 

When the pair (Ayy, Dy) is detectable, it is optimal to choose a control sequence 
that stabilizes the state vector. In this case, the solution to the control problem is the 

1This is one of five equivalent characterizations of reachability given in Appendix C of Anderson and 
Moore (1979). However, many other control theorists take one of these characterizations as the definition 
of controllability. For instance, see Kwakemaak and Sivan (1972) and Caines (1988). We choose to follow 
this latter convention, 
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same with or without the stability constraint (2.1). However, as we mentioned previ- 
ously, for permanent income models the stability constraint is essential for obtaining 
an interpretable solution to the problem. For these models, detectability is too strong 
of  a condition to impose. Chan, Goodwin and Sin (1984) give a weaker sufficient 
condition for there to exist a solution (see (iii) of Theorem 3.10). In the context of 
a continuous-time formulation, Hansen, Heaton and Sargent (1991) proposed a very 
similar sufficient condition for stabilizable systems based on a spectral representa- 
tion of  the deterministic regulator problem. Unfortunately, these conditions may be 
tedious to check in practice. Some of the solution algorithms we survey below could 
in principle be modified to detect a violation of Assumption 3. 

A sufficient condition for convergence of one of the solution algorithms that we 
survey below is that the pair (Ayy, Dy) be observable: 

DEFINITION. The pair (Ayy, Dy) is observable if Dy'y = 0 and Ayyy = Ay for some 
complex number A and some complex vector y implies that y = 0. 

Clearly, observability is stronger than detectability. Moreover, observability is guar- 
anteed when the matrix Qyy is nonsingular. When the pair (Ayy, Dy) is observable, 
the value function associated with the deterministic regulator problem is strictly con- 
cave in the state vector y [Caines and Mayne (1970, 1971)]. 

The solution to the deterministic regulator problem takes the form 

Vt  = - - F y y t  

lbr some feedback matrix Fy. Stability constraint (2.1) guarantees that the eigenvalues 
of  Ayy - ByFy have absolute values that are strictly less than one because the state 
evolution equation when the optimal control is imposed is given by 

Yt+l = (Ayv - BvFy)yt. 

2.2. Augmented regulator problem 

Choose a control sequence {vt} to maximize 

OO 

- ' 2 ' ~(v~'Rvt  + yt Q~yyt + yt Qy~zt), 
t = 0  

subject to 
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O 0  

(IVtl 2 q-lytl  2) < OO. 
t=0  

177 

We have modified the linear regulator problem by including the exogenous forcing 
sequence {zt} .  The presumption here is that this partitioning may occur naturally in the 
specification of the oi:iginal control problem. Of course, as is well known in the control 
theory literature, we could always transform an original state vector into controllable 
and uncontrollable components. Constructing this transformation, however, can be 
difficult to do in a numerically reliable way. In the next section we will display a 
class of optimal resource allocation problems associated with dynamic economies 
for which zt contains a vector of taste and technology shifters. By assumption, this 
component of the state vector cannot be influenced by a control vector such as the 
level of investment. 

For the augmented regulator problem to be well posed, we require that the forcing 
sequence be stable: 

ASSUMPTION 4. The eigenvalues of  Az~ have absolute values that are strictly less 
than one. 

The solution to the deterministic regulator problem gives us a piece of the solution 
to the augmented regulator problem. More precisely, the solution to the augmented 
problem is 

Vt -- - Fyyt -- Fz zt , 

where the matrix Fy is the same as in the solution to the regulator problem for which 
the forcing sequence {zt}  is zeroed out. Consequently, our solution methods entail 
first computing Fy by solving a deterministic regulator problem of lower dimension 
and then computing F~ given Fy. 

2.3. Discounted stochastic regulator problem 

Let {St: t = 0, 1 , . . .}  denote an increasing sequence of sigma algebras (informa- 
tion sets) defined on an underlying probability space. We presume the existence 
of a "building block" process of conditionally homoskedastic martingale differences 
{wt: t -- l, 2, ...}, which obeys  

ASSUMPTION 5. The process {wt: ~ = 1 , 2 , . . . }  satisfies 
(i) E ( ~ + ~  17~) = 0; 
(ii) E(wt+lwt+l '  I f  t) = I. 
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The discounted stochastic regulator problem is to choose a control process {ut}, 
adapted to {.Yt}, to maximize 

[: ;1E::] .o) 
subject to 

Zt+l ~ -  Axt + But + CWt+l, 

The state vector xt is taken to be the composite of the endogenous and exogenous 
state variables. Let Uy = [I 0] be a matrix that selects' the endogenous state vector 
Uyxt and Uz = [0 I ]  be a matrix that selects the exogenous state vector Uzxt for 
an optimization problem with discounting. To justify our partitioning, the matrix A is 
restricted to satisfy U~AUy' = 0, and the matrix B is restricted to satisfy U~B = O. 
Notice that in addition to incorporating discounting and uncertainty, the discounted 
stochastic regulator includes cross-product terms between controls and states, which 
are absent in the augmented control problem. 

We now apply a standard trick for converting a discounted stochastic regulator 
problem to an augmented regulator problem. Using the well known certainty equiv- 
alence property of stochastic linear regulator problems, we zero out the uncertainty 
without altering the optimal control law. That is, we are free to set the matrix C 
to zero and instead solve the resulting deterministic control problem. We eliminate 
discounting and cross-product terms between states and controls by using the trans- 
formations 

Yt = flt/2Uyxt, z t  = • t / 2 g z x t ,  vt  = ~ t / 2 ( u t  ~- R - I W t x t ) .  

As is evident from these formulas, we have absorbed the discounting directly into 
the construction of the transformed state and control vectors. In addition, the cross- 
product matrix S is folded into the construction of  the transformed control vector. 
We are left with a version of the augmented regulator problem with the following 
matrices: 

A ~  J = fl l /2(A -- B R - I w t ) '  

Q,z Q ~ ]  = Q -  W R - 1 W '  

By = fll/2UvB , 

(2.2) 
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Assumptions 1-4 are imposed on the constructed matrices on the left-hand side of 
the equal signs in (2.2). 

As before, write the solution to the augmented regulator problem as 

vt ---- --Fuyt -- Fzzt .  

Then the solution to the discounted stochastic regulator problem is 

ut = -Fxt, 

where 

FY + R - 1 W  ' 
F =  Fz 

Also as before, the matrix F u can be computed by solving the corresponding de- 
terministic regulator problem with the forcing sequence "zeroed out". In subsequent 
sections we will describe methods for computing F v and Fz.  

In macroeconomics,  the discounted stochastic regulator problem is often obtained 
in the fashion of Kydland and Prescott (1982), who use it to replace a nonlinear- 
quadratic problem. Thus consider the nonquadratic optimization problem: choose an 
adapted (to {act}) control process {ut} to maximize 

(2.3) 

subject to 

xt+l = Ax t  + Bu t  + Cwt+l. 

Here r is not required to be a quadratic function of ut and xt. When the associated 
constraints are nonlinear, sometimes we can substitute the nonlinear constraints into 
the criterion function to obtain a problem of the form of  (2.3). Kydland and Prescott 

(1982) simply replace the function r by a quadratic form in [ut'  z t ' ] '  as required for 
the discounted stoChastic regulator problem, where the quadratic function is designed 
to "approximate" r well near a particular value for the state vector. 2 In the next 
subsection, we describe a different approach where, by design, the initial optimal 
resource allocation problem can be directly converted into a discounted stochastic 
regulator problem. 

2While Kydland and Prescott (1982) apply an ad hoc global approximation to r in which the range 
of approximation is adapted to the amount of underlying uncertainty, many subsequent researchers have 
instead simply used a local Taylor series approximation around some "nonstochastic" steady state produced 
by shutting down all randomness in the model. Kydland and Prescott (1982) note that for the range of 
uncertainty they considered, the two methods gave shnilar answers. 
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2.4. A class o f  linear-quadratic economies 

We will consider several numerical examples that are members of a class of economies 
used by Hansen (1987) and Hansen and Sargent (1994). As in the discounted stochastic 
regulator problem, there is an exogenous information vector zt governed by 

2 +1 = + (2.4) 

where {wt}  satisfies Assumption 5 and A ~  - v ~ A ~  satisfies Assumption 4. The 
vector 2t determines a time t preference shock bt and a time t endowment shock dt 
via 

dt = Ud &, 

bt = Ub Zt. 

A representative household has preferences ordered by 

(2.5) 

-1E 2 - + tg l f o  (2.6) 

where 9t is a vector of labor-using intern/ediate activities (designed to capture gener- 
alized adjustment costs), and st is a vector of household services produced at time t 
via the household technology 

st = Aht -1  + Hct ,  

ht = A h h t - I  + OhCt. (2.7) 

In (2.7), ht is a vector of stocks of household durable goods at t, ct is a vector of 
consumption flows, and A, H, Ah, Oh are matrices. There is a constant returns to 
scale production technology 

~5cct + qBiit + ~ggt = f fk t -1  + dr, 

]gt = Akl~t-I  q- Okit ,  (2.8) 

where kt is a vector of capital goods used in production, it is a vector of invest- 
ment goods, and Ak is a matrix) Hansen and Sargent (1994) describe a competitive 
equilibrium for this economy. Associated with the competitive equilibrium is a social 
planning problem, namely, to maximize (2.6) over Choices of contingency plans for 

• h co {st ,  ct, zt, gt, kt, t}t=o (adapted processes) subject to (2.4)-(2.8) with given initial- 
izations for (zo, h - l ,  k - l ) .  

3Under the constant returns to scale interpretation, dt is taken as an additional "input" available in 
fixed supply. 
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To map this problem into the notation of the previous section, we let 

V ht-11 
/ 

L#t J 

We view the first two components of the state vector to be endogenous and the third 
component to be exogenous. ] 'he control vector ut can be chosen to be investment it 
when the matrix qb = [~c ~a ] is nonsingular because in this case 4 

Ct ] = (/.3-1 (1"ht__l .q~ gd~t _ ~ii t) .  
gt 

Using this relation, the constraints (2.7) and (2.8) can be rewritten 

(2.9) 

xt+t = Ax t  + B u t  + Cwt+l 

for appropriately chosen matrices A, B, C. The matrix A is block triangular and the 
bottom row block of  B is zero as required for the discounted stochastic regulator 
problem. Moreover, using (2.9) and (2.7), the time t terms Ist - btl 2 and Igtl 2 in the 
objective function (2.6) of the social planner both can be expressed as quadratic forms 
in the control it and the augmented state xt. Therefore, the social planner's problem 
is a discounted stochastic regulator problem. 

In permanent income economies, stability of the state vector process is not obtained 
automatically as an implication of  optimality. An example of such an economy is one 
with a single consumption and capital good and no labor-using intermediate activities. 
The counterpart to Eq. (2.9) is 

ct = F k t - i  + UdZt -- it. 

We constrain the subjective discount factor to be the reciprocal of the physical return 
to capital: fl = 1/(1" + Ak) .  In the absence of a stability constraint, the solution to 
the resulting control problem does not "stabilize" the capital stock sequence because 
the sequence of capital stocks often diverges to minus infinity at a rate not even 
dominated by 1/v/ft. This solution to the control problem is not interesting. Therefore, 
we impose stability as an additional constraint, with the consequence that the solution 
to the resulting infinite-horizon control problem is equal to the limit of the solutions 
to a sequence of corresponding finite-horizon problems, each of  which has a zero 
restriction imposed on the terminal capital stock. 

4When 4) is singular, the control vector can be augmented to include some of the components of 
consumption or the labor-using intermediate activities. 
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3. Solving the deterministic linear regulator problem 

In this section we describe ways to solve for the matrix Fy. Recall that this matrix has 
a double role. First, it gives the control law for a particular deterministic regulator 
problem. More importantly for us, it also gives a piece of the solution to the discounted 
stochastic regulator problem. 

In describing methods for computing Fy, it is convenient to work with the state- 
costate equations associated with the Lagrangian 

Cx2 

C = -- ~ [Yt'QyyYt q- vttl:gvt q- 2]~t+l'(Ayyyt q- ByVt -  yt+l)].  
t=o 

(3.~) 

First-order necessary conditions for the maximization o f / ;  with respect to  {Vt}tC~=O 
oo  and {Yt} t=O a r e  

Vt: RVt  q- By']~t+l : -  0 ,  t ~> 0, (3.2) 

Yt: #t = QyyYt + AyyllZt+l, t >~ O. (3.3) 

To obtain a composite state-costate evolution equation, solve (3.2) for vt, substitute 
the solution into the state evolution equation, and stack the resulting equation and 
(3.3) and write the state-costate evolution equation as 

I 
L/zt+] #t ' 

(3.4) 

where 

ByR- lpy  ~ [ Ay: ] °,1 ' I - % y  

There is also a continuous-time counterpart to this system given by 

IDyll =HIy I D pt L #t J ' 
(3.5) 

where 

Ayy -ByR-1By  '] 
H -= _Qyy - A y y '  " (3.6) 

Equation (3.5) is the state-costate equation corresponding to the continuous-time reg- 
oo  ! 

ulator problem with criterion - f0 [y(t) Qyvy(t) + u(t) 'Ru(t)]  dt and law of motion 
Dy(t) = Ayvy(t ) + Byu(t),  where D is the time-differentiation operator. We describe 
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several methods for solving Eqs (3.4) and (3.5). Formally, we will devote most of our 
attention to the discrete-time system (3.4). As we will see, methods designed for solv- 
ing the continuous-time system (3.5) can be adapted easily to solve the discrete-time 
system (3.4), and conversely. 

The solution to (3.4) of interest to us is the one that stabilizes the state-costate 
vector sequence for any initialization Y0, Since we have transformed the state vector 
to eliminate discounting, we impose stability in the form of square summability:, 

~ [Yt] 2<oo, 
t=o #t J 

(3.7) 

for the discrete-time system (3.4). (We impose the analogous square integrability 
restriction on the continuous time system (3.5).) 

One way to ascertain the solution to the deterministic regulator problem is to 
find an initial costate vector expressed as a function of the initial state vector Y0 that 
guarantees the stability of system (3.4) or (3.5). The initialization of the costate vector 
takes the form #o = PyYo and is replicated over time. Substituting PvYt for #t into 
(3.4), we find that 

( I  @ B y R  -1 B y ' P y ) y t + l  = A y y y t ,  

Ayy' Pyyt+l = -Qvyy t  + Pyyt. (3.8) 

It is straightforward to verify that 

(I + ByR- IBy 'Ru)  - '  : I - B~(R + By 'PyBy)- IBy 'Ru.  (3.9) 

Solving the first equation in (3.8) for Yt+l 

Yt+l = (Avv - BvFv)Yt, (3.10) 

where 

Fy = (R + By 'PyBy) - lBv 'PyAyy .  (3.11) 

Premultiplying (3.10) by Ayy'P~ gives 

Auv' Pvy~+l = (Avv' PvAyy - Avu' PuBvfu)yt .  (3.12) 

For the right-hand side of Eq. (3.12) to agree with the right-hand side of the second 
equation of (3.8) for any initialization Y0, it must be that 

Py = Qvv + Ayv'PyAvy - Ayy 'PyBv(R + Bv 'PyBy) - 'By 'P~Avv  

= Qyy + (Avy - ByFy)'Py(Ayy - BvFv) + Fy'RFv, (3,,13) 
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which is the familiar Riccati equation. In other words, the matrix Pv used to set the 
initial condition on the costate vector is also a solution to the Riccati equation (3.13). 
With this initialization, the costate relation #t = PvYt holds for all t ~> 0. Finally, it 
follows from (3.10) that this state-costate solution is implemented by the control law 

Vt  = - F g y t .  

The remainder of  this section is organized as follows. In the first subsection, we 
initially consider the case in which the matrix Ayv is nonsingular. While this case is 
studied for pedagogical simplicity, it is also of interest in its own right. In the second 
subsection, we then treat the more general case in which Ayy can be singular. As 
emphasized by Pappas, Laub and Sandell (1980), singularity in Ayy occurs naturally 
in dynamic systems with delays. One of our example economics used in our numerical 
experiments has a singular matrix Auu. Finally, in the third subsection we study the 
continuous-time counterpart to the deterministic regulator problem. We describe an 
alternative solution method and show how to convert a discrete-time regulator problem 
into a continuous-time regulator with the same relation between optimally chosen 
state and costatc vectors. We defer the discussion of the numerical algorithms used 
for implementing these methods until the next section. 

3.1. Nonsingular Avy 

When the matrix Avy is nonsingular, we can solve (3.4) for [ Vt+l ]. 
• L ~ t + l  .1 

~ t  -t- 1 ~ ' t  ' 

where 

M = L - I N  
I - - B ~-]R ta~ - i ]  = A v v + B v R  1Bv'A~y IQv v - w ~ ~y ' - vv  I 

t --1 t --I " -Ayy Qyy A~y ] 

(3.14) 

(3.15) 

We find the matrix Pv by locating the stable invariant subspace of the matrix M.  

DEFINITION. An invariant subspace of a matrix M is a linear space C of  possibly 
complex vectors for which MC = C. 

Invariant subspaces are constructed by taking linear combinations of eigenvectors 
of M.  A stable invariant subspace is one for which the corresponding eigenvalues 
have absolute values less than one. To solve the model, we aim to find the matrix 

Py such that [ / y  ]y  is in the stable invariant subspace of  M for every n dimensional 

vector y. We now elaborate on how to compute this subspace. 
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The matrix M has a particular structure that we can exploit in characterizing its 

eigenvalues. To represent this structure, we introduce a matrix J given by 

Notice that J -1  = j~ = _ j .  

DEFINITION. A matrix M is symplectic if M J M  ~ = J. 

It is straightforward to verify that M given by (3.15) is symplectic. It follows that 

M ~ = J - I M - I J .  (3.16) 

Therefore, the transpose of M is similar to its inverse. Recall that similar matrices 
define the same linear transformation but with respect to a different coordinate system. 
Thus M ~ and M -1 share the same eigenvalues. For any matrix M,  the eigenvalues of 
M -  1 are the reciprocals of the eigenvalues of M, so it follows that the eigenvalues of 
a real symplectic matrix come in reciprocal pairs, and the number of stable eigenvalues 
cannot exceed the number of states n. However, merely requiring M to be symplectic 
permits there to be eigenvatues with absolute values equal to one, and so we will 
need an additional argument to show that there are exactly n stable eigenvalues. 

To locate the stable invariant subspace of the symplectic matrix M, we follow Laub 
(t979) and (block) triangularize M: 

V - I  M V  = W, 

W= [ Wll W221VVl2 ] , (3.17) 

where V is a nonsingular matrix. By construction, the matrices M and W are similar. 
The matrix partitions in (3.17) are built to coincide with the number of stable and 
unstable eigenvalues. In particular, the absolute values of the eigenvalues of WII are 
stable. 

