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1. Introduction

This paper describes recent advances for rapidly and accurately solving matrix Riccati
and Sylvester equations and applies them to devise efficient computational methods
for solving and estimating dynamic linear economies. The paper surveys the most
promising solution methods available and compares their speed and accuracy for
some particular economic examples. Except for the simplest dynamic linear models,
it 1s necessary to compute solutions numerically. In estimation contexts, computation
speed is important because climbing a likelihood function can require that a model be
solved many times. We describe methods that are faster than direct iterations on the
Riccati equation and are more reliable than solutions based on eigenvalue—eigenvector
decompositions of the state—costate evolution equation. Our survey of these methods
draws heavily on Anderson (1978), Gardiner and Laub (1986), Golub, Nash and Van
Loan (1979), Laub (1979, 1991) and Pappas, Laub and Sandell (1980).

This paper is organized as follows. Section 2 decomposes the optimal linear regula-
tor into sub-problems that are more efficient to solve and describes classes of economic
problems that give rise to such problems. Sections 3-6 describe recent algorithms for
solving these sub-problems. Section 7 extends the range of the basic algorithms to
the domain of “distorted economies” whose equilibria do not correspond to solutions
of optimum problems. Section 8 describes three particular economic models, one of
which is the cattle cycle model of Rosen, Murphy and Scheinkman (1994). Section 9
uses each of these models as contexts for speed and accuracy comparisons of al-
ternative algorithms. Sections 10 and 11 briefly describe innovations representations
and recursive computation of Gaussian likelihood functions. Two appendices (A and
B) provide formulas for computing derivatives of a Gaussian likelihood with respect
to a set of unknown parameters governing the tastes, technology, and information
flows of our economic models. These formulas, which build directly from the work
of Zadrozny (1988a, 1989), are designed to make numerical search algorithms for
maximizing a likelihood function more reliable and to assist in making statistical in-
ferences about the parameters of interest. Section 12 uses these formulas to estimate
Rosen, Murphy, and Scheinkman’s model.

2. Control problems

In this section, we pose three optimal control problems. We begin with a problem close
to the much studied time-invariant deterministic optimal linear regulator problem.
We label this problem the deterministic regulator problem. We then consider two
progressively more general problems.

The first generalization introduces forcing sequences or “uncontrollable states” into
the deterministic regulator problem. While this generalization is also a deterministic
regulator problem, there are computational gains to exploiting the a priori knowledge
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that some components of the state vector are uncontrollable. We refer to this gener-
alization as the augmented regulator problem. As we will see, a convenient first step
for solving an augmented regulator problem is to solve a corresponding deterministic
regulator problem in which the forcing sequence is “zeroed out”. In other words, we
obtain a piece of the solution to the augmented regulator problem by initially solving
a problem with a smaller number of state variables.

The second generalization introduces, among other things, discounting and uncer-
tainty into the augmented regulator problem. We refer to the resulting problem as the
discounted stochastic regulator problem. Using well known transformations of the
state and control vectors, we show how to convert this problem into a corresponding
undiscounted augmented regulator problem without uncertainty. Therefore, while our
original problem is a discounted stochastic regulator problem, we solve it by first
solving a deterministic regulator problem with a smaller number of state variables,
then solving a corresponding augmented regulator problem, and finally using this lat-
ter solution to construct the solution to the original problem in the manner described
below.

2.1. Deterministic regulator problem

Choose a control sequence {v;} to maximize

o0
- Z(Ut/th + e Quyyt),
=0

subject to

Yt+1 = Ayyyt + By'Ut’
o0
Z (Jue]* + lye]?) < 0. 2.1
t=0
This control problem is a standard time-invariant, deterministic optimal linear reg-
ulator problem with one modification. We have added a stability condition, (2.1), that
is absent in the usual formulation. This stability condition plays a central role in at
least one important class of dynamic economic models: permanent income models.
More will be said about these models subsequently. In these models, the stability
condition can be viewed as an infinite horizon counterpart to a terminal condition on
the capital stock.
Following the literature on the time-invariant optimal linear regulator problem, we
impose the following:

DEFINITION. The pair (Ayy, By) is stabilizable if y'By = 0 and y'A,, = Ay’ for
some complex number A and some complex vector y implies that |A\| < 1 or y = 0.
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ASSUMPTION 1. (Ayy, By) is stabilizable.

Stabilizability is equivalent to the existence of a time-invariant control law that
stabilizes the state [see Anderson and Moore (1979, Appendix C)]. For our applica-
tions, it can often be verified by showing that a trivial control law, such as setting
investment equal to zero, achieves this stability.

In solving this problem, we are primarily interested in specifications for which all
of the state variables are “endogenous”, and hence the following stronger restriction
is met:

DEFINITION. The pair (Ayy, By) is controllable if y' B, = 0 and y'A,, = Ay’ for
some complex number A and some complex vector ¢ implies that y is zero.

When (A,y, By) is controllable, starting from an initialization of zero, the state
vector can attain any arbitrary value in a finite number of time periods by an appro-
priate setting of the controls [see Anderson and Moore (1979, Appendix C)].! For this
reason, we can think of a state vector sequence with evolution equation governed by
a pair (Ayy, By) that is controllable as being an endogenous state vector sequence.

While Assumption 1 gives us a nonempty constraint set, it is still possible that the
supremum of the objective is not attained. We assume the following:

ASSUMPTION 2. The matrix QQ,, is positive semidefinite, and the matrix R is positive
definite.

Among other things, this concavity assumption puts an upper bound of zero on the
criterion function. Therefore, the supremum is finite (and nonpositive). We require
that the supremum is attained.