A special case of this decomposition is an appropriately ordered Jordan decom- 
position of M as was used by Vaughan (1970) in developing an invariant subspace 
algorithm for computing Pu. Laub (1991) traces this solution strategy back to the 19th 
century and credits MacFarlane (1963) and Potter (1966) with introducing it to the 
control literature. As emphasized by Laub (1991), it is preferable to build algorithms 
based on other upper triangular decompositions that are more numerically stable. The 
Jordan decomposition is particularly problematic when the symplectic matrix M has 
eigenvalues with multiplicities greater than one (see also Golub and Wilkinson 1976). 
In the next section, we describe alternative Schur decompositions, which are more 
reliable numerically. 
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To use this triangularization to calculate Pv, apply V -1 to both sides of the state 
Eq. (3.14): 

* = Wy~ Yt+l 

where 

. _ _ V - 1  [Yt ]  
Yt #t 

This transformation permits us to study asymptotic properties in terms of two smaller 
uncoupled subsystems. Partition y~" into two blocks with dimensions given by the 
number of  stable and unstable eigenvalues: 

Yt 1_ Y2,t .1 

Then 

Y2,t+l = WzzYz,t, 

y* and the solution sequence { 2,t} fails to converge to zero unless it is initialized at 
zero. Setting y* 2,o at zero can be accomplished by an appropriate initialization of the 
costate vector, as we now verify• 

Partition the matrices V and V - I  as 

[ Vll V12] V-1 [V ll V 12 ] 
v = v =j ' = Lv2 ,  v 2j • 

Since V is nonsingular and there exists a (stable) solution to the optimal control 
problem, we must have 

V21y t + vZ2# t  = O. 

The rank of the matrix [ V 21 
M,  and thus the rank of its null space must equal the number of  stable eigenvalues. 
For a solution to exist for every initialization Y0 = Y, it follows from (3.18) that there 
must exist a # such that 

V21y + V22# -- O. 

(3.18) 

V22 t equals the number of unstable eigenvalues of 
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Thus the dimensionality of the null space of [ I/"2t V 22 ] must also be at least n. 

Therefore, M has exactly n stable eigenvalues, and the matrix partition V 22 is non- 

singular. Solving (3.18) for #t gives 

P,t ~-- - (V 22) - t V21 Yr. 

Consequently, the matrix Pu used to initialize the costate vector is given by 

P.v ~--- - ( V 2 2 )  -1V21 ~- V21Vl1-1, (3.19) 

[v~l 
where the second equality follows since L V21 ] has rank n, and 

L½1 = 0. 

3.2. Singular Avy 

We now extend the solution method to accommodate singularity in Auy. This method 

avoids inverting the L matrix in (3.4). Instead of locating the stable invariant subspace 

of M,  a deflating subspace method finds the stable deflating subspace of the pencil 

),L - N.  

DEFINITION. A pencil AL - N is the family of matrices {AL - N}  indexed by the 

complex variable A. 

DEFINITION. A deflating subspace of the pencil AL - N is the subspace C of complex 
vectors such that the dimension of C is at least as large as the dimension of the sum 

of the subspaces LC and NC.  

For the matrices L and N of Eq. (3.4), it can be verified that the intersection of their 

null spaces contains only the zero vector? This ensures that a generalized eigenvalue 

problem is well posed. When a subspace C is deflating, there exists a vector' x in C 
that solves the generalized eigenvalue problem 

ALy -- N y  

5See Theorem 3 of Pappas, Laub and Sandell (1980) for the case in which (Awu , Du) is detectable. 
As we noted previously, the restriction to a detectable system rules out some interesting economic models. 
More generally, nonexistence of a common nonzero vector in the null spaces of N and L can be shown 
by way of contradiction. Suppose there is a common nonzero vector in the null space. Then the matrix 
(I + QyvByR-IBy t) is singular. However, this singularity contradicts Theorem 1 of Kimura (1988). 
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[see Stewart (1972, Theorem 2.1)]. Implicitly, we are including the possibility of a 
solution with A = e~, which occurs when y is in the null space of L but not in the null 
space of N. As with the previous (invariant subspace) method, the deflating subspace 
of interest for solving the optimal control problem is the deflating subspace associated 
with the stable state-costate sequence. The stable deflating subspace is the subspace 
associated with the stable generalized eigenvectors (the eigenvectors associated with 
generalized eigenvalues with absolute values strictly less than one). Hence we solve 

the model by finding a matrix Pv such that [ L  ]Y is in the stable deflating subspace 
- y ,  

of the pencil AL - N. 
Recall that when Avy is nonsingular, the matrix M is symplectic. More generally, 

system (3.4) is associated with a symplectic pencil 

DEFINITION. A pencil AL - N is symplectic if L J L  I = N J N  ~. 

Pappas, Laub and Sandell (1980, Theorem 4) show that the generalized eigenvalues 
of the symplectic pencil (AL - N)  come in reciprocal pairs, just as the eigenvalues 
of M do when Ayy is nonsingular. Hence we again have that the number of stable 
generalized eigenvalues is no greater than n. Furthermore, we can imitate our argument 
in the case in which Ayy is nonsingular to show that there are exactly n stable 
generalized eigenvalues. 6 

We triangularize the state-costate system (3.4) using the solutions to the generalized 
eigenvalue problem. As in Theorem 2.1 of Stewart (1972), there exists a decomposi- 
tion of the pencil AL - N such that 

T== j ' U N V  = w = w== ' 

where U and V are unitary matrices and the matrix partitions have the same number, 
n, of elements as the number of entries in the state vector yr. Premultiplication of the 
pencil AL - N by the nonsingular matrix U preserves the solutions to the generalized 
eigenvalue problem, and postmultiplication by V alters the generalized eigenvectors 
but not the eigenvalues. A consequence of the triangularization is that the solutions 
to the generalized eigenvalue problem for the original system are constructed directly 
from the solutions to the following two smaller problems: 

ATI:~? = W:t~, 

,~Tz2y = W22Y. (3.21) 

As with the invariant subspace method, we build the blocks of the triangularization 
so that the generalized eigenvalues of the first problem in (3.21) satisfy I,,k[ < 1, and 

6Theorems 3 and .4 of Pappas, Laub and Sandell (1980) establish this result when the pair (Ayv , Dv) 
is detectable. 
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for the second problem IAI > 1. As a consequence, the span of the first rz columns of 
V gives the vectors of the deflating subspace we seek. The span of the remaining rL 
columns contains the problematic initializations of the state-costate vector for which 
the implied sequence of state-costate vectors diverges exponentially. In addition, it 
includes the span of the generalized eigenvectors associated with infinite eigenvalues. 
Imitating the solution.method when Avv is nonsingular, we initialize the costate vector 
as #t = P.vY~, where the matrix P.v is again given by (3.19). 

To understand better the nature of this unstable subspace, recall that an eigenvec- 
tot associated with an infinite eigenvalue is in the null space of T22. Suppose the 
triangularization of L and N is built so that we can further partition the matrices: 

'/722= 0 

022 J ' 

where the matrices MH and 022 are nonsingular. Such a triangularization always 
exists. Consider solving the following equation recursively for a sequence {yt+l }; for 
each t solve for 9t+l given 9t by using 

For this equation to have a solution, the second component of Yt must be zero for all 
t because 

O22fft,2 = 0, (3.22) 

and 022 is nonsingular. In addition to eliminating the nonexistence problem, impos- 
ing this restriction also resolves the multiplicity problem. Note that the multiplicity 
problem for the triangular system is that for a given t, (3.22) does not restrict Xt+l,2. 
However, (3.22) applied to time t + 1 resolves the problem. 

3.3. Continuous-time systems 

To conclude this section, we consider solving continuous-time Hamiltonian systems 
of the form (3.5). The defining feature of a Hamiltonian matrix is: 

DEFINITION. A matrix H is Hamiltonian if J H  is symmetric. 

The matrix H in (3.5), (3.6) clearly satisfies this property. It follows that 

H' = - J H J  - I ,  
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which in turn implies that the matrix H '  is similar to - H .  Consequently, the eigenval- 
ues of  a real Hamiltonian matrix come in pairs that are symmetric about the imaginary 
axis of  the complex plane. The stable eigenvalues of a Hamiltonian matrix are those 
whose real parts are strictly negative. Similar  arguments to those given above guaran- 
tee that there are exactly n stable eigenvalues of H .  Therefore, (3.5) can be solved by 
using an invariant subspace method and its associated decomposit ion (3.17), provided 
that the classification of  stable and unstable eigenvatues is modified appropriately. 7 

There is an alternative approach for solving a continuous-time Hamiltonian system. 
Given a Hamiltonian matrix H ,  another Hamiltonian matrix G is constructed with the 
same stable and unstable invariant subspaces. The matrix G is called the "sign" of  
the matrix H ,  and is defined as follows. Take the Jordan decomposit ion of  H:  

H = V [  All 0 I V - I  
0 A22 ' 

where Al l  is an upper triangular matrix with the eigenvalues of H that have strictly 
negative real parts on the diagonals, and A22 is an upper triangular matrix with the 
eigenvalues of  H that have strictly positive real parts on the diagonals. Then 

o, 
Thus the sign of a matrix is a new matrix with the same eigenvectors as the original 
matrix and with eigenvalues replaced by - 1  or 1 depending on the signs of  the real 
parts of  the original eigenvalues. 

The matrix Pv can be inferred directly from G. To see this, we use an insight from 
Roberts (1980). By construction, all of the stable eigenvalues of  G are equal to - 1 .  
Consequently, the matrix Pv satisfies the following eigenvalue problem: 

for any 'r~ dimensional vector y, and the matrix Py solves the affine equation 

(3.23) 

This method is implemented by finding fast ways to compute the "sign" of  a matrix. 

7Deflating subspace methods are not needed for solving the class of continuous-time quadratic control 
problems considered here because we can form directly the Hamiltonian matrix and apply an invariant 
subspace method. However, as we have formulated it, the continuous-time problem does not permit systems 
with finite gestation lags in making investment goods productive or systems for which consumption services 
depend on only a finite interval of past consumptions. 
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While the matrix sign method is directly applicable for solving continuous-time 
Hamiltonian systems, Hitz and Anderson (1972) and Gardiner and Laub (1986) show 
how to use it to locate deflating subspaces of discrete-time systems, Consider the 
generalized eigenvalue problem for the symplectic pencil 

Then 

A L y - -  N .  

(1 + A)(L - N ) y  ---= (1 - A)(L + N ) y .  

Since tile only common vector in the null space of L and N is zero, we construct the 
solution to the eigenvalue problem 

5y = ( N -  L) - I ( L  + N ) ,  

where 

d -  
A + I  

) , - 1 '  

Consequently, the stability relations (2.1) carry over here as well, and we apply the 
matrix sign algorithm to (N - L ) - I (L  + N). 

It also turns out that ( N  - L ) - I ( L  + N )  is a Hamiltonian matrix, which we can 
exploit in computation. To verify the Hamiltonian structure, note that 

( L -  N ) J ( L '  + N ' )  = L J L '  - N J N '  - N J L '  + L J N '  

= - N J L  l + L J N  I 

= N J N  I - L J L  I - N J U  + L J N  I 

=- - ( L  + N ) J ( L '  - N ' ) ,  

where we have used the fact that AL - N is a symplectic pencil. Therefore, 

J ( L  - N ) - I ( L +  N ) =  (L' 

= ( L '  

= ( L '  

= ( L '  

+ N ' ) ( L '  + N ' ) - t J ( L  - N )  - I  (L + N )  

+ N ' ) [ - ( L  - N ) J ( L '  + N ' ) ] - I  (L + N) 

+ N ' ) [ (L  + N ) J ( L '  - N ' ) ] - l ( L  + N)  

+ N ' ) ( L '  - N ' ) - ' J ' ,  

which proves that (N - L) -1 (L + N) is a Hamiltonian matrix. 
In summary, by construction, the stable (unstable) invm'iant subspace of the Hamil- 

tonian matrix ( N  - L ) - I ( L  + N )  coincides with the stable (unstable) deflating 
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subspace of the symplectic pencil AL - N. This coincidence permits us to compute 
the matrix Pv used for initializing the costate vector for the discrete-time system (3.4) 
by applying a matrix sign algorithm to (N - L ) - I (L  + N). 

4. Computational techniques for solving Riccati equations 

We consider three types of algorithms for computing Py: 

(i) Schur algorithm; 
(ii) doubling algorithm; 
(iii) matrix sign algorithm. 

A Schur algorithm is based on locating a stable subspace using a Schur decomposition 
of the state-costate system. As we noted in the previous section, once a stable subspace 
is located, the relevant Riccati equation solution Pv is easily computed. There are two 
versions of a Schur decomposition, depending on whether the matrix Avv is known to 
be nonsingular or not. A Schur decomposition gives a more reliable way of locating 
stable spaces than the familiar Jordan decomposition and its generalization for pencils. 

A doubling algorithm is an iterative method for speeding up the dynamic pro- 
gramming Riccati equation iteration by doubling the number of time periods in each 
iteration. Recall from our discussion in the previous section that the stable deflating 
subspace of the pencil {AL - N} coincides with the invariant subspace of the sign 
of the matrix (L - N)  -1 (L + N) associated with the eigenvalue - 1 .  A matrix sign 
algorithm is an iterative method for computing the sign of (L - N)  -1 (L + N) from 
which we can recover P'u easily. 

4.1. Schur algorithm 

Suppose the matrix Avv is nonsingular. As we noted in Section 3, the matrix Pv can 
be found by locating the stable invariant subspace of the matrix M given in (3.15). 
In some of our numerical calculations, we use what is referred to as a real Schur 
decomposition of M to locate its invariant subspace. 

DEFINITION. The real Schur decomposition of a real matrix M is an orthogonal matrix 
<V and a real upper block triangular matrix W such that 

A A 

1 WI2 . . .  WI~ 

W =  . . . . 

. . .  0 ~ . ~  
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where Wii is either a scalar or a 2 x 2 matrix with complex conjugate eigenvalues. 8 

A real Schur decomposition is a computationally convenient version of the block 
triangular decomposition (3.17) used to compute Pv when Avv is nonsingular. Golub 
and Van Loan (1989) describe how to compute the real Schur decomposition (in 
particular, see Sections 7.4 and 7.5). Recall that the block triangular matrix W in 
(3.17) results from partitioning the eigenvatues into stable and unstable eigenvalues. 
Algorithms that compute the real Schur decomposition of  a matrix typically do not 

partition the diagonal blocks of W according to stability. Instead, given an arbitrary 
A ~ A  

real Schur decomposition M = V W V  I, one can use the approaches described in either 
Bai and Demmel (1993) or Stewart (1976) to construct a sequence of  orthogonal 

transformations that reorder the diagonal blocks of ~/ ,  while updating V so that 

M = V W V  ~ holds at every step. 
In summary, the steps for implementing a Schur algorithm are 

(1) form the matrix M in (3.15); 
(2) form a real Schur decomposition of M where the first n columns of  V, written in 

a partitioned form as [ Vii ! Y21 ! jr ,  are a basis for the stable invariant subspace 
of  M;  

( 3 )  s o l v e  Py~rll ~- V21 for Pv" 

For the numerical computations which follow, we compute the real Schur decomposi- 
tion of  M using the LAPACK 9 function DGEES. For comparisons, we also compute 
an eigenvector decomposition using the built-in MATLAB function EIG. Our eigen- 
vector routine assumes that the eigenvalues of M are distinct, and we do not attempt 
to implement an algorithm designed for the more troublesome case in which there 
are repeated eigenvalues. We compute Pv in step (3) using the built-in MATLAB 
operator ' / ' ,  which solves a linear equation using Gaussian elimination with partial 
pivoting. 

A deflating subspace method is required when Auy is singular and likely to be more 
stable numerically when Auy is nearly singular. To implement this approach in prac- 
tice, we use an ordered real generalized Schur decomposition to find an appropriate 
triangularization of the state-costate dynamical system [see Van Dooren (1982)]. 

DEFINITION. A generalized real Schur decomposition of a real matrix pencil AL - N 
is a pair of  orthogonal matrices U and V, a real upper triangular matrix T, and a real 

8There is also a complex Schur decomposition of a real or complex matrix in which V is a unitary 
matrix and l~ is upper triangular. 

9The algorithms described in this paper use routines from the FORTRAN packages LAPACK, LINPACK 
and RICPACK. All of these packages can be obtained by anonymous tip from netlib.att.com and various 
nfirrors. MATLAB is a commercial matrix algebra package available from The MathWorks, Inc. All of our 
FORTRAN routines are implemented as MATLAB MEX-files. 
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A 

upper block triangular matrix W, such that 
A 

il 
l . .  

UL~" = T = T22 . . .  
" , ,  " , ,  

• , . 0 

A A ~ W 2 2  

U N V  = W = . 

[. 0 . . .  

T2,~, ] 
A 

• .. Wire 1 

0 

where the pencil k2~ii - ~ i i  is either a 1 × 1 matrix pencil or a 2 x 2 matrix pencil 
with complex conjugate generalized eigenvalues. 

As with the real Schur decomposition, we initially compute a generalized real Schur 
decomposition of ~L - N without regard to whether the generalized eigenvalues are 

stable or not. We then reorder the diagonal blocks of T and W so that the generalized 
eigenvalues are partitioned in the manner required by (3.20). This partitioning can be 
done using the algorithms described in Van Dooren (1981, 1982) or in K~tgstr6m and 
Poromaa (1994). 

Thus the steps for implementing a generalized Schur algorithm are 

(1) form the matrices L and N in (3.4); 
(2) form a generalized real Schur decomposition of the pencil ~L - N where the 

first n columns of V, written in a partitioned form as [ Vii ! V211 it, span the 
deflating subs p~ e  of the pencil ~L - N; 

(3) solve P ~ 1  = V21 for P v .  

For the numerical comparisons which follow, we implement the generalized Schu(  
algorithm by using the routines QZHESW, QZITW, QVAL, and ORDER from RIC- 
PACK. We also report results for a method that uses generalized eigenvectors to 
compute deflating subspaces. This method takes the first n columns of the matrix 
to be the generalized eigenvectors of AL - N that correspond to stable generalized 
eigenvalues. We implement this method using the built-in MATLAB function EIG, 
making no attempt to handle repeated generalized eigenvalues. 

4.2 .  D o u b l i n g  a l g o r i t h m  

Dynamic programming solves the infinite horizon problem by backward induction, 
which leads to iterations on the Riccati equation (3.13). A doubling algorithm can be 
viewed as a refinement of this approach. It preserves the idea of approximating the 
solution to the infinite horizon problem by a sequence of finite horizon problems, but 
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instead of increasing the horizon by one time period in each iteration, the number of  
time periods gets doubled. 

To see how this approach works, recall that the solution to the finite horizon problem 
for periods 0, . . . ,  ( r -  1) can be viewed as a two point boundary value problem where 
the initial state vector Y0 is set to some arbitrary vector y and the costate vector at 
the terminal date #~- is set to zero. Suppose for simplicity that Ayy is nonsingular. By 
iterating on relation (3.14), we find that 

[ ].0  41, 
where 

A 

M =_ M -'~. 

To approximate the matrix PAy, we solve (4.1) for the initial costate vector #0 as a 

function of  Y0. Partitioning M conformably to the state-costate partition, we see that 

A 

M l l Y r  = YO, M21Yr = #o. 

Therefore, the implicit initialization of the costate vector is 

, o  = 

and our approximation for the matrix Py is given by M21(Mll) -1. 

What is needed to implement this approach is a way to compute M when the horizon 
r is large. Expanding the horizon one period at a time corresponds to multiplying the 
matrix M - l ,  r times in succession. However, when r is chosen to be a power of 
two, computations can be sped up by using 

M - 2  k+t = ( m - 2 k ) M  -2k. (4.2) 

As a consequence, when r - 2J, the desired matrix can be computed in j iterations 
instead of 2J iterations, which explains the name doubling algorithm. 

Given that the matrix M - l  has unstable eigenvalues, direct iterations on (4.2) 

can be very unreliable. Clearly, the sequence of matrices { M  -2k } diverges. One of 
the features of  a doubling algorithm is to transform these computations into matrix 
iterations that converge. Another feature is that a doubling algorithm exploits the fact 
that the matrix M is symplectic. Symplectic matrices have several nice properties, l° 
We have already seen that their eigenvalues come in reciprocal pairs. In addition, the 

t°There is a variation of the Schur algorithm that exploits the symplectic structurc of M. See pages 
431-434 of Petkov et al. (1991) for an overview of this algorithm. 
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product of symplectic matrices is symplectic, and the inverse of a symplectic matrix 
is symplectic. Moreover, for any symplectic matrix S, the matrices $21 ($11)-1 and 
($11)-t Sl2 are both symmetric and 

~22 = (~1 I ' )  -1 -l- ~21(~11)--1S12 

= ( S l l ' )  -1 -~- S21 ( S l l ) - l S l l  ( S l l ) - l s 1 2  . 

Therefore, a (2n × 2n) symplectic matrix can be represented in terms of the three 
n × n matrices a --- ( S u ) - 1  fl __ ( S u ) - l & 2 ,  7 = $21 ($11)-1, the latter two of which 
are symmetric. 

The doubling algorithm described by Anderson (1978) and Anderson and Moore 
(1979) exploits such a representation by using the following parameterization of 
M-2k: 

M_2 ~: [ (O~k) -1 (Ozk)-l~k ] 

= LT~(cx~) -1 o~k' + 7k(o~k)-lF3k I ' 

where the n × n matrices c~k,/3k, % are given by the recursions 

ak+i = a k ( I  + ~k"/k)-~ c~k, 

/3k+l =/3k + ~k( I  +/3k7~)-l /~kak ', 

7 k + l  = 7k + oe~'%(I +/3k%)-lak. (4.3) 

While this alternative parameterization introduces a matrix inverse into the recursions 
(4.3) that is absent in (4.2), the matrix I +/3k% being inverted is only n dimensional. 
The nonsingularity of this matrix for all k is established in Kimura (1988). To initialize 
the doubling algorithm, we simply deduce the implicit parameterization of M - I  given 
in partitioned form by 

[ Avv - j  A y y - 1 B y R - I B y  ' ] 
M -1 = N - 1 L  = [QyyAyy-I  Q y y A y y - t B y R - I B . v  ' + Ayy 1j ' (4.4) 

which leads to the initializations 

ao = Ayy, ~o = B v R - 1 B v  ', 7o = Qvv  

While our derivation took the matrix Avv to be nonsingular, Anderson (1978) argues 
that the doubling algorithm is more generally applicable. 

A convenient feature of this parameterization is that there are known conditions un- 
der which the matrix sequences {ak}, {/3~}, {%} converge. When the pair (Avy , Dr) 
is detectable, then the sequence {Tk} is nondec'reasing and converges to the matrix Pv. 
(Here we are adopting the usual partial ordering for positive semidefinite matrices,) 
As noted by Kimura (1988, Theorem 5), under the same restrictions, the sequence 
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{ilk} is nondecreasing and converges to a positive semidefinite matrix P.,~ associated 
with a "dual" to the deterministic regulator problem. 

The convergence of  the {c~k} sequence is more problematic. Unfortunately, without 
simultaneous convergence of {c~k}, it is not evident that iterations of  the form given 
in (4.3) can be used as the basis of a numerical algorithm. If  this latter sequence 
diverges, small numerical errors may get magnified, causing the resulting algorithm 
to be poorly behaved. Kimura (1988) provides some sufficient conditions for {c~} 
to converge to a matrix of zeros. His sufficient conditions are used to guarantee that 
either P.v or Pv is nonsingular. 

As we noted previously, a sufficient condition for Py to be nonsingular is that the 
pair (Ayv, Dr) be observable. Sufficient conditions for the nonsingularity of the matrix 
P~ are that (i) (Avv , By) is controllable; and (ii) (Avv,.Dv) is detectable [Kimura 
(1988)]. Recall that controllability is often achieved by our a priori partitioning of 
the state vector into endogenous and exogenous components. Thus for our purposes, 
the restrictions guaranteeing the nonsingularity of P~ may be of  particular interest. 
Even so, detectability is too strong for some of our applications. 

To apply a doubling algorithm more generally, we sometimes modify the control 
problem by adding small quadratic penalties to linear combinations of the states and 
controls. As long as these penalties are sufficient to guarantee that either Pv or P~ is 
nonsingular, we are assured of  convergence of all three sequences. Of course, there 
is a danger that the penalty distorts the solution to the original control problem in a 
nontrivial way, which must be checked in practice. 

4.2.1. Initialization from a positive definite matrix 

Instead of adding small quadratic penalties to the objective function for each calendar 
date, we could add a terminal penalty to the finite horizon approximation to the con- 
trol problem. From Chan, Goodwin and Sin (1984), it is known that iterations on the 
Riccati difference equation converge to the unique stabilizing solution whenever the 
Riccati equation is initialized at a positive definite matrix. I1 Initializing the Riccati 
difference equation at a positive definite matrix is equivalent to imposing a terminal 
penalty that is a negative definite quadratic form in the state vector. We will now show 
how to initialize the doubling algorithm to impose a terminal penalty. This will permit 
us to compute Py via a doubling algorithm for a richer class of  control problems. 

Consider first a finite time horizon problem with a quadratic penalty on the terminal 
state. We select this penalty so that the terminal multiplier >~ = Poy~ for some 
positive definite matrix Po. Then Eq. (4.1) is altered to be 

A[I 1 Ey0] M Po Y~ = #o ' (4.5) 

llHere we axe using the fact that the pair (Ayy, By) is stabilizable and that there exists a solution to 
the deterministic regulator problem when constraint (2.1) is imposed. The result follows from (i) and (iii) 
of Theorem 3.1 and Theorem 4.2 of Chan, Goodwin and Sin (1984). 
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Build a matrix K 

I 

Then Eq. (4.5) can be rewritten as 

K - 1 M K K - 1  Po y~- = #o 

Equivalently, 

- P o y o  ' 

where 

M *  = K - 1 M K .  

Partitioning M* consistently with the state-costate vector, the implicit initialization 
of the costate vector is now 

#o = PoYO + M12(Mll) y0, 

and our approximation for Pu is given by M1*2(M~I) -1 + Po. 
We are now left with computing the matrix M* when the horizon -r is very large. 

Notice that 

M* = ( K - 1 M K )  -~. 

It is straightforward to verify that because M is symplectic, so is K - I M K .  This 
means that doubling algorithm (4.3) is applicable for computing ( I £ - l M K ) - 2 k ;  how- 
ever, the initializations must be altered. The new initializations can be deduced by 
looking at the implicit parameterization of the symplectic matrix K - 1 M  -1 K,  and 
they are given by 

c~o = (I  + B y R - 1 B y ' P o ) - I  Ayy,  

/3o = (I  + B y R - 1 B v ' P o ) - 1 B v R - I  Bv ', (4.6) 

~YO : Qyv - Po + Ayv 'Po ( I  + B y R - 1 B y ' P o ) - l A v y  . 

Not surprisingly, the original initializations coincide with setting Po to zero in (4.6). 
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There are two related advantages to these initializations over the previous ones. 
First, the sequence {3'2} converges to P~ - Po whenever Po is positive definite. This 
follows from the Riccati difference equation convergence described previously and 
does not require that (Avv , Dy) be detectable. Second, the sequence {C/j} converges 
and satisfies the bounds 

0 < C/j ~ (/Do) - 1  

even when (Ayy, Dy) is not detectable. 12 Although we do not have a complete char- 
acterization of convergence of the resulting algorithm, all three matrix sequences 
(including { % } )  are guaranteed to converge with these alternative initializations if 
they converge with the original ones. 

In summary, the steps for implementing the doubling algorithm are 

( t )  initialize ct0,/3o, and 7o according to (4.6); 
(2) iterate in accordance with (4.3); 
(3) form Py as the limit of {Tk} + Po. 

We implement the doubling algorithm in FORTRAN, exploiting the fact that c/k and 
% are symmetric matrices for all k. 13 We use two different settings for Po. To obtain 
the original doubling algorithm, we set Po to zero; and to investigate the potential 
advantages of  including a terminal penalty, we set t='o to an identity matrix. 

12The convergence and bound can be established as follows. Let {/3~} denote the sequence starting 
from the original initialization. Then it is straightforward to show that 

~j (l + * - '  * = ~jPo)  [~j. 

Exploiting the nonsingularity of.Po, the following equivalent formula can be deduced: 

flj = (Po) -1 - ( P o  + Pofl2 Po) - l ,  

The reported bound follows immediately. The sequence {fl~ } is monotone increasing because it is a 
subsequence of Riccati difference equation iterations for a dual problem initialized at zero. Therefore, the 
sequence {flj } is also monotone increasing. Given the upper bound (Po)  - I ,  this latter sequence must  
converge. 

13We iterate on (4.3) until 

II~k -7k-Il l1 ~ ~ II~kll,, 

where we set e = 1 x 10 -15 on a computer with a machine precision of 2 -52 ~ 2.2204 × 10 - 1¢,. Here 
ltX[[l denotes the matrix l -norm of a matrix X:  

IIXlll = ,~ax ~ Ix~jl • 
i 
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4.2.2. Application to continuous time 

As noted by Anderson (1978) and Kimura (1989), a doubling algorithm for a discrete- 
time symplectic system can be used to solve a continuous-time Hamiltonian system. 
Recall that in our discussion of solving control problems via a matrix sign algorithm, 
we showed how to convert a discrete-time symplectic system into a continuous- 
time Hamiltonian system. To apply a doubling algorithm, we want to "invert" this 
mapping, e.g., given a Hamiltonian matrix H,  we construct a symplectic pencil with 
the same stable deflating subspace. The symplectic pencil associated with H is given 
by A(I + H)  - ( I  - H).  By adopting a very similar argument as before, we found it 
easy to show that the generalized eigenvectors for the constructed pencil coincide with 
the eigenvectors of the original Hamiltonian matrix H.  Moreover, the classification 
of stable and unstable (generalized) eigenvalues is preserved. 

4.3. Matrix sign algorithm 

In Section 3.3 we showed how to compute Py from the sign of tile Hamiltonian 
matrix for a continuous-time state-costate system. To compute Py for a symplectic 
pencil AL - N, we first form the Hamiltonian matrix 

H = (L - N ) - l ( L  + N) 

and then compute sign(H). For this to be a viable solution method, we must be able 
to compute sign(H) easily. 

There are alternative matrix sign algorithms. An algorithm advocated by Roberts 
(1980) and Denman and Beavers (1976) is to average a matrix and its inverse: 

Go = H, 

Gk+l = G k + ~ [ ( G k )  - 1 - G k ] ,  k = 0 , 1 , . . . .  (4.7) 

To speed up convergence, Gardiner and Laub (1986) suggest using the recursion 

Go = H, 

1 
Gk+l = ~£ck(Gk q:- ek2Gk-I) ,  

where 

e-k = t detGkt 1/n (4.8) 
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Bierman (1984) and Byers (1987) propose a further refinement, which exploits the 
fact that the matrix Gk is a Hamiltonian matrix for each k. Recall that if H is a 
Hamiltonian matrix, then J H  is symmetric where 

o'] 
Hence 

1 (JGk + ek2JJGk-lJ),  JGk+l = (4.9) 

where ek is either set to one as in the original sign algorithm or set via for- 
mula (4.8) using JGk in place of Gk. Consequently, it suffices to compute the se- 
quence of symmetric matrices {JGk} recursively via (4.9) starting from the initializa- 
tion J H .  14 

in summary, the steps for implementing a matrix sign algorithm are 

(1) form the matrices L and N in (3.4); 
(2) compute G, the sign of (N - L ) - I ( L  + N);  
(3) compute Pv by solving the over-determined system 

GI2 ] [ G I I  + / ]  

G22 @ I Py = - L a21 J 
(4.10) 

for /~v" 

For our numerical comparisons, we compute the sign of G by iterating on (4.9) until 

convergence with ek = I detJGktl/'~. 15 To compute (JGk) -I we use the symmetric 
inversion routines DSIFA and DSIDI from LINPACK. We solve (4.10) for Pv using 
least squares. 

As noted in Anderson (1978), the original sign algorithm (4.7) also can be viewed 
as a doubling algorithm. Interpreted in this manner, it uses (at least implicitly) an 
alternative parameterization of the symplectic matrix M -1 to that used in doubling 
algorithm (4.3). Both recursions entail inverting a matrix. While recursion (4.9) re- 
quires that a symmetric (2n x 2n) matrix be inverted in each iteration, the doubling 
algorithm (4.3) requires that a nonsymmetric n x n matrix be computed at each 
iteration. 

14Kenney, Laub and Papadopoulos (1993) and Lu and Lin (1993) discuss further improvements to the 
matrix sign algorithm. 

15More precisely, we iterate on (4.9) until 

}lJGk - JGk-llll ~ ellJGktll, 

where e = 1 × 10 -15 . 
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5. Solving the augmented regulator problem 

So far, we have shown how to compute the matrix Fy, which provides us with the 
optimal control law for the deterministic regulator problem. This matrix also gives us 
a piece of the solution to the augmented control problem and, hence, to the problem 
of interest: the discounted stochastic regulator problem. The missing ingredient is the 
matrix F, ,  where the optimal control law for the augmented regulator problem is 
given by vt = ~FvYt  - F~zt. In this section, we show that F~ can be calculated by 
solving a particular Sylvester equation. 

We start by forming a Lagrangian modified to incorporate the exogenous state 
vector sequence {zt}: 

cyo 

/2 = - ~ [Yt'Qyvyt + 2yt 'Qy~& + vt'tgvt + 2pt+l ' (Ayyyt + Ay~z, + Byve - yt+,)], 
t = 0  

where the evolution of the forcing sequence is given by 

Z t + l  = Azzzt. (5.1) 

V (2o First-order necessary conditions for the maximization of /2  with respect to { t}t=0 
o o  and {Yt}t=o are 

vt: Rvt  + ByZ#t+l = 0, t ~> 0, (5.2) 

Yt: #t = Q, yyYt q- QyzZt + Ayy'ldt+l, [~ ) O. (5.3) 

Solve Eq. (5.2) for vt; substitute it into the state equation; and stack the resulting 
equation along with (5.3) and (5.1) as composite system 

L a |Pt+1 - - N  ~ Pt , 
k Z t + l  Zt 

where 

L a =_ Ayy I , N a - 

0 

Ay u 0 Ay, ] 

-Qyy I 
0 0 A ~  

(5.4) 

As with the deterministic regulator problem, the relevant solution is the one that 
stabilizes the state-costate vector for any initialization of Y0 and z0. Hence we seek a 
characterization of the multiplier Pt of the form 
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such that the resulting composite sequence [Yt' #t' zt ']' is in the stable deflat- 
ing subspace of  the augmented pencil AL a - N a. Assuming for the moment that a 
solution P exists, it must be the case that P = [ Py P ,  ], where Pv is the Riccati 
equation solution that was characterized in Section 3, and Pz is a matrix that has 
not yet been characterized. To see why this must be the case, note that the solution 
to the augmented regulator problem with z0 = 0 coincides with the solution to the 
deterministic regulator problem. We have previously shown that Pu is a matrix, such 
that all vectors in the deflating subspace of  the pencil AL - N can be represented 

as [ y' ytpy ] ' .  When the forcing sequence is initialized at zero, so it remains there 

for all t, it must also be the case that [y '  y'Py 0 ] '  is in the stable deflating sub- 
space of  the augmented pencil AL ~ - N a. This justifies our previous claim that the 
solution to the deterministic regulator problem gives us a piece of  the solution to the 
augmented regulator problem. 

To deduce the control law associated with the matrix P ,  we substitute P into (5.4), 
which yields 

L ~ + = Na Pyyt q- Pzzt. • 
k z t  + 1 z t  

If  we write the three equations in this composite system separately, 

(I + ByR-tBytPy)Yt+l  + ByR-IBytPzzt+I = Ayyyt + Ayzzt, 

Z t + l  = Azzzt. 

Substitute tile last equation into the first and solve for Yt+l: 

(5.5) 

Yt+l = (I  q-ByR-1By 'Py)  -1 [Auuyt + (A w - BvR- IBu 'P~A~)z t ] .  

It follows from relation (3.9) that this evolution equation for Yt can be rewritten as 

Yt+l = (Avv - BuFv)yt + (Ay~ - BvF~)zt, (5.6) 

where F u and Fz are given by 

! --1 ! Fy =_ (R + B u PvBy) B v PvAu> 
(5.7) 

For the reasons given previously, our construction of F v coincides with (3.11) used to 
represent the optimal control law for the deterministic regulator problem. Stability of  
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the state vector sequence {gt} is guaranteed by evolution Eq. (5.6) because the matrix 
Avv - B vFy is the same matrix that appears in the state evolution equation for the 
deterministic regulator problem under the optimal control law. Since the solution to 
the deterministic regulator problem is stable by design, the eigenvalues of A v u -  ByFy  
have absolute values that are strictly less than one. The optimal control law for the 
augmented regulator problem is given by 

vt = -- Fyyt  - Fzzt .  

The matrix F~ can be computed using formula (5.7) once we know Pz. We 
now show that P~ is the solution to a Sylvester equation. Premultiply (5.6) by 
Ayy '  Py: 

Ayv 'Pyy t+l  = Ay f f  Py(Avv  - BvFv )y t  + Ayv 'Py (Avz  - ByF~)z t .  (5.8) 

Using formula (5.7), we rewrite the coefficient matrix on zt as 

A y v ' P y ( A y z  - F~) = (Avv - B y F y ) ' ( P y A v z  + P ~ A ~ )  - A v v ' P ~ A ~ .  

To obtain an alternative formula for this coefficient, substitute the last equation of 
(5.5) into the second equation and solve for Avf fPyy t+l :  

Avv '  Pvyt+1 = ( Pz - Qv~ - A , d  PzA~z)Zt  + (Pv - Qvv)yt .  (5.9) 

Equating coefficients on zt in (5.8) and (5.9) results in 

(Avv - B v F v ) ' ( P u A w  + P~Azz)  Avv 'P~Azz  = Pz - Qvz - Avv 'P~Azz .  

Rewriting this in the lbrm of a Sylvester equation (in the unknown matrix P~), we 
have that 

P~ : Q w  + (Avv - B v F v ) ' P v A w  + (Avy - B v F v ) ' P ~ A ~ .  (5.1o) 

As we noted previously, the matrix (Ay v - BvFy  ) has only stable eigenvalues. 
Also, we assumed that the matrix Azz has only stable eigenvalues (Assumption 4). 
These restrictions are sufficient for there to exist a unique solution Pz to (5.10). Up 
to now, our discussion proceeded under the presumption that there exists a matrix P, 

p [ yt ], we stabilize the state, vector sequence. We can now such that by settingpt = LztJ 

work backwards using the (unique) solution to the Sylvester equation to show that 
indeed such a matrix P does exist. 
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6. Computational techniques for solving Sylvester equations 

A Sylvester equation is represented by 

M = W + S M T ,  (6.1) 

where the matrices W, S, and T are specified in advance and M is the matrix to be 
computed. Consistent with (5.10), the matrices S and T have stable eigenvalues. 16 
There is a variety of ways to depict the solution to a Sylvester equation. One is to 
vectorize (6.1) as 

[I - T '  ® S]vec(M) = vec(W), (6.2) 

where vec(.) denotes stacks of the columns of a matrix argument. [To derive (6.2) 
from (6.1), use the identity vec (SMT)  = IT '® S]vec(M).] Hence vec(M) is the 
solution to a linear equation system. Alternatively, M is given by the infinite sum 

O 0  

M = E Sj  WTJ" 
j=0 

(6.3) 

This representation can be deduced by iterating on Eq. (6.1), starting from any initial 
matrix with the appropriate dimensions. 

We consider two types of algorithms for computing M: 

(i) Hessenberg-Schur algorithm; 
(ii) doubling algorithm. 

The Hessenberg-Schur algorithm uses a Schur decomposition of the matrix T to 
convert a single Sylvester equation to a collection of much smaller Sylvester equations, 
each of which can be vectorized as in (6.2). A Hessenberg decomposition of the matrix 
S is used further to simplify the calculations. The doubling algorithm is an iterative 
algorithm that approximates the infinite sum on the right-hand side of (6.3) by a finite 
sum. Similar to the doubling algorithm for solving a Riccati equation, the number of 
terms included in the finite sum approximation "doubles" at each iteration. 

6.1. The Hessenberg-Schur algorithm 

As suggested by Bartels and Stewart (1972), one strategy for solving Sylvester equa- 
tions entails block triangularizing the matrices T and/or S. We follow Golub, Nash 

16We offer the following word of caution (or apology) to the reader. We are compelled to recycle some 
of the notation used in previous sections. 
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and Van Loan (1979) by forming a Schur decomposition of the matrix T: V ' T V  = T,  
where V is an orthogonal matrix and T is upper block triangular with row and column 
blocks that are either one or two dimensional (see Section 4.1 for a formal definition). 
Postmultiply Sylvester equation (6.1) by V and rewrite the equation as 

M = W + S M T ,  (6.4) 

where ~ r  = M V ,  W = W V ,  and S = S. Notice that (6.4) is in the form of a 
Sylvester equation in the inatrix M. 

The block triangularity of T can now be exploited to reduce (6.4) into m smaller 
Sylvester e~t.uations, where m is the number of row and column blocks of T. Write 
the matrix T in partitioned form as 

[i 
t . . .  

T22 -. .  T2,~ 
" , , ,  " , ,  • 

. . .  0 5~ram 

A ~ A A 

Use the column partition of W to partition M and W, and let Mj  and Wj  denote the 
corresponding j th partitions. Decompose Sylvester equation (6.4): 

M1 = Wl  + SM1T11, (6.5) 

j - - I  

~rj = WJ + S ~  MkTkj + SMjTj j ,  J = 2 , . . .  ,m. (6.6) 
k = l  

Notice that (6.5) is a SylvesteAr equation in M~ and that (6.6) is a Sylvester equation in 

M j  as long as the matrices Mk for k = 1 ,2 , . . .  , j  - 1 have already been computed. 
Thus these m Sylvester equations can be solved sequentially as linear equations using 
vectorization (6.2). 

An additional refinement advocated by Golub, Nash and Van Loan (1979) entails 
taking a Hessenberg decomposition of the matrix S. 17 

DEFINITION. The Hessenberg decomposition of the square matrix S is an orthogonal 
matrix U and a matrix S that has all zeros below the first subdiagonal, such that 
S = U S U ' .  

In addition to postmultiplying Eq. (6.1) by V, we now also premultiply this equation 
by U'. Equation (6.4) continues to hold with M = U ' M V ,  W = U ' W V ,  and 
S = U ' S U .  This Sylvester equation can still be decomposed as in (6.5) and (6.6). With 

17Alternatively, we could take the Schur decomposition of S as proposed by Barrels and Stewart (1972). 
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in Hessenberg form, we can solve these latter Sylvester equations more efficiently 
using an equation solver designed for Hessenberg systems. 18 

In summary, the steps for implementing a Hessenberg-Schur algorithm for com- 
puting P~ are 

(i) form the matrices W = Qvz + (Ayy - ByFy ) tPyAyz ,  S = (Ayy - B y [ v ) ' ,  and 
T = Az~; 

(ii) form a Hessenberg decomposition S = U S U  ~ and a Schur decomposition 
T -=- V T W ;  

(iii) compute the solution M to (6.5) and (6.6) and form P~ = U M W .  

Since the Hessenberg decomposition of a matrix can be computed faster than the real 
Schur decomposition, one should always arrange the Sylvester equation so that the 
Hessenberg decomposition is taken of the matrix (Ayy - B y F y ) '  or Azz,  whichever 
has more entries. The steps just described should be implemented if there are more el- 
ements in the vector Yt than zt. If zt has more elements, then the alternative Sylvester 
equation 

p~' = Qy~' + Avz 'Py (Auu  - BuFy ) + Az~ 'P~ ' (dvu  - BvFy  )' 

should be solved for the matrix P~.  
In the numerical comparisons that follow, we form the Hessenberg decomposition of 

a matrix using MATLAB subroutine HESS and the Schur decomposition of a matrix 
with SCHUR. We solve Hessenberg systems using the routines HSFA and HSSL, 
which are part of the package described in Gardiner et al. (1992). 19 

6.2. Doubling algorithm 

The doubling algorithm for Sylvester equations iterates 

OLk+ 1 z OLkO:k~ 

/3k+1 =/3k/3k, (6.7) 

7k+1 = 7k + akTk/3k 

to convergence, where a0 = S, •0 = T, and 70 = W. By repeated substitution, it can 
be shown that 

2k--1 

7k = S J W T  j.  
j=O 

181nteresting variations on the Hessenberg-Schur algorithm have been proposed by Hammarling (1982) 
and Gardiner et al. (1992). 

19See pp. 364-370 of Golub and Van Loan (1989) for a discussion of how to compute the ltessenberg 
decomposition. 
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In other words, each iteration doubles the number of terms in the sum. 2° 
To use this doubling algorithm to compute P~ 

(i) initialize C~o = ( Ayy - ByFy) t, ~o = A~z, and 70 = Qyz + (dry - ByFy) 'PvAw;  
(ii) iterate in accordance to (6.7); 
(iii) form Pz as the limit of {'Yk}. 

We implement the doubling algorithm in FORTRAN. 21 

7. Distorted economies 

Some of  the algorithms described previously are directly applicable to solving models 
whose equilibrium quantity allocations are not the solutions to optimal resource allo- 
cation problems. To illustrate this point, we use a simplified version of McGrattan's 
(1994) model of a distorted economy. 22 Consider a setup with a representative agent 
who chooses a control sequence {vt} to maximize 

o o  

I 2 ! ^ 

t=0 

subject to 

Yt+l = AyyYt  + Ayfjgt + Byv t ,  

2 + Iwl 2) < (7.1) 
t=O 

where the sequence {~)t} is viewed by the agent as being beyond his control when 
making decisions. As an equilibrium condition, ~)t is an exact function of yt and vt: 

Yt = ~2yt q- ff~vt. (7.2) 

In formulating the decision problem for the representative agent, we have abstracted 
from uncertainty and used analogous tricks to those described earlier for eliminating 

2°This algorithm is a slight generalization of the doubling algorithm for Lyapunov equations discussed 
in Anderson and Moore (1979). A Lyapunov equation is a Sylvester equation in which S = T ~. 

21We iterate on (6.7) until 

II'~k - "Yk-llll <~ ~ II'Ykll~, 

where we set e = 1 × 10 -15 . 
22In Appendix B.3, we take another version of McGrattan's formulation and differentiate the equilibrium 

law with respect to parameters in the control problem and equilibrium conditions. 
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discounting and cross products between states and controls. [See McGrattan (1994) 
and Appendix B.3 of this paper for a more complete treatment.] Also, we have zeroed 
out the forcing sequence {zt}, so this setup should be viewed as a distorted equilibrium 
counterpart to the deterministic regulator problem. 

To define an equilibrium for this model, we introduce a process {y~'} that in equi- 
librium coincides with {Yt}. This additional process is used to capture the perceived 
evolution of {~)t} by economic agents in making their decisions. Formally, the per- 
ceived evolution equation is given by 

Yt+l = A Yt , 

Yt * * = ~  Y t ,  

where the eigenvalues of A* are assumed to have absolute values that are strictly less 
than one. Adding this evolution equation to the decision problem of the private agent 
is sufficient to make his problem a fully specified deterministic regulator problem. 
Writc the solution to this decision problem as 

Vt = - F y y t - F ; y ; .  (7.3) 

Then a rational expectations equilibrium is a specification of (Fv, F~, A*, D*) such 
that 

A* = Ayy + Avgf2 - (Avgg~ + By)(Fy + r ; ) ,  

f2* = g? - O(Fy + F;),  

where control law (7.3) solves the decision problem of the private agent. 
As an initial step in solving for an equilibrium, we obtain first-order necessary 

conditions for the private agent's control problem: 

vt: Rut + By~#t+l = O, t >~ O, (7.4) 

Yt: t~t = Qyyy t  + Qygyt  -}- A y y t # t + l ,  t >>, O, (7.5) 

where {#t} are Lagrange multipliers associated with the constraint Eq. (7.1). At 
this stage, we are free to substitute for ~)t from equilibrium condition (7.2). Solving 
Eq. (7.3) for vt, substituting it and Eq. (7.2) into Eqs (7.1) and (7.5), and rearranging 
gives 

where 

I 
L =  0 1 01 A' , N =  _ , 
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and A = Ayy + Avg . ,  Q. = Qvy + Qy#~, ~ = By + Av#~P, and A = Avv - 
B y R - t ~ Q z  p. Note how these equations generalize (3.4) to a distorted equilibrium 
model. When distortions are active, the pencil AL - N may fail to be symplectic, so 
the eigenvalues do not necessarily occur in reciprocal pairs. When the eigenvalues can 
be split with half inside the unit circle and half outside and the analog of Vii in (3.19) 
is nonsingular, then the deflating subspace and matrix sign methods described earlier 
can be used tocompute the unique stable equilibrium. 23 Under the same conditions, 
if either A or A is nonsingular and well conditioned, then invariant subspace methods 
also can be used. Finally, Anderson (1995) describes a generalization of the doubling 
algorithm for Riccati equations that can be used to solve distorted equilibria. Since the 
pencil is not symplectic, this generalized doubling algorithm includes an additional 
partition. 

For economies with a forcing sequence {zt} with first-order dynamics, there is an 
analogous formulation of a distorted economy equilibrium. As with the augmented 
regulator problem, the equilibrium can be computed in two steps. First, a distorted 
equilibrium for z0 set to zero can be computed using one of the methods described 
above. Then the full equilibrium can be deduced by solving a Sylvester equation 
analogous to that deduced for the augmented control problem. The Hessenberg-Schur 
algorithm and the doubling algorithm described in Section 6 are both applicable in 
this second step. 

8. Example economies 

In preparation for our numerical work, we describe three examples with features that 
"stretch" our algorithms to the boundaries of their domains of applicability. 

8.1. A model of permanent income with habit persistence 

Our first example is an economy with two interacting unit roots in the endogenous 
dynamics. As in Hall (1978), Flavin (1981), and Sargent (1987), one unit root comes 
from the permanent income character of the model. The technology is specified so that 
the rate of return on capital and the subjective rate of time discount are equated. As in 
Hansen (1987), Becker and Murphy (1988) and Heaton (1993), we use an extended 
version of the permanent income model to accommodate preferences that are not time 
separable. The second unit root occurs because of the special way we model habit 
persistence. 

23When applying matrix sign methods, one should iterate on (4.7) or (4.8) instead of (4.9), since the 
matrix J ( L  - N ) - t ( L  + N )  is not, in general, symmetric. 
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There is a single consumption good ct, a single investment good it ,  a single physical 
capital stock kt,  and a single household capital stock, ht,  in each time period. The 
household capital stock is constructed to be a geometric average of  current and past 
consumptions: 

ht = 0 .9h t - i  +O . l c t ,  

where 0.9 dictates the geometric decay in the average. We capture habit persistence 
by introducing a service process: 

st = Ct -- h t - t .  

One source for a unit root in the endogenous dynamics is that the magnitude of  the 
time t service is the difference between current and an average of past consump- 
tions. 

The production technology is given by the two relations: 

ct + it = O.lkt-1 + dr, 

kt = 0.95kt-1 + i t .  

To provide a permanent income character to this model, we set the subjective discount 
rate/3 = 1/1.05. 

The preference shock process is restricted to be constant over time (b = 30), 
and the technology shock process {dr} is a first-order autoregression with mean 5 
and autoregressive coefficient 0.8. We represent these processes using the setup of 
Section 2.4 by introducing an exogenous state vector ~t with two components. Recall 
that the exogenous state vector process is assumed to have first-order dynamics. The 
autoregressive matrix for this process is given by 

00 ] 
where the first component of  zt is initialized at one and remains constant over time. 
While the second component of ~t can be subject to shocks in each time period, 
certainty equivalence makes the magnitude of the uncertainty inconsequential for 
solving the model. Hence it is unnecessary to specify the matrix Cz. The selection 
matrices Ub and Ua are given by Ub = [30 0]  a n d U a =  [5 1].24 

24In this economy, there are no intermediate goods 9t. As suggested in Section 2.4, we stilJ use it as 
the control vector, and we can clearly solve for ct as a linear function of the control and state vectors. 
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For this particular economy, there are potential problems in applying two of tile 
algorithms we described in Sections 3 and 4. Since the economy has repeated unit roots 
in the endogenous dynamics, an invariant subspace method that uses an eigenvector 
routine designed for distinct eigenvalues might give a poor approximation to the 
solution. Also, this is an economy in which the square summability constraint (2.1) 
is binding. In other words, it is not optimal to stabilize the endogenous state vector 
process in the absence of such a constraint. As a consequence, Riccati difference 
equation iterations starting from the zero matrix converge to the wrong solution, as 
does the corresponding partition of the Po = 0 doubling algorithm. 

As a potential remedy for both of these pitfalls, we "approximate" our economy 
by one in which there is a very tiny adjustment cost for physical capital. The cost is 
captured by introducing a single intermediate good 9t, such that 

¢ i t  - -  g t  = O, 

where we set ¢ = 1 x 10 -7. This small adjustment cost is enough to eliminate 
the repeated unit roots in the endogenous dynamics. Moreover, it makes (Avy , Dr) 
detectable, so that it is optimal to stabilize the endogenous state vector process. Since 
the pair (Ayy, By) is controllable, this small adjustment cost is enough to guarantee 
convergence of the Po = 0 version of,the doubling algorithm. One of the issues 
considered in our numerical experiments is how well this "fix up" works in practice. 
Does the introduction of small adjustment costs make either the eigenvector algorithm 
or the doubling algorithm a viable method for solving the original control problem? 
We shall also study this economy with the adjustment costs set equal to zero and with 
the 19o = I version of the doubling algorithm. 

8.2. A model of education 

This example is a version of a time-to-build (or time-to-educate) model of wage skill 
differentials that was formulated by Siow (1984). Siow's model interprets the premium 
on educated labor as a present-value-equalizing differential required to compensate 
for the income foregone during training years. To accord with the framework of Sec- 
tion 2.4, we reformulate a version of Siow's model as an optimal resource allocation 
problem. 

Suppose there are three skill levels of labor: "low skill", "medium skill", and "high 
skill". We adopt the notational convention that low skill work is engaged in home 
production, while the other two skill levels produce market goods. We assume that 
it takes four periods to train skilled workers and eight periods to train highly skilled 
workers. Trainees are not permitted to switch training programs. This gives rise to 
gestation lags in the production technology. 
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Let im,t denote the number of workers who choose the medium-skilled training 
program and il~,~ the number who choose the high-skilled training program at time t. 
Let km,t  and kh,t be the corresponding stocks of workers. Then 

km,t : 0.97krn,t-1 + 0.974irn,t-4, 

kh,t = 0.97kh, t -1 + 0.97sih,t-8, 

where (1 - 0.97) is the exit rate from the labor force. To capture this gestation lag 
with the first-order specification of Section 2.4, we include in kt the following: 

kt = [ krn,t kh,t 0.973ira,t-3 0.972i,m,t-2 0.97ira,t-1 im,t 0.977/h,t-7 

• .. 0.97ih, t-1 ih,t] I. 

The first-order evolution equation for {k t }  can now be constructed in the obvious way. 
Hence to capture the delays in the dynamic technology, we are compelled to augment 
the endogenous state vector. This augmentation is the source of the singularity in the 

matrix Ayy.  The control vector is it = [ im,t ih,t ] t. 
The rest of the people engage in home production. Let dl,t denote the time t flow 

of newborn or raw labor. The difference 

Cl,t = dl,t - im,k - ih,k 

is the flow of workers into home production. We include cl,t as a component of the 
consumption goods vector for notational convenience. In addition to cl,t, there are 
two other components to ct: goods produced by medium-skilled workers and goods 
produced by high-skilled workers. These goods are produced according to the (linear) 
constant returns to scale technology: 

c~r~,t = 0 .7k in , t - l ,  

Ch,t : 0 . 9kh , t - l .  

To capture the disutility of working, we introduce two intermediate goods that sa- 
tisfy 

9m,t = ]grn,t-l~ 

ffh,t : ]~h,t-1; 

and to capture costs associated with matching new entrants with training programs, 
we introduce two additional intermediate goods that satisfy 

~)~,t = O.O002im,t, 

9h,t = O.O003ih,t. 
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When these constraints are combined, the technology for producing intermediate goods 
and consumption goods is given by 

1 0 0-  
1 0 
0 1  
0 0 
0 0 
0 0 
0 0. 

Cl,t ] 
Cra,t 
Ch,t 

0 
0 
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Consider next the household technology. Recall that by our notational convention, 
cl,t denotes the quantity of new entrants into household production. The stock of such 
workers at time t (after including the new entrants) is denoted ht. This "household 
capital stock" evolves according to 

ht = 0.97ht_1 + Cl,t, 

SO the depreciation factor is the same as for the other two types of labor. Consumption 
services 81,t are produced according to the linear technology 

81,t = 0.5ht-1. 

To capture the disutility of working in the household, we introduce a second service 

82,t = - - h t - 1 ;  

and to capture the (utility) costs to matching new entrants to the household technology, 
we introduce a third consumption service 

s3,t = --O.O001cl,t. 
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All total, there are five components to the consumption service vector st because 
we also include the consumption goods produced by medium-skilled and high-skilled 
workers: 

st = [ sl,t s2,t s3,t c,~,t oh,t] ' .  

The househotd's subjective rate of time discount is /3 = 1/1.05. Forcing process 
{dl,t} is given recursively by 

47 

Pt = ~ OjPt-j  -1- zt, 
j= l  

dl,t ~- Pt-18, (8.1) 

where Pt are the new births at date t and the 0j ' s  are set to match the birth rates in 
the United States in 1990 as reported in the American Almanac: Statistical Abstract 
o f  the United States 1993-1994. We abstract from long term population growth by 
appropriately scaling the Oj's to sum to o n e Y  The process {z t }  has a first-order 
autoregressive representation with coefficient 0.9. The variable pt-18 occurs with an 
18 period lag in the second equation of (8.1) because we assume that it takes 18 
periods (years) before a new born person is ready to enter a training program or 
produce household goods. 

The preference shock process has three nondegenerate components: 

bt = [bl,t 0 0 bm,t bh,t] ' .  

The zeros in the preference shock process bt are associated with (dis)services to 
working in the household and to matching labor to household production. The three 
nondegenerate components are independent first-order autoregressive processes aug- 
mented by 300. For each scalar autoregression, the autoregressive coefficient is 0.9. 

8.3. A model o f  cattle cycles 

In this subsection, we present three versions of Rosen, Murphy and Scheinkman's 
(1994) model of cattle cycles. The versions differ according to whether the time units 

25Formally, the 0j's were constructed as follows. We took birthrates for women from Table 93 of 
the American Almanac: Statistical Abstract of the United States 1993-1994 in the year 1990 and divided 
by two. Since birthrates are only recorded for women grouped in five year age brackets, we interpolated 
linearly from the midpoints of each age bracket. Birthrates for ages 12 and 47 were set to zero when 
doing this interpolation, and birth rates up to age 12 were set to zero. The resulting birthrates imply an 
autoregression with an explosive root that induces geometaic growth in population. We then sealed the 
birth rate parameters by the inverse of the growth factor raised to the appropriate powers to eliminate the 
growth. The resulting autoregressive process has a unit root by construction. 
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are years, quarters, or months. To match the setup of Section 2.4, we reformulate 
Rosen, Murphy, and Scheinkman's market equilibrium model as an optimal resource 
problem. We initially describe the yearly model. For our numerical speed and accu- 
racy comparisons with the annual version of this model, we estimated some of the 
parameters using the methods to be described in subsequent sections. The parame- 
ters for the versions of the model at the quarterly and monthly timing intervals were 
deduced in ways described below. 

Let kb,t denote the total stock of breeding cows. Each such animal gives birth to 
r/calves, and calves become part of the adult stock after two years. For simplicity, 
we set the death rate of cattle to zero. Therefore, the law of motion for the breeding 
stock is given by 

k b , t  = kb, t-I  + ~kb,t-3 + it,  (8.2) 

where it  denotes deletions from the breeding stock due to slaughtering. Stacking the 
breeding stocks so as to represent this evolution equation as a first-order system, we 
obtain 

kbt] [i0!][ bl I [!] 
kb, t -1  = 0 kb , t -2  -t- it .  

kb , t -  2 1 kb , t -  3 

Consumption ct = - i t .  We use one intermediate good to capture slaughtering costs 
and three additional ones to capture the holding costs. Holding costs differ depending 
on whether the animal is a calf, a yearling, or an adult. Let 

gl,t = ect + (1/e)d~,t ,  

g2,t = ekb,t-1 + (~/lrl/e)dh,t, 

g3,t = ekb,t-2 + ("/2rl/e)dh,t, 

g4,t = 6kb , t  -}- (1/e)dh, t .  (8.3) 

As specified, the holding and slaughtering costs are quadratic. The parameter e is set 
to a small positive number to approximate the linear cost structure used by Rosen, 
Murphy and Scheinkman (1994). The parameters 71 and 72 dictate the holding costs 
for calves and yearlings, respectively, relative to those for fully grown animals. For 
instance, the approximate holding period cost is dh,t for an adult, 3`ldh,t for a calf, 
and 3`2dh,t for a yearling. In our computational experiments, the parameters 3̀1 and 
3'2 are set to 1/3 and to 2/3, respectively. Substituting for kb,t in (8.3) using (8.2) and 
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stacking the equations for consumption and intermediate goods into a system, we get 

1 

0 
0 

Ct + 

I;] [; o o ;] 
o° i,+ ~ ° °  1 o ~ ]g2,t 

0 1 [ 93,t 
0 0 g4,t 

[i°i1 [i 1 o o r ~ , ~ l  10 
= e 1 0 /kb,.2/ + ( l / e )  71~'1 

1 Lkb,,_~J ~#j 
0 'q.3 

ds,t ] 
dh , t  ] " 

Consumption goods and services are related trivially by 

where cq is positive. As a consequence, preferences for consumption are time sepa- 
rable, and the slope of  the Frisch demand function for beef  is - c q .  

The exogenous processes are specified as follows. The preference shock process 
is given by the constant (c~0/c~l). The parameter C~o is the intercept in the Frisch 
demand function. The two technology shock processes {ds,t} and {dh,t} are each 
scalar first-order autoregressive processes with unconditional means #8 and #h and 
autoregressive coefficients Ps and Ph, respectively. 

As a device for proliferating endogenous state variables, we construct analogous 
quarterly and monthly versions of a cattle cycle model. In so doing, we abstract from 

Table 4.1 
Parameter values for yearly, monthly, and quarterly formulations 

of the cattle cycles model 

Parameters Yearly Quarterly Monthly 

/3 0.960 0.990 0.997 
c~ o 146.0 36.5 12.17 
cq 1.270 0.318 0.106 

1 + r/ 1.938 1.180 1.057 
Ph 0.888 0.971 0.990 
Ps 0.699 0.914 0.971 
/z h 37.00 9.250 3.083 
/~s 63.00 63.00 63.00 

l x 10 -o4 2.5 x 10 -o5 8.33 × 10 - 0 6  
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any (realistic) periodic specification whereby, for example, a certain season of the 
year is designated as a calving season. Also,  we design the higher frequency models 
to be only roughly compatible with the annual model. The parameter values selected 
for all three versions are reported in Table 4.1. The higher frequency parameters are 
obtained from the following algorithms. Let "r denote the number of seasons in a year  
(either four or twelve). The higher frequency versions of t ,  1 + r/, Ph, and Ps are 
obtained by taking the annual parameters and raising them to the power 1/~-. The 
higher frequency versions of a ,  e, and #h are constructed by dividing the annual 
parameters by -r. The parameter #s is the same for all versions of  the model. Finally, 
as we proliferate time periods, we extend the number of  periods it takes for a calf to 
become a cow. Instead of two periods, it now takes the animal 2T periods to be an 
adult. Accordingly,  there are 2"1- cost parameters 7j ,  J = 1 , . . . ,  2T. As in the annual 
model,  we assumed these parameters increased linearly from zero to one. Hence 
~/j = j/(~- + 1). 

9. N u m e r i c a l  compar i sons  

In this section, we study the performance of algorithms for computing solutions to 
the optimal resource allocation problems described in Section 8. We report  results 
for six different economies: two permanent income/habit  persistence economies,  three 
cattle cycle economies, and one t ime-to-educate model. Recall that the two permanent 
income economies are very similar except the second one introduces a very small 
adjustment cost term so that the resulting (Avy , Dr)  is detectable. We label these 
two economies Permanent Income and Permanent Income (with adjustment costs) 
in the subsequent tables. The three cattle cycle economies differ with respect to the 
presumed decision time interval. The three ca r te  cycle economies are calibrated to be 
yearly, quarterly, and monthly decision periods and are labeled Yearly Cattle Cycles, 
Quarterly Cattle Cycles, and Monthly Cattle Cycles, respectively. Finally, the time- 
to-educate economy is labeled Education in our tables. 

Table 4.2 gives the number of endogenous and exogenous state variables for each of 
six optimal resource allocation problems. 26 There are four exogenous state variables 
for the cattle cycle economy because we included a state that could be used to represent 
a preference shock. The autoregressive parameter  for this state was set to zero. Since 
the gestation time period for a newborn calf  to become a cow is held fixed across the 
three cattle cycle economies, the number of  endogenous state variables is larger for 
Monthly Cattle Cycles than for the other two cattle cycle  economies. Recall that the 

26We also give approximate matrix one-norms for the true solutions. For the Permanent Income economy 
we used the true solutions to calculate the norms. For the other economies we used the solutions computed 
by the Riccati Iteration algorithm and the doubling algorithm for Sylvester equations. Given the tables 
that follow, these norms allow a reader to construct a relative measure of accuracy for the candidate 
solutions. 
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Table 4.2 
Number of state variables 
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Economy Endogenous Exogenous Norm of Py Norm of Pz 
states states 

Permanent income 2 2 2.45 × 10 +m) 2.08 × 10 +o2 

Yearly cattle cycles 3 4 1.37 × 10 +m) 2.88 × 10 +o2 
Quarterly cattle cycles 9 4 3.53 x 10 +°° 1.26 x 10 +o3 
Monthly cattle cycles 25 4 9.67 x 10 +~) 3.93 x 10 +o3 
Education 15 52 8.76 x 10 +°1 3.77 × 10 +o4 

number of exogenous state variables and endogenous state variables is large for the 

Education economy because of  the presumed population dynamics and the number 

of t ime periods it takes to get highly skilled. 
Associated with each of the six optimal resource allocation problems is a Riccati 

equation and a Sylvester  equation that are solved in finding the optimal decision rule. 

We report  the Riccati equation comparisons in the first subsection and the Sylvester 

equation comparisons in the second subsection. Recall that Sylvester  equations take 

as one of their inputs a matrix constructed from the solution to the corresponding 
Riccati equation. To simplify comparisons, we use the same input matrix for each of 

the two Sylvester equation algorithms. 

9.1. Solutions to Riccati equations 

We compare the performance of seven of the Riccati equation solving algorithms 
described in Section 4. We consider two invariant subspace algorithms: one is based 

on an eigenvector decomposit ion labeled Eigenvector and the other on the Schur 
decomposit ion labeled Schur in the tables described below. We study two deflating 
subspace algorithms that are generalizations of  the two invariant subspace algorithms 

designed to permit  the state evolution matrix (Avu) to be singular. (In fact, this matrix 

is singular for the Education resource allocation problem.) We label these deflating 
subspace algorithms Generalized Eigenvector and Generalized Schur. We investigate 

two doubling algorithms that differ with respect to how they are initialized. The 
first doubling algorithm uses the standard initialization (Po = 0), and the second 

one initializes the doubling algorithm so that the terminal state and costate vectors 

coincide (Po = I). Since the (Po = 0) doubling algorithm gives the wrong solution to 
the Permanent Income resource allocation problem, it is not included for that control 
problem. Both of  these algorithms are labeled Doubling with the specification of Po 
given in parentheses. Our seventh algorithm is the matrix sign algori thm and is labeled 
accordingly. As a benchmark, one of  the algorithms iterates on the Riccati difference 
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equation from dynamic programming. 27 This algorithm is labeled Riccati Iteration in 
the tables. 

Table 4.3 reports comparisons of the performance of the eight algorithms 
used to compute candidate solutions ( P ~ , F ( P ~ ) )  to the associated determinis- 
tic regulator problem's given the inputs ( A y u , B v , Q v v ,  R).  Here F ( P )  -= (R  + 
B y ' P B y )  - 1 B y t P A u v .  28 To measure the accuracy of the computed solutions, we use 
the matrix one-norm of the Riccati equation residual P~ - T (P~)  where 

T ( P )  = Qvy + A u y ' P A v v  - A v v ' P B y (  R + B v ' P B y ) - ~ B v ' P A v u  . 

Gudmundsson,  Kenney and Laub (1992) show that P~ is an accurate solution of the 
Riccati equation (3.13) if  it has a small residual and the Riccati equation is "well- 
conditioned". 

For  the Permanent Income resource allocation problems, Table 4.4 reports the ab- 
solute errors 

IIP - p ll,, IIF - F<P >II,- 
These errors were computed under the presumption that the first problem (without 
adjustment costs) is the problem of  interest. That is, we compare the true solutions to 
the Permanent Income Economy to the computed solutions to the Permanent Income 
Economy and the Permanent Income Economy (with adjustment costs). Recall that the 
pr imary reason we introduced the adjustment costs is to make the doubling (Pu = O) 
algorithm applicable. For the Permanent Income economy, we calculated the true 
solutions for F v and Py by hand: 

7/3 -7/60 ] 
P ' v =  - 7 / 6 0  7 / 1 2 0 0 J '  F u =  [ - 1 / 3  1 / 6 0 ] .  

The results verify that (for the Permanent Income economy) the residual errors re- 
ported in Table 4.3 are close proxies for the absolute errors reported in Table 4.4. 

27The Riccati iteration algorithm iterates on 

Pj+~ = ~),~y + (Ayy - By~))'Pj(A~y - B~Fy) + F / R F j ,  

where 

Fj -- (R + Bv~PjBu)-I Bv~PjAwu 

until [IPj+I - Pill ~ c ItPjIII, where we set e = 1 × 10 -15. We initialize this algorithm at 19o = I. 
28A11 comparisons reported in the section were performed on an HP-9000/730 computer with 64MB of 

memory using version 4.2a of MATLAB and HP's FORTRAN compiler. We base our CPU times on 1100 
replications. 



Ch. 4: Mechanics of Forming and Estimating Dynamic Linear Economies 221 

S i n c e  s o l u t i o n s  to  Permanen t  Income (with adjustment  costs) a p p r o x i m a t e  c l o s e l y  

t he  s o l u t i o n s  to  Permanen t  Income,  a p p l y i n g  t h e  d o u b l i n g  a l g o r i t h m  to the  a d j u s t -  

m e n t  c o s t  v e r s i o n  g i v e s  a r e l i a b l e  s o l u t i o n  to  t he  r e s o u r c e  a l l o c a t i o n  p r o b l e m  w i t h o u t  

a d j u s t m e n t  cos t s .  

Table 4.3 
Performance of algorithms that solve Riccati equations 

Economy Algorithm CPU time Residual norm 

Permanent income Riccati iteration 0.0334 2.8 × 10 -15 

Eigenvector 0.0047 1.1 × 10 -o3 

Schur 0.0039 4.4 × 10 -16 

Generalized eigenvector 0.0045 1.5 × 10 -1t4 

Generalized Schur 0.0037 4.6 × 10 -16 

Doubling (Po = I) 0.0031 6.1 × 10 -16 

Matrix sign 0.0058 9.7 × 10 -16 

Permanent income Riccati iteration 0.0334 1.9 × 10-15 

(with adjustment costs) Eigenvector 0.0057 2.4 × 10 -117 

Schur 0.0046 1.4 × 10 -15 

Generalized eigenvector 0.0048 2.9 × 10 -114 

Generalized Schur 0.0037 1.1 × 10 -16 

Doubling (Po = 0) 0.0022 9.2 × 10 -16 

Doubling (Po = I) 0.0030 9.4 × 10 -16 

Matrix sign 0.0062 3.7 × 10 -15 

Yearly cattle cycles Riccati iteration 0.0056 9.7 × 10 -16 

Eigenvector 0.0076 2.3 × 10 -15 

Schur 0.0079 3.3 x 10 -16 

Generalized eigenvector 0.0125 1.7 × 10 -15 

Generalized Schur 0.0054 2.1 x 10 -15 

Doubling (Po = 0) 0.0026 5.6 × 10 -16 

Doubling (Po = I) 0.0036 3.9 × 10 -16 

Matrix sign 0.0089 6.7 x 10 -16 

Quarterly cattle cycles Riccati iteration 0.0520 2.6 × 10 -15 

Eigenvector 0.0400 9.4 x 10 -15 

Schur 0.0373 1.1 x 10 -14 

Generalized eigenvector 0.1177 6.2 × 10 -15 

Generalized Schur 0.0248 6.9 x 10 -15 

Doubling (Po = 01 0.0125 6.7 x 10 -16 

Doubling (Po = I) 0.0131 5.6 x 10 -16 

Matrix sign 0.0314 2.3 x 10 -15 
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Economy Algorithm CPU time Residual norm 

Monthly cattle cycles 

Education 

Riccati iteration 1.3860 1.0 × 10 -14 

Eigenvector 0.6904 2.9 × 10-{4 

Schur 0.6575 8.2 N 10 -14 

Generalized eigenvector 1.3100 5.9 × 10 -14 

Generalized Schur 0.3370 6.1 × 10-14 

Doubling (Po = 0) 0.1435 3.7 x 10 -15 

Doubling (Po = I) 0.1437 1.4 x 10 -15 

Matrix sign 0.2569 2.2 × 10-{4 

Riccati iteration 0.2554 8.2 × 10 -14 

Generalized eigenvector 0.2437 2.2 × 10 +{54 

Generalized Schur 0.0394 2.2 × 10 -{56 

Doubling (Po = 0) 0.0371 3.1 × 10 -{17 

Doubling (1:'o = I) 0.0447 2.7 x 10 .o7 

Matrix sign 0.0841 1.9 × 10 -/17 

Table 4.4 
Accuracy of solutions to the permanent income model 

Economy Algorithm Absolute error of P,~ Absolute error of/7~ 

Permanent income 

Permanent income 

(with adjustment costs) 

Riccati iteration 6.6 × 10 -14 8.8 × 10 -15 

Eigenvector 2.4 x 10 -{12 3.0 × 10 -03 

Schur 8.8 x 10 -15 1.1 x 10 -15 

Generalized eigenvector 3.1 x 10 -03 4.0 x 10 -{54 

Generalized Schur 1.9 × 10 -14 2.6 x 10 -15 

Doubling (Po = I) 8.2 × 10 -13 1.3 x 10 .{3 

Matrix sign 2.8 × 10 -14 3.7 × 10 -15 

Riccati iteration 5.7 × 10 -13 8.2 x 10 -14 

Eigenvector 4.9 x 10 -06 6.4 x 10 -{57 

Schur 5.0 × 10 -14 1.1 x 10 -15 

Generalized eigenvector 6.0 x 10 -03 7.8 × 10 -{54 

Generalized Schur 1.4 × 10 -13 1.5 x 10 -14 

Doubling (Po = 0) 5.0 x 10 -13 7.3 × 10 -14 

Doubling (Po = I) 1.7 × 10 -12 2.8 × 10 -13 

Matrix sign 5.7 x 10 -13 8.3 × 10 -14 

R e t u r n i n g  n o w  to the  r e s u l t  in  T a b l e  4 .3 ,  t he  f o l l o w i n g  c o m p a r i s o n s  a r e  n o t e w o r t h y .  

(1)  T h e  e i g e n v e c t o r  a n d  g e n e r a l i z e d  e i g e n v e c t o r  a l g o r i t h m s  a r e  u n r e l i a b l e  f o r  t h r e e  

o f  o u r  s i x  e c o n o m i e s .  N o t  s u p r i s i n g l y ,  t h e  p r e s e n c e  o f  r e p e a t e d  r o o t s  i n  t he  s o l u -  
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(2) 

(3) 

(4) 

tion to the Permanent  Income control problem caused the eigenvector algorithm 
to give unreliable solutions. Shifting to the generalized eigenvector algorithm 
resulted only in marginal improvements in accuracy. While introducing tiny ad- 
justment costs to the Permanent Income control problem improved the accuracy 
of  the eigenvector method, it failed to make the eigenvector method as accurate 
as the other methods. The generalized eigenvector method performed poorly for 
both this control problem and the Education problem. 
The Riccati iteration algorithm computed accurate solutions for all of  the control 
problems and, in particular, computed the most accurate solution for the Educa- 
tion problem. Hence if accuracy is the primary concern, rather than speed, this 
algorithm is a reasonable choice. However, in situations in which repeated solu- 
tions are required, other algorithms can save the researcher a significant amount 
of  time. 29 Speed gains are likely to be important in econometric estimation and 
in determining the sensitivity of solutions to changes in parameter settings. 
Algorithms that allow Avv to be singular do not suffer any "penalties" in speed 
or in accuracy. Hence for our discrete-time control problems, there does not seem 
to be a good reason to use the invariant subspace algorithms. 
Both doubling algorithms performed relatively well across the six economies. The 
Po = 0 algorithm is a little faster than the Po = I algorithm for the Permanent  
Income (with adjustment costs) and for the Yearly Cattle Cycles control problems 
with comparable accuracy. The Po = I algorithm is the quickest of  the seven 
applicable algorithms in solving the original Permanent Income control problem. 
The Po = 0 doubling algorithm outperforms the generalized Schur and matrix 
sign algorithms. A possible reason it is faster than the generalized Schur algorithm 
is that the generalized Schur algorithm does not exploit the symplectic structure 
of  the control problem. 

9.2. Solutions to Sylvester equations 

Table 4.5 compares the performance of the Sylvester equation algorithms discussed 
in Section 6 applied to the five control problems. The algorithms take as inputs the 
matrices (S, T, W).  To assess the accuracy of  the solutions, we use the matrix one- 
norm of the Sylvester equation residual W + S M U T  - M e, where M ~ is a candidate 
solution. For the Permanent  Income control problem, the absolute error, I[M - M~]lt ,  
of  the Hessenberg-Schur solution is 9.1 x 10-13 and the absolute error of the doubling 
algorithm's solution is 1.0 x 10 -12. 

ZgThe speed of the Riccati iteration algorithm can be increased by lowering the tolerance e. For instance, 
if'e is changed to 1 x 10 -07, for the Permanent Income Economy the CPU is reduced to 0.0163 with an 
absolute error of 5.3 x 10 -06 for Py. Comparable changes in tolerance settings for the other iterative 
algorithms had very minor changes in speed and accuracy for the Permanent Income Economy. Our 
experience with the matrix sign algorithm applied to other economies is that significantly lowering the 
tolerance can have disastrous consequences for accuracy. 
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Table 4.5 
Performance of algorithms that solve Sylvester equations 

Economy Algorithm CPU time Residual norm 

Permanent i n c o m e  Hessenberg-Schur 0.0017 3.6 × 10 -15 

Doubling 0.0010 3.6 × 10 -15 

Yearly cattle c y c l e s  Hessenberg-Schur 0.0027 3.3 × 10 -13 
Doubling 0.0014 2.8 × 10 -14 

Quarterly cattle cycles  Hessenberg-Schur 0.0041 7.8 × 10 -13 
Doubling 0.0028 2.6 × 10 -13 

Monthly cattle cyc le s  Hessenberg-Schur 0.0154 2.6 x 10-12 
Doubling 0.0186 6.5 × 10 -13 

Education Hessenberg-Schur 0.2601 4.3 × 10 -11 

Doubling 0.1233 5.2 × 10 -12 

The accuracy of the doubling and Hessenberg-Schur algorithms are comparable. 
While the doubling algorithm is faster in solving four of the five Sylvester equations, 
the Hessenberg-Schur algorithm is faster in solving the Sylvester equation for the 
M o n t h l y  Catt le  Cycles  control problem. Recall that this problem has 25 endogenous 
states but only four exogenous states. The Hessenberg-Schur algorithm is apparently 
better at exploiting this asymmetry. 

10, Innovations representations 

Constructing an i nnova t ions  representa t ion  is a key step in deducing the implica- 
tions of a model for vector autoregressions and for evaluating a Gaussian likelihood 
func t ion)  ° An innovations representation is a state-space representation in which the 
vector white noise driving the system is of the correct dimension (equal to that of the 
vector of observables) and lives in the proper space (the space spanned by current 
and lagged values of the observables). 

Suppose that our theorizing and data collection lead us to a system of the form 31 

X t + l  : A o x t  + C w t + l ,  

z t  = G x t  + vt~ 

Vt+l = D v t  + H w t + l ,  (10.1) 

where D is a matrix whose eigenvalues are bounded in modulus by unity, and { w t }  

is a martingale difference sequence with E ( w t + l w t + l '  ] f ' t )  = I ,  where .T't is the 

3°The calculations in this section are versions of ones described by Anderson and Moore (1979). We 
alert the reader that we are "recycling" or "reinitializing" some of the notation used in earlier sections, 
such as zt, vt, ut, D, R. 

31 In particular, the solution to the discounted swchastic regulawr problem can be expressed as xt+ i = 
Aoxt  + Cwt+l where Ao = A - BF. 
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sigma field generated by the history of ws up to t. We take zt to be the time t 
vector of  variables on which an econometrician has observations, and we interpret 
vt as a serially correlated measurement error vector. We let R = H H ' ,  which is the 
covariance matrix of Hwt+l .  We impose C H  ~ = 0, by way of assuming that the 
"state" and "measurement" errors are uncorrelated. 

We define the following quasi-differenced process 

2t =- zt+l - Dzt .  (10.2) 

From Eq. (10.1) and the definition (10.2), it follows that 

2t = (GAo - D G ) x t  + (GC + H)wt+l .  

Then (xt, 2t) is governed by the state space system 

xt+l = Aox ,  + Cwt+l ,  

zt = Gxt  + ( G C  + H ) w t + l ,  (10.3) 

where G = GAo - DG.  This system has nonzero covariance between the state noise 
CWt+l and the "measurement noise" (GC + H)wt+l .  Let [Kt, St] be the Kalman 
gain and state covariance matrix associated with the Kalman filter, namely, 

K t  = ( C C ' G '  + AoStG' )~2~ 1, (10.4) 

f2 t = G ~ t G  t + R + G C C G  ~, (10.5) 

St+l  = A o S t A o '  + C C '  - ( C C ' G '  + A o S t G ' ) f 2 t l ( G S t A o  ' + GCC' ) .  (10.6) 

Then an innovations representation for system (10.3) is 

:~t+l = Aoxt  + K tu t ,  

2t = Gc?t + ut, (10.7) 

where 

s t  - I e t _ l ,  

= - ! 5o1 ,  

[?t = E u t u t '  = O,~tO'  + R + G C C ' G ' .  (10.8) 

Initial conditions for the system are a:o and 27o. From definition (10.2), it follows that 
[zt+l, z t , . . . ,  zo, 2o] and [2t, 2 t - l , . . . ,  2o, ~:o] span the same space, so that 

Xt -~ Blast I z t , z t - 1 , . . . , z o ,  a;o], 

ut  = Zt+l - / ~ [ Z t + l  I Z t , . . . , Z o ,  Xo]. 

The process ut is said to be an innovation process in zt+l.  
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Equation (10.6) is a matrix Riccati difference equation. The Kalman filter has 
a steady-state solution if there exists a time-invariant positive semi-definite matrix 
£7 which satisfies Eq. (10.6) with Zt+l = St,  i.e., one that satisfies the algebraic 
matrix Riccati equation. In this case, the same computational procedures used for 
the optimal linear regulator problem apply: a benefit of the duality of filtering and 
control. The steady-state Kalman gain K is given by Eq. (10.4) with St = S and ~2t 
= G Z G  I + R + G C C G q  

10.1. Wold and autoregressive representations 

The innovations representation is associated with a WoM representation or vector  au- 
toregression.  Estimates of these representations are recovered in empirical work using 
the vector autoregressive techniques promoted by Sims (1980) and Doan, Litterman 
and Sims (1984). Wold and vector autoregressive representations are easy to obtain 
when A - K G  is a stable matrix. To get a Wold representation for z t ,  substitute 
Eq. (10.2) into Eq. (10.7) to obtain 

3~t+l = Ao2gt -t- K u t ,  

z t+l  - D z t  = GYct + ut .  (10.9) 

A Wold representation for zt  is 

Zt+l = [f  -- D L ] - I [ 1  -}- O ( I  - A o L ) - ' K L ] u t ,  (10.10) 

where, again, L is the lag operator. From Eq. (10.9) a recursive whitening filter for 
obtaining { u t }  from { z t }  is given by 

U t ~- Zt+ I -- Dzt - Gxt, 

kt+l  = A o x t  + K u t ,  (10.11) 

Hansen and Sargent (1994) show that an autoregressive representation for zt  is 

z t+,  = { D  + ( I  - D L )  O [ I -  (Ao - K O ) L I - ' K L  } z t  + ut  (10.12) 

o r  

o o  

z,+~ : [D + CKlz, + ~[G(Ao - K G ) J K  
j=l 

- D G ( A o  - K G ) J - ~ K ] z t - j  + ut.  (10.13) 

This equation expresses zt+t as the sum of the one-step-ahead linear least squares 
forecast and the one-step prediction error. 
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1 1 .  T h e  l i k e l i h o o d  f u n c t i o n  

Obtaining the Kalman gain sequence {Kt} of the previous section is a key step in con- 
structing and manipulating a recursive representation of a Gaussian quasi-likelihood 
function. It is often necessary to transform the observations into a form matching the 
linear state-space form. Thus, we start with a "raw" time series {Yt} that determines 
an adjusted series zt according to 

zt = f(Yt, 0), 

where O is the vector containing the free parameters of the model, including parame- 
ters determining particular detrending procedures. For example, if our raw series has 
a geometric growth trend equal to #t which is to be removed before estimation, then 
the adjusted series is zt = Y t / t  ~t. We assume that the state-space model of the form 
(10.3) and the associated innovations representation (10.7) pertain to the adjusted 
data {zt}. We can use the innovations representation (10.7) recursively to compute 
the innovation series, then calculate the Gaussian log-likelihood function 

T - I  

L(@)=~{log,Dt]+trace(X?tlutut')-21og ~f(Yt'O) l} 
t=0 OYt 

(11.1) 

and find estimates, ~) = argminoL(@), where X2t = Eutut ~ is the covariance matrix 

of the innovations computed from (10.8). 32 To find the minimizer (9, we can use a 
standard optimization program. In practice, it is best if we can calculate both the log- 
likelihood function and its derivatives analytically. First, the computational burden 
is much lower with analytical derivatives. Consider, for example, the model of Mc- 
Grattan, Rogerson and Wright (1995), which has 64 elements in @. For each step of 
a quasi-Newton optimization routine, L and ~L/~O are computed. To obtain ~L/~O 
numerically for the McGrattan, Rogerson, Wright (1995) example, the log-likelihood 
function must be evaluated 128 times if central differences are used in computing an 
approximation for OL/OO, e.g., 

OL L(O + e.e) - L(O - ee) 
- -  ~ ( 1 1 . 2 )  
30 2e ' 

32The log likelihood is conveniently factored as 

log Pr(zt, z t - t  . . . . .  Zo) = log Pr(zt I z t - i  . . . .  , zo)--" log Pr(zl I ztl) log Pr(zo). 

For alternative ways of modelling ~:o, see Ansley and Kohn (1985), Hamilton (1994) and Hansen and 
Sargent (1994). 
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where e is a vector of zeros except for a 1 in the element corresponding to 0 and 
e is some positive number. Usually, the costs of computing L a large number of 
times far outweigh the costs of computing OL/~)O once. If L and OL/OO are to 
be computed many times, which is typically the case, then the costs of computing 
numerical derivatives can be quite large. A second advantage to analytical derivatives 
is numerical accuracy. If the log-likelihood function is not very smooth for the entire 
parameter space, there may be problems with the accuracy of approximations such 
as Eq. (11.2). With inaccurate derivatives, it is difficult to determine the curvature of 
the function and, hence, to find a minimum. 

For L(O) in Eq. (11.1), the derivatives ~L(O)/~O can be derived by following 
procedures of Kashyap (1970), Wilson and Kumar (1982) and Zadrozny (1988a, 1989, 
1992). We display these derivatives in Appendix B and distinguish formulas that are 
steps in the derivation from those that would be put into a computer code. Note that 
although the final expression for OL/OO derived in Appendix B is complicated, we 
can use numerical approximations such as Eq. (11.2) to uncover coding errors. 

Once we have the log-likelihood function and its derivatives, we can apply standard 
optimization methods to the problem of finding the maximum likelihood estimates. 
In practice, we will have a constrained optimization problem since the equilibrium 
is not typically computable for all possible parameterizations. For example, we may 
have simple constraints such as g < O < u, where g and u are the lower and upper 
bounds for the parameter vector. In this case, we use either a constrained optimization 
package or penalty functions [see Fletcher (1987)]. 

After computing the maximum likelihood estimates, we need to compute their 
standard errors, 

S~(0) = diag 30  ~O ] ' (11.3) 

where Lt (0) is the logarithm of the density function of the date t innovation, i.e., 

, -1 Of(Yt, O) 
Lt(O)=loglY2tl+utY2t ut - 2log Oyt " (11.4) 

The formula for 3Lt/30 is also given in Appendix B. 

12. Estimating the cattle cycles model 

In this section, we present estimates of some of the parameters of Rosen, Murphy and 
Scheinkman's (1994)model) 3 We let Pt be the price of freshly slaughtered beef, d~,t 

33We have used estimates of key parameters from this section in the numerical experiments for the 
annual model. 
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the feeding cost of  preparing an animal for slaughter, dh,t the one-period holding cost 
for a mature animal, "yldh,t the one-period holding cost for a yearling, and ~/2dh,t the 
one-period holding cost for a calf. The c o s t s  {dh,t,  ds,t}t~°=o are exogenous stochastic 
processes, while the stochastic p r o c e s s  {Pt}t°°=o is determined by an equilibrium. Let 
]gb,t be the breeding stock and Yt be the total stock of  animals. Each animal that is 
reserved for breeding, gives birth to r/calves. Calves that survive become part of the 
adult stock after 2 years. Letting t index years, the law of motion for stocks is 34 

kb,t = kb,t-1 q- rlkb,t-3 -- ct, (12.1) 

where ct is a rate of slaughtering. The total head count of cattle is 

Yt = kb,t 4- ?}kb,t-1 + ~]kb,t-2, (12.2) 

which is the sum of adults, yearlings, and calves, respectively. 
A representative farmer maximizes 

( 3 0  

EO Z ~t  {p tc t  -- dh,tkb,t __ (~ldh,t)(?]kb,t_l) __ (~2dh,t)(?~]~b,t_2) 
t = 0  

£ 
- d, , tct  - ~ I ' t }  (12.3) 

where 

= k 2 , k 2 . ~t ( b, t- l- lg2t-l  + b,t-Z-}-e 2) 

Here e is a small positive parameter which measures the quadratic costs of carrying 
stocks and slaughtering. 

Demand is governed by 

ct = C~o -- cqpt (12.4) 

where c~0 > 0 and c~l > 0. The stochastic processes {dh,t, ds,t} are univariate autore- 
gressions with orthogonal innovations 

dh,t+l = (1 - 19h)~h -}- phdh,t q- eh,t , 

ds,t+l = (1  - -  Ps)#s  + psdm,t  + es,t, 

2 and E e 2 t  2 The disturbance processes {eh,t} and {es,t} are where Ee~,t  = o- h = or. 
white noises that are uncorrelated at all lags. 

34We have set the death probabil i ty in Rosen, Murphy  and Sche inkman ' s  (1994) model  to zero. 
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Table 4.6 
Parameter estimates for "Cattle cycle" example 

Parameters Estimates Standard errors 

oq~ 146 33.4 
c~1 1.27 0.323 

3̀1 0.647 11.5 

3'2 1.77 12.0 
r/ 0.938 0.0222 

Ph 0.888 0.115 
ps 0.699 0.0417 
~r h 6.82 10.6 
as 4.04 1.05 
ay 0.273 0.0383 
c% 4.82 0.531 

To compute parameter estimates, we use the data of Rosen, Murphy and Scheinkman 
(1994), which include annual observations for Yt,  ct,  and Pt for the United States 
during the period 1900-1990. 35 We assume that there is error in measuring the total 
stock of cattle Yt and the slaughter rate ct.  In particular, we assume that the (1,1) 
element of R, the variance-covariance matrix of the measurement errors, is equal to 

2 All other elements of 2 and we assume that the (2,2) element of R is equal to crc. O-y~ 
R are set equal to zero. 

We are now equipped to estimate the parameters of this model by applying the 
formulas of the previous sections. We start with some a priori restrictions. Assume 
that /3 = 0.96, e = 1 x 10 -4, /~h ---- 37, and #s = 63. The remaining parameters 

are elements of O, i.e., @ = [c~0, cq, 3'1, 3"2, r/, Ph, Ps, Crh, if.s, Cry, Crc]. In Table 4.6, 
we report estimates of these parameters and standard errors for the estimates. Note 
that from the values for c~0 and c~1 we can get an estimate of the demand elasticity. 
For this model, the elasticity is given by -0 .61 .  36 The values of 3"1 and 3"2 give us 
information about the holding costs. The estimates indicate that the costs are higher 
for calves than for yearlings. However, the standard errors on 3'1 and 3'2 indicate that 
these parameters are not precisely estimated. The value of r / implies  that 0 .94kb , t -1  

calves are born at date t, where kb, t _ l  is the breeding stock at t - 1. This estimate is 
higher than Rosen, Murphy and Scheinkman's (1994) estimate of 0.85. The estimates 
of Ph and Ps imply that there is persistence in the processes for holding and feeding 
costs. Finally, the estimates of cry and crc indicate that the measurement error is higher 
for the slaughter rate than for the total stock. 

35The sources of these data are the Historical Statistics of the United States, Colonial Times to 1970 
and Agricultural Statistics. In the data, y is the total stock of cattle excluding milk cows, c is the cattle 
slaughtered, and p is price of slaughtered cattle. 

36This estimate is c~l x po/co (-1.27×0.48). 
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In Figs 4.1 through 4.3, we plot the predicted and actual time series for the stock 
of  cattle, the slaughter rate, and the price. The predicted series are the one-step-ahead 
forecasts. Using the notation of section 10 these are given by the vector G2t. 
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Figure 4, I. One-step-ahead forecast and actual total stock. 
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Figure 4.2. One-step-ahead forecast and actual slaughter rate. 
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Appendix A. Computing OL/OO and OLt/OO for a state-space model 

Differentiating the log-likelihood function with respect to the free parameters of the 
economic model can be broken into two steps: first, differentiating the log-likelihood 
function with respect to matrices appearing in the state-space model (10.7); and sec- 
ond, differentiating the parameters of the state-space model (10.3) with respect to the 
free parameters of the underlying economic model. In this appendix, we derive OL/OO 
in terms of the derivatives of Ao, C, G, D, R, :?o, Zo, and {zt, t = 0 , . . . ,  T}. We 
ignore the Jacobian in Eq. (11.1) since it differs for each problem. In Appendix B, 
we show how to compute derivatives of Ao for the linear-quadratic and nonlinear 
economies with and without distortions. 

A.1. The formula for OL/OO 

For the first step, we take as given Ao, C, G, D, R, Yco, Zo, and {zt,t  = 0, . . .  ,T} 
and their derivatives with respect to the deeper economic parameters. We shall show 
that the derivative of the log-likelihood function is 

[ 0 o, 
~ L _ ~  2 t r a c e { - ~ - Z t G M t G  ~tutlg2t I 2trace{~o C G' Mt G } 
~0 t=o 

OG -, ^ , -1 
+ 2 trace ~ (AoZtG Mt - ~tG'MtD + CC'G'Mt - Aoxtztt ~t 

+ ~tutt~2~lD) } 
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where 

O0 
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- 2 trace{-~o (GZtO,'Mt- ztuttx2tl + GYctut'g?~-l) } 

+ trace{ ~---~ Mr}+ trace/fO~Tt~ O'MtG}-  2 trace{~0t u t ' l? t lG} 

. [ O z t + l t , £ 2 ~ - i  } trace{ 8zt ,,~-1 ,~'/] + 2 ~race], ~ - 2 - ~ u t  ~t o j,] (A.1) 

~ _  OAo i 8C C OA° ZtAo' + Ao Ao' + AoZt-~- + - ~  + C -  
OO 

( i~C CI Gt ~)CIG, i~G I 8Ao -I 
- 56 + c 5 6  +cc 'Td  +-gb -s~c 

8Zt O' 00"~ K , OS2t + Ao-~- + AoZt~-~ ) t + Kt ~-~- Kt' 

00 OZt . , ~Ao' 
- K - ~  ZtAo' + G ' ~ -  Ao + O, Zt ~0 

OCI) ~ c  c ~C c ,  + c c  ~ + ~ CC' + ~0 

~0 ~° ~0 + 
_ / i~zt+l 

+ ~ ,  gF 

i~Kto0 0 - K t ~  zt + - -~  2,t 

- - - D  ~0/" 

(A.2) 

The expressions in (A.2) and (A.3) follow from the definitions of Zt in Eq. (10.6) and 
5:t in Eq. (10.7). The initial conditions Y:o and Z0 and their derivatives are assumed 
to be given. 

If Z0 is given by the steady state solution of the Riccati equation, then the compu- 
tation can be simplified. The formula for the derivative of the log-likelihood function 
is given by 

( ~Ao 0L~0 - 2T trace / ~ - ( Z G ' M G  - F ~ . ~ - I G  - F~(I  - KG) 

- ~ O ' s ? - l r , , W  - KG)  - ~ T L ' r J s ? - ' c  + ~ A o ' ~ ( I  - K a ) )  } 

{OC '(a'va c's?-lr.~(I Ka) + 2T trace ~ -  C - - 

- (I - a ' K ' ) r J s ? - ' a  + ( i  - c ' K ' ) r I ( Z  - KG)) 
) 

OC' 
~0 

(A.3) 
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DG (AoZ, G'M - IT, G 'MD + CC'G'M + 2T trace - ~  

- AoP~O -1 + F~f2-1D + AoF:~xK 

F~xKD CC'(I ,~,K,~F, I~--I -- -- -- tJ ) uA 

+ CC'G'O-IE~xK _ AoZfio'F~,'~ -1 

+ iT,.Ao'I'~x'g?-lD + AoZG'I?-I_E~:~K 

- ~Ot f2 -1F~KD - Ao~Ao'HK + ~UfIoIHKD 

- C C H K  + CC'G'K 'HK)  } 

- 2T trace{ OD(GZd'MDO ' + (F~u - GF~)f2 -1 

+ GF~xK - FzxK - GZJio'Fu~'f? -1 

G E G '  ~ - I  F u A K  -- GZAo' HK)  } + 

+ 2T trace{ ~--~ (½M + f 2 - 1 F ~ x K + ½ K ' H K ) }  

+2 t race{ ' l~ (Dz t+l  ~Dzt'~) } 
t=o \ DO / d ~ - / u t '  f2-1 

- 2 t r a c e { ' l ~ ( D Z t - D ~ ) A t ' K }  \ DO , (A.4) 

where )3 is the asymptotic state covariance matrix found by iterating on Eq. (10.6) 
and G, K, 12, ut and 0St are defined in Eqs (10.3)-(10.5), and (t0.7), and 

At = (Ao-KG)tAt+l+Glf2-1ut ,  t = O , . . . , T - 2 ,  

~T--1 : G l f ~ - l u r - l ~  

1 r-1 =-~ Pu~, T utut~' 
t=O 



Ch. 4: Mechanics of Forming and Estimating Dynamic Linear Economies 235 

1 E XtUtl' & ~ =  [i 
t=0  

T--1 

1 Z ztutt P 
~ T ' 

t=O 

1 T-1 
r u n  = -r E ~t- l"~t t '  

t= l  

T - I  
1 E ^  

F/cA = -~ X t - l  At , 
t= l  

T - I  1~ 
F~x = ~ zt-lAt , 

t= l  

(A.5) 

(A.6) 

(A.7) 

M = g2 -1 - Y2-1F~J? -l,  

rio = Ao - KG, 

H = Aotl-fff[ o q- G t M G  - Ot[2-1-]nuAdo - 2 ~ o / F u A t f 2 - 1 G .  

In the remainder of this appendix, we derive the formulas in Eq. (A.1) and Eq. (A.4). 
Readers who are not interested in this derivation can skip the rest of this appendix. 

A.2. Derivation of the formula 

The derivative of the log-likelihood function with respect to any element 0 of the 
parameter vector is given by 

) } OL f Og?~ ~ { Out , - -  = ut Out' $2tl oo Etrace/ Mt + Ztrace /    + 00 
t=O t=O 

= S1 q- ~2 ,  ( A . 8 )  

where Mt = Y?t 1 - Y?tlutut~Y2t 1 and Y?t = Eutut'. We start with the first term in 
the expression for the derivative of the log-likelihood function $1. For this, we need 
the derivative of the covariance matrix Y2t which satisfies 

os?t oQ -, ~OZ~G,+O~O0 '  OR OG 
oo - ~ ~ ,G + oo 5 g  + ~d  + ~ c c ' a '  

! 

OC C~G, OCIGt + G - ~  + GC - ~  + GCC' OOG 0 

= ( ~ o A o + G O A o  OD OG) O Z t - t  oo oo G -  D ~ NtG' + G- -~ -G  
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- i G OAo' , G l a D '  O G '  , \  
+ GiTt Ao ~ (  + --~- G - DO -~  D ) 

I 
DR DG DC CIGI G DC G' DGI + - ~  + --~ CC'G' + G - ~  + C - ~  + G C C ' - ~  . (A.9) 

The second equality follows from the definition of G. If we post-multiply the deriva- 
tive of C2t by Mt and take the trace of the result, we have the first term of the 
derivative of the log-likelihood function in Eq. (A.8): 

T-1 [ [,DA 0 ) ( ~ 0  ) 
SI = ~ 2 trace~--~- ZtG'MtG + 2 trace C'G'Mta 

t=0 

( DG -' - + CC' G' Mt } ) + 2 trace\~-~{AolTtG M~ ITtQ'MtD 

- 2  trace(~o GEtO'Mt)  + trace(~--~ Mr) 

+ trace < ~-(- 

Note that the formula for $1 depends on derivatives DAo/DO, DC/DO, DG/80, and 
D/{/D0, which are known, and D17t/80, which is yet to be derived. 

We now turn to the second term of the log-likelihood function derivative, $2 : 
trace(D%tut'/DOg2tl). Let / '~ , ( t )  = utut'. By definition, P~(t)  : (5t - Gfft)(zt - 
Gfft)' and, therefore, its derivative is given by 

_ Dfft']' 8 r~( t )  ( De~ 80 Dfft'~ , [ 82~ 86 fft _ O 
Do \ 8 o  8o St - ° + u' t 8o 8 o )  

_ ( Dzt+l 8D Dzt DG ^ DAo 
\ ~ DO z t - D  DO ~ A o z t - a - - ~ - S c t  

' 8 ' 8G' ^ 8Ao'G, 8Zt+l t DD' zt D' - 9 t tAo ' - -  - oct' 
+ u~ 80 zt 80 DO 80 - ~ -  

OD' DG', D.~t'd, ~ (a.ll) 
+ f f t 'G ' -~  + 3ct'--~ D - DO }" 

If we post-multiply this derivative by f2/-1, take the trace of the resulting matrix, 
and sum over t, I then we have the second term of the derivative of the log-likelihood 
function, i.e., 

r Ao } 
$2 : - ~ 2 t r a c e / ~  fft'at' f2t -1G 

t=0 
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+ 2 trace{ ~OG iAoxtu t ,  ^ , i f~t -- "~tut' n ;  1D) j 

+ 2 t r a c e  - - ~ ( z t u t  - G:~tu t l )~Qt  -1 - 2 trace ~ Ozt+l t=0 Y ~ t t ~ t l  

T-~ ~zt ut,Dt_lD + 2 trace 
+ 2 trace i, t=0 ~ff  t=o ~ ut " t  u f j  (A.12) 

Sum the expressions in Eqs (A. 10) and (A. 12) to get the expression for the derivative 
of the log-likelihood function in (A.1). 

For the time-invariant case, several more steps are needed. First, we derive the last 
term in Eq. (A.12) in terms of the derivatives that are taken as inputs. Following 
Kashyap (1970), Wilson and Kumar (1982) and Zadrozny (1988a), we can simplify 
the computations by working with sequences {dr} and {At} defined as follows 

( ~ 0  o O K -  O&)~ OK . 02t = O - K s -  + -gg +  -gg, t = O, . . . , T - 1 ,  

At=(Ao-KG)'At+~+G'£2-1ut,  t = 0 , . . . , T - 2 ,  

AT-~ = G' f2-1UT-l. (A.13) 

Notice that the time subscripts have been dropped from K and [2 since the time- 
invariant case assumes that Zt = Z for all t. Let Ao = Ao - KG. Notice that since 
Yct+l = -AoS:t + K2t, its derivative is given by 

O0 .~o 00 + dr. (A.14) 

Write out the last term in Eq. (A.12) and substitute in 97t = At o + ~ts~fUo-'dt_s. 
Then group terms involving Yc0 and dr, t = 0 , . . . ,  T - 2. These steps lead to 

( E  ) ( Z--1 ) 2 T-1 ~Yct 2 050 
T t race\  t=0 -~ut'~Q-IG = - ~ t r a c e \  00 A0' + ~t=, dt-~At' 

2 ) {( Ao 
- T trace\ 00 A0' - 2 t r a c e  \ O0 0~ K - ~ A o  

~Ao ~D OG] , OK 
- KG--~-  + K - ~ G  + KD--~  I~:, + -~-d- F~a 

/ 
T--I } 

] K ~  OZt K OD F r i~Zt-I -gg K D F _ , - - g V -  q- T t=l t=l 
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( OAo } 
= - 2  trace / - - ~  _E~x (I - KG) 

trace OG (Ao-P¢xK + 2  { 0 0  - V 2 x K D }  

aD K - 2 t r a c e { - ~ ( G P ~ , x  - P z , x K ) }  

2 / T-1 T-1 
trace K" Ozt It' azt-x At'~ 

k t = l  t = l  

T traceL-~-  ,~0 ) - 2 trace - ~  F~x , (1.15) 

where P~x, P¢;~, and F~), are the sums defined in Eqs (A.5) through Eq. (A.7) and 
w- ' ,T--1  - /~ t / r r .  

F2A = 2.~t=l Zt-I t /1. The second equality follows from the definitions of dt-i 
and O and some algebraic manipulation. The last term in Eq. (A.15) uses the fact 
that ut = 2t - 0:~t. With the exception of OK/O0, the expression in Eq. (A.15) is a 
function of known derivatives. The expression for OK/O0 follows from the definition 
in Eq. (10.4) and is given by 

oK [oc c ' a ' .  oa' ox o, - + w - ~  +CC'--~ +----2-°XO'+Ao-~-ff 
oo L oo 

OGI OA°IG ' -  Ao~G' OD' OG I t] + Ao~Ao'-~ + Ao~-~-  ~ - AoE ~ D i n  -1 

- (CC'G' +Ao20 ' )9  -~ ~AoXO,+a ~ 0 ,  OD - - - ~  g ~ o '  

- ,OG' OAotG t OG OZ O, GZAo - ~  012, - D.-~ IT O' + OJ--~- + + 

OD' ~0'  OR OG 
- OEG' -~ - GE D' + -~ + -~ CC'G' 

OC C'G' OC'G' 0C ' ]  o_ t .  (A.16) +a F +cc-g~ + c c c '  oo ] 

Note that we have written 0G/00 in terms of i3G/O0, OAo/O0, and OD/O0. Substi- 
tuting OK/O0 into the expression in Eq. (A.15) and rearranging terms, we have 

2 T - - 1  0 ~  t 

T trace(  E ~ ut'X2-1G ] \ t:O 

: - 2 trace (I'e.x(I - KG) + Z0 ' f2 - 'Pu ,x ( I  - KG) 
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+ 2Ao'G~'n-IG) } 

{ 3C C'(G'~Q-1I'ux(I- KG) + (I-G'K')F~x'g?-IG) } - 2 trace -~- 

+ 2 trace AoI'~K _E~KD - CC'(I G,K,~E, ,g?-I -- -- ) u~ 

+ CC,G, f2-1E~aK - , , -t - AoY]Ao Pu), f2 + Zi{o'l"uk,'f2-1D 

+ AoSG'n-IG, xK _ 2,(9,S2-1F, xKD) } 

{ OD (GF~;~K - F~:,K - GSdo'F~;~'n-I + GSG'n- '  F~:,K) } 
- 2 trace --~ 

+ 2 trace{ ~--~ f2-1-Pu~,K } 

2 ~ 8zt A ' 3zt-i 
T trace t.K --~ t - KD ~_~ - - ~  At' 

t = l  t = l  

2 trace{ 0:~0. , ]  trace{ 3Z - l - T ~ ,~o ~ - 2 -~ (G  g2- Pu:~Ao)}. (A.17) 

Therefore, the expression for the second term of the log-likelihood function derivative 
$2 is given by 

f O A o  $2 = - 2 trace~.--~--~- (F~J2-1G + Pe;~(I - KG) + ZG'J?-1F~>,(I - KG) 

+ } 

- 2 trace{ ~o C'(G'S2-1F~x(I- KG) + (I-G'K')G~x'J2-1G) } 

igG (Aol_1.aj2_ 1 F~D_ID _ AoFs:xK FexKD - 2 trace -~- + 

+ CC'(I - G'K')F~x'g? -1 - CC'G'F~-IF~K 

+ AoZfio'P~x'f2 -I _ ~fio'p~x'f2-1D 
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- Ao22~,£2-112,,~K + ZG'J2-1I~,~KD) } 

- 2 trace ~ -  ((Fz.. - GF~)~2 -1 + GF~,K - FzxK - G22fto'F,~x'~(2 a 

+ GZ, Q'f2- 'F~xK) } 

OR 
+ 2  t r a c e { . . . -  F ~ K }  

+ ~ trace - - ~  ut~L - ~ trace ~ ut'X2-1D 
t=O t=O 

T trace K E - ~ A t ' -  ~ A t '  
k t = l  t = l  

2 trace{ 0:~° Ao'} 
T -gO- 

-2trace{~oG'X2-1F~Xfto }.  (1.18) 

Our expressions for $1 in Eq, (A.10) and $2 in Eq. (A.18) depend on OAo/O0, 
OC/O0, OG/O0, OD/O0, OR/a0, which are known, and OX/00, which we will now 
derive. Using the expression in Eq. (A.2) with Zt+l = Zt = Z, we get 

a-O = A o ~  flto' + W + W', (A. 19) 

where 

OC CI OC CfGIKI 0CI GIK I - C C  OGI K I w =  X A o '  + - - g g  - 

I I 

aAo ZGIK I Ao lag  K I OAo GIK I aO - Z A o  ~ - AoZ - ~ -  

i 1 K OR KI + AoZG' OD K' + AoZ OC'D'K' + 
00 O0 2 - ~  

O0 

K D  ~0 Z GIKI OG " OC CGtKI.  - + K ~-~ C C G ' K '  + KG - ~  (A.20) 
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The terms W and W' in Eq. (A.19) include all derivatives but 0~'/00. To get the 
expression in Eq. (A.20), we substituted the expressions for 0O/00 and OG/OO into 
Eq. (A.19). Let H be a symmetric matrix that satisfies 

17 = fito'H]to + ½(H + H'), (a.21) 

where 

H = G'MG' - 2G~'~ -1 _Fu~Ao. (A.22) 

O Z I ( H + H , ) }  trace, gO- 

= trace{ aZ--~- (Lr - ] t o ' H A o ) }  

a Z _ fito' H } = trace{-~-~ H }  trace{.Ao ~Z gg 

= trace ~ -  - Ao - ~ -  -Ao' / 7  

= trace{ (W + W')I-I} 
-- 2 trace{WH}. (A.23) 

If we post-multiply W by /7 and take 2 times the trace, then we have an expression 
for trace(OZ/gO)H in terms of known derivatives, i.e., 

trace( ~-o H) 2 trace{ aA~° Sfi.o' /7(I - KG) } 

+ 2 trace{ ~o C'(l-G'K')/7(Z- KG) } 

( aG - , _ 
- 2 trace / ~ -  (AoZAo HK Zfto'HKD 

+ CC'(1- G'K')/7K) } 

+2trace{~---o G~fto'/TK}+trace{.~fo K'l-lK}. (A.24) 

Sum $1, which appears in Eq. (A.10) with ~t  = ~ and X'2t = S2, and $2 in (A.18). 
Substitute in the expression for trace(~2/~O)H from Eq. (A.24). The result is the 
derivative of the log-likelihood function which is given in Eq. (A.4). 

Then 
OZ 

= 
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A.3. Standard errors 

After we have computed parameter estimates, we want to compute their standard 
errors as given in Eq. (11.3). For this we need to compute the derivative of  

L~(@) ---- log In~l + u/n?~t 

with respect to any element 0 of the parameter vector. 37 This derivative is given by 

OLt _ ( ODt ~ Out' Out ut Dt ODe -1 
00 t r a c e  ~ t l  O0 ] -t- - ~  ~Qtlut + utQQt I - ~  _ t -1 ~ -  ~t  ut 

= trace{ (~t 1 - 1 t 1" ~ 0 ~ t  "1 

= trace~ Mt + trace ~2tl 00 ' (A.25) 

where Mt = ~2t I - ~?t-l ututQQt 1. Above, we calculated OX2t/O0 and i~(utut')/O0. 
These expressions are given in Eq. (A.9) and Eq. (A. 11). 

Appendix B. Differentiating the state-space model with respect to economic 
parameters 

In this appendix, we describe how to compute derivatives of Ao with respect to the 
free parameters of an economic model. We do this for four economies: a linear- 
quadratic economy without distortions; a nonlinear economy without distortions; a 
linear-quadratic economy with distortions; and a nonlinear economy with distortions. 
Because we use linear approximations for the nonlinear economies, most of  the work 
is in deriving the formulas for the linear-quadratic economies. 

B. 1. A linear-quadratic economy without distortions 

We consider a discounted stochastic regulator problem. The optimization problem is 
£X3 

max E o ~ / 3 t ( x t ' Q x t  + ut 'Rut  + 2x t 'Wut ) ,  (B. 1) 
{u,} t=o 

subject to xt+l = Axt  + But  + Cwt+l. 

37Note that we are again ignoring the Jacobian since the relationship between z and y diffcrs ~br each 
problem. 
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We assume that the matrices Q, R, W, A, and t3 depend on a vector of parameters 
69. For the remainder of this section we assume that C = 0. Typically, the number of 
elements in 69 is small relative to the combined number of elements in these matrices. 
We also assume that the derivatives of the matrices in Eq. (B.1) with respect to the 
elements of O are known. 

The optimal decision function is given by ut = - F x t ,  where 

F = (R +/3 /3 'PB)- I ( /3B 'PA + W') (B.2) 

for P satisfying 

P : Q +/3A 'PA 

- (W +/3A tPB) (R  +/3/3 'PB)-l( /3/3 'PA + W'). 

The law of motion for x in equilibrium is 

(B.3) 

Xt+l = Aoxt, Ao = A -  BF. (B.4) 

Therefore, the derivative of Ao with respect to an element of 69 is 

OAo OA OB OF 
- F - / 3  - - .  ( B . 5 )  

00 00 00 00 

The derivatives OA/O0 and OB/O0 depend on the specification of the problem in 
Eq. (B.1) and are assumed to be known. The derivative of F is 

(oR oB' oP oB' F 
OFo0 - (R + ~B'PB)-' \~-~ +/3 ~-~ PB +/3B' ~ B +/3/3'P O0 / 

(°' B OP t 0A OW/~ 
+ (R + /3B 'PB)  -1 /3 - ~  P A  + fiB' ~ A +/3/3 P - ~  + ~ ] .  (B.6) 

Notice that this formula depends on the derivative of P,  with the remaining derivatives 
provided by the modeler. The derivative OP/00 satisfies the following equation: 

OF 0Q 0A'  0 P  , 0A 
0---0 = 0--0 + fl ~ P A + f i x  ~-~ A + fl A P --~ 

( aw  OA' OP a/3) 
- - ~ - ~ + f l - - ~ - ~ P B + f l A ' - - ~ B + f l A ' P - ~ -  d F 

~I['OR 0/31 OP I 0/3~ 
+1~ k-'~-~ + /3 ~ P B  + /3/3' -'~-~ /3 + /3/3 P - ' ~  / F  

( -ff~ -A-~ OP , OA OW'~ 
~ F ~ /3 ,,, P A + /3 /3' . ,  A + /3 B P .v + O0 ] 
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aP aQ raA' aB'] , raA ] 
= / 3 A o ' - ~ A o + - ~ f f  + / 3 [ ~  - F '  ~ ]PA° + t 3 A o P [ ~  ®Boo F 

OW F _  F, aW'  F' OR 
- 0---0- - ~  + - ~  F, (B.7) 

Although this formula determines only an implicit function for OP/80, the gradient 
of P can be represented explicitly in terms of things we know. Define the gradient 
operator as follows: for any matrix A that depends on the parameter 0, VoA - 
vec(OA/aO). Then, 

VOP = (I - flAo' ® Ao')- '  { VoQ + fl(Ao+P @ I) VOA' + fl(I @ Ao'P) VoA 

- /3(Ao'P ® F') VoB' - t3(F' ® Ao'P) VOB - (F' ® I) VoW 

- (s ® F') VoW' + (P' ® F') V0R}, (B.S) 

which is a function of the gradients of A, t3, Q, R, and W. The gradient of P can 
then be substituted into the following formula for VoF: 

VoF = t3(I @ 7~13'P) VoA - 13(F' @ n B ' P )  \7o13 +/3(Ao'P ® Tt) VoB' 

- (F' ® 7~) VOR + (I ® n )  VoW' + 13(Ao' ® riB') VoP, (B.9) 

where 7~ = (R + t3B+PB) -1. Finally, we substitute this expression for VoF into 

VoAo = VoA - (F' @ I) VoB - (I @ 13) VoF. (B.10) 

B.2. A nonlinear economy without distortions 

The optimization problem that we start with is 

O® 

max Eo ~ / ~(zt, 0), (B.1 l) 
{ud ~=0 

subject to zt+l = Axt + But + Cwt+l, 

z t  = [z t ' ,  u t ' ] ' ,  

where {wt+l } is a martingale difference sequence and E0 is the mathematical expec- 
tation conditioned on time 0 information. We solve a related problem, namely: 

O<3 

max Eo Z f3t zt~ Mzt '  (B. 12) 
{u~} t=o 

Xt-]-I = Axt + But, 
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where 

M = e  r(2,0) ~ ~'+ 2 aZ,2 2 e' 

02r(e, 0) 1 ar( ,0) c' - 

02T(2, 0) 02~'(2, 0)) 
~ 2  2 2 e  t + 05 ~ , (B.13) 

and where e is a vector of zeros except for a 1 in the element corresponding to 
the constant term in zt, 2 and @ are the steady state values of  zt and wt, and 
S:~ = [In;0k,n] and S~ = [0,~,k;Ik] (where the " ; "  denotes stacking) are selector 
matrices and imply z t =  S:~zt + &,ut, where n is the dimension of zt and k is 
the dimension of ut. The latter problem yields the same decision function as that of 
Eq. (B.1) (where Q = Sz'MSx,  R = S.~'MSu, and W = Sz'MS.~). 

In the nonlinear case, however, the derivatives are slightly more complicated. To 
derive 8Ao/OO, we need to calculate derivatives of  the coefficient matrices of the 
objective function. For this, we need the derivative of M with respect to 0: 

/ 
OM {~r(2,0) 02r'(2,0) 2q_ 1 ( 02r(2,0) OZ" ) 
a 0 -  a2a0 ae2 ga (:)2 

1 2' 03r(2 '0)  ) e ,  
+ ~ a2~a 0 2 

/ 
1 (:) 

+ ~  e a2O0 + a e 0 ~  022 a0 

( 02r'(2, 0)02)  03T (.g.', 0) 03/"(2,0) 
- V~ 8~2 ~-~ ( : ) 2 e ' - e ~ '  02,280 02200 2e' 

+ 0228 ~ + Ve 022 ~ (:) , (B.14) 

where V~A(z) = [13A(z)/Oz,,..., 8A(z)/Ozn] for A(z) which is n x n and b(:) ~s 
an n x n matrix created from a vector of  length n 2 by stacking the first n elements 
of b into column 1, the next n elements of b into column 2, etc. As this formula 
indicates, the modeler must provide first, second, and third-order derivatives of the 
return function. The derivatives of Q, R, and W follow immediately from 8M/00, 
e.g., 8Q/O0 = Sz'(OM/O0)S~. The remaining derivations are the same as in the 
linear-quadratic case. 
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B.3. A linear-quadratic economy with distortions 

The optimization problem that we start with is given by 

{ l E Zt "022 J Zt 
max Eo 
(~} t=0 

subject to 

E.W. Anderson et al. 

(B.lS) 

Equilibrium conditions are imposed in the form of a set of linear equations 

2t = OYt + ~Ctt. 

In the notation of this subsection (which differs from that used in Section 7 in the 
text), 9t denotes the endogenous state variables affected by the representative agent, 
and 2t denotes variables that the agent takes as beyond its control. To ease notation, 
we convert the problem to one without cross-products or discounting. Let 

Yt = flt/29t, 

Zt = f l t / Z 2 t ,  

U t ~ f l t / 2 ~ t ,  

W t  = f l t /2 f f ) t ,  

q y  = Qy - ~Vu~- lWy  ,, 

q~ = O~ - W ,  Ye-l W / ,  

Q22 = 022 - 17VzR-lr~Vz 1, 

Ay = x/-~(-ay - D ~ R - * w y ' ) ,  

A~ = v ~ ( ~ L  - B y R - ~ W / ) ,  

By = v~B~,  

o = ( I  + ~R-~  ~¢~') - '  ( 0  - ~ R - I w y ' ) ,  

k~ = ( I  + ~/~-lVV~')-lk~. (B.16) 
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With these definitions, we can restate the optimization problem as follows 

lIl } max ~-" yt Q z yt + 'tt, t '  R U t  , (B.17) 
{ut } ~=0 Zt Q22 Zt 

subject to 

~/t+l = AyYt + Azz t  + Bvut. 

Let X = Av + A~O, Q, = Qv + Q~O, B = By + A~e,  and X = Ay - B v R - l g t ' Q / .  
The decision function in this case is given by 

(B.18) F =  (R + B y ' P B ) - ' B y ' P A ,  

where P satisfies 

P = ~) + A ' P A  - A ' P B ( R  + B y ' P B ) - I B v ' P A .  (B.19) 

The decision function for the original problem is given by 

= (R + 17Vz'~)-I(RF + IYV v' + IEVz'O), (B.20) 

and the equilibrium law of motion for Yt is 

Yt+l = Ao'fh, Ao = fly + A~O - f i ~ P  - B u F  

=/3-1/2(2 - / 3 F ) .  (B.2I) 

Therefore, the derivative of Ao with respect to a parameter 0 is given by 

o 

~ F -  ~-~ 0 - (B.22) 

A A 

To calculate OAo/O0 requires several steps. First, we need the derivatives of A, B, 
and F with respect to 0: 

0.4 OA v 0AAa~ OO 
O 0 -  O0 + - - O +  O--O' 

(B.23) 

0/~ _ OB v 0A~ ~Og' 

OF 
O0 

(B.24) 

- -  - - (R + By'PB~ + B;PA~,) - '  k ~  ( 0R + --~0~' PBy + 8~' ~0P 8~ 
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i aBv aBv ~ OP , OA~ 
+ B, P-gg + --gg-PA~,+B~' ~Az~'+B~ e~-~, 

+ Bv'PAz --~ F + (R + Bv'PB v + Bv'PAz~ ) -1 

x ( aBv' OP B 'P oAr 
\ aO P A y  + By'  --~ Ay + y aO 

OBvl B I OP I 8Az 0 0 )  + - - ~  PAzO + v - ~  A~O + By P - - ~ O  + Bv'P A, - ~  

- (R + By'PB)- '  ( --~-ffF+~--OR aBy' p ( ~  - BF) 

,aP ^ ^ (OAr OBv F)  
+ By ~ ( A -  BF) + Bv'P aO O0 

+ By'P (@ - ~P F) + Bv'PAz ~0 O0 ~ Y . (B.25) 

Note that these derivatives are functions of of OR/OO, OBy/OO, OAy/OO, OA~/OO, 
~O/~0, Ok~/O0, and OP/OO. The derivative of R is given since R = ]~. The deriva- 
tives for By, Ay, Az, O, and ~P follow from their definitions above, e.g., 

OB v _ ~ ally (B.26) 
a0 O0 ' 

OAr _ V ~ ( a A y  O/)v R _ ,  - a /~  - 1 - 
oo o0 ao wy'  + B~,/~ -~ - ~  R -  W~' \ 

aWv'" ] 
- B'~R-i aO J' (B.27) 

aAzao = v~(  aA~ao a~ao R-~ w~' + B'~-~ ~aP~ R-~ Wz' 

Y 00 J '  (B.28) 

(ak~/~-1 iTd, 0 - --1 a /~/~-11~,  0 130__ O0 (1 -[- I~/~-- 1V/]'z ;) - 1 ~ "  - ~ 1 ~  " ~  

+~R_1OIEVz'o_ aO ak~ R_117dz, _ ~/~_ l OR R_, 17d, 
ao -gg + -~ ao 

+ ~/~_1 ~17¢'z' ")- (B.29) 
aO / ' 
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Og" (0¢" OR - 1 - , ( I + ~ - l f G ' )  -1 ~ & - l V V z ' ~ - ~ - l - g ~ R  - w ~  
00 

- - 1 OW~' a ~  t + ~PR- ~ - ~  - ~ . (B.30) 
/ 

The derivative for P-is given by 

- Ao  + + v / f l  I - - ~ -  - PAo 

+ ~o,p[O~o o~ ] ~) OR F - ~  Fj  + - ~  , (B.31) 

where _P = (R + B v ' P B ) - I B P ' A ,  Ao = - A - B y F ,  and 

oo - o ~ - +  .~ O + O z  a-~ (B.32) 

OA _ OA v OBy R - I ~ U n  ~ __OR 
O0 ~0 O0 "~ + B yR - I  oO R - I ~ U Q /  

0~ '  , 3Q~' (B.33) - BYR -1~O Q~ - ByR-t~P' O0 

The last two derivatives needed are OQ, v/O0 and 3Q~/O0: 

- - ---1 ~ VFry,, 
3Qyo0 00yO0 317Vv30 R-117VY' + WyR- I~O R-117VY' - WyR  -~ , (B.34) 

O0 = O0 - O0 z + WvR -1--~ z - WvR-1 00 (B.35) 

We now have everything that we need to compute the derivatives of the matrices 
in the decision rule and the law of motion for the state vector. To avoid iterating on 
Eq. (B.31) for OP/30, we instead take the gradient, e.g., 

Vo P = (I - V/-fi Ao ' ® -4o')- '  { Vo O, + (I ® Ao' P'  ) Vo A 

+ Vzfi(Ao'P ' ® I) V o 2  - (F' ® fto'P') VoB 

- V/-fi(Ao'P ' ® F') VoB v' + (F' ® F') Von}.  (B.36) 

Thus the gradient of F is given by 

VoF = (I ® 7-4Bv'P ) VoA v + ((0  - ¢JF') ® 7-¢Bv'P ) VoA~ 

- (F' ® 7-4Bv'P ) VoB v + v ~ ( A o ' P '  ® 7-4) r o b  v' 

+ v/-fi(Ao ' ® TgBy') VoP - (F' ® 7"4') VoR 

+ (I ® TCBv'PA~ ) VoO - (F' ® TiBy'PA~) Vog', (B.37) 
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where  7~ : ( R + B v ' P B )  -1 .  In terms of  the compute r  code,  we start with Eqs  (B .26 ) -  

(B.30) and Eqs  (B.34)- (B.35) ,  which relate  the der ivat ives  o f  the or iginal  p rob lem 

to those  of  the p rob lem without  d iscount ing or cross-product  terms. To compute  the 

gradients  of  these objects in terms of  our  inputs, we use the fact  that v e c ( A B C )  = 

( C '  ® A ) v e c ( B )  for any matr ices  A, B ,  and C with the appropriate d imens ions  such 

that A B C  exists. We next  compute  the der iva t ives  for A , / 3 ,  Q,  and A which  appear  

in Eqs  (B.23), (B.24), (B.32), and (B.33). Finally, we compute  V o P  in Eq.  (B.36), 

V o F  in Eq. (B.37), and 

VoAo :  -ln(v02_ (F'  ® - ® V0F). 
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