ASSUMPTION 3. There exists a solution to the deterministic regulator problem for each
initialization of yo.

A commonly used sufficient condition in the control theory literature for there to
exist a solution is detectability. Factor Q, = D,D,/’.

DEFINITION. The pair (Ayy, Dy) is detectable if D'y = 0 and Ay,y = Ay for some
complex number A and some complex vector y implies that |A| < 1 ory =0.

When the pair (A,,, D,) is detectable, it is optimal to choose a control sequence
that stabilizes the state vector. In this case, the solution to the control problem is the

I This is one of five equivalent characterizations of reachability given in Appendix C of Anderson and
Moore (1979). However, many other control theorists take one of these characterizations as the definition
of controllability. For instance, see Kwakernaak and Sivan (1972) and Caines (1988). We choose to follow
this latter convention,
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same with or without the stability constraint (2.1). However, as we mentioned previ-
ously, for permanent income models the stability constraint is essential for obtaining
an interpretable solution to the problem. For these models, detectability is too strong
of a condition to impose. Chan, Goodwin and Sin (1984) give a weaker sufficient
condition for there to exist a solution (see (iii) of Theorem 3.10). In the context of
a continuous-time formulation, Hansen, Heaton and Sargent (1991) proposed a very
similar sufficient condition for stabilizable systems based on a spectral representa-
tion of the deterministic regulator problem. Unfortunately, these conditions may be
tedious to check in practice. Some of the solution algorithms we survey below could
in principle be modified to detect a violation of Assumption 3.

A sufficient condition for convergence of one of the solution algorithms that we
survey below is that the pair (Ayy, Dy) be observable:

DERINITION. The pair (Ayy, D) is observable if D,'y = 0 and Ayyy = Ay for some
complex number A and some complex vector y implies that y = 0.

Clearly, observability is stronger than detectability. Moreover, observability is guar-
anteed when the matrix @, is nonsingular. When the pair (4, D,) is observable,
the value function associated with the deterministic regulator problem is strictly con-
cave in the state vector y [Caines and Mayne (1970, 1971)].

The solution to the deterministic regulator problem takes the form

v = —Fyy
tor some feedback matrix Fy,. Stability constraint (2.1) guarantees that the eigenvalues

of Ayy — ByFy have absolute values that are strictly less than one because the state
evolution equation when the optimal control is imposed is given by

Yer1 = (Ayy — ByFy)ys.
2.2. Augmented regulator problem
Choose a control sequence {v;} to maximize

o0
- Z,(U/th + ' Quyys + 2y’ Quazt)s
=0

subject to

Yt+1 - Ayy Ayz Yt By
)= dlfe] 5]
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oo

> (el + 19el?) < co.

t=0

We have modified the linear regulator problem by including the exogenous forcing
sequence {z; }. The presumption here is that this partitioning may occur naturally in the
specification of the original control problem. Of course, as is well known in the control
theory literature, we could always transform an original state vector into controllable
and uncontrollable components. Constructing this transformation, however, can be
difficult to do in a numerically reliable way. In the next section we will display a
class of optimal resource allocation problems associated with dynamic economies
for which z; contains a vector of taste and technology shifters. By assumption, this
component of the state vector cannot be influenced by a control vector such as the
level of investment.

For the augmented regulator problem to be well posed, we require that the forcing
sequence be stable:

ASSUMPTION 4. The eigenvalues of A,, have absolute values that are strictly less
than one.

The solution to the deterministic regulator problem gives us a piece of the solution
to the augmented regulator problem. More precisely, the solution to the augmented
problem is

Vg = — L'yl — F,z,

where the matrix F), is the same as in the solution to the regulator problem for which
the forcing sequence {z:} is zeroed out. Consequently, our solution methods entail
first computing F,, by solving a deterministic regulator problem of lower dimension
and then computing F, given.F,.

2.3. Discounted stochastic regulator problem

Let {F: ¢t = 0,1,...} denote an increasing sequence of sigma algebras (informa-
tion sets) defined on an underlying probability space. We presume the existence
of a “building block” process of conditionally homoskedastic martingale differences
{w¢: £ = 1,2, ...}, which obeys

ASSUMPTION 5. The process {wy: t = 1,2,...} satisfies
i) E(w | Fr) = 0;
(i) E(wipiwes' | Fe) =
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The discounted stochastic regulator problem is to choose a control process {u;},
adapted to {F;}, to maximize
-7:.0) )

_E<§;ﬂﬂuﬂ %ﬂ[§5‘gq[Zj

subject to

ZTo41 = Az + Buy + Cwegr,
E (Zﬁt(iutV + | ]?) I fo) < oo.
t=0

The state vector z; is taken to be the composite of the endogenous and exogenous
state variables. Let Uy = [/ 0] be a matrix that selects the endogenous state vector
Uyz: and U, = [0 I] be a matrix that selects the exogenous state vector U, z; for
an optimization problem with discounting. To justify our partitioning, the matrix A is
restricted to satisfy U, AU, = 0, and the matrix B is restricted to satisfy U, B = 0.
Notice that in addition to incorporating discounting and uncertainty, the discounted
stochastic regulator includes cross-product terms between controls and states, which
are absent in the augmented control problem.

We now apply a standard trick for converting a discounted stochastic regulator
problem to an augmented regulator problem. Using the well known certainty equiv-
alence property of stochastic linear regulator problems, we zero out the uncertainty
without altering the optimal control law. That is, we are free to set the matrix C
to zero and instead solve the resulting deterministic control problem. We eliminate
discounting and cross-product terms between states and controls by using the trans-
formations

Yt = ﬂt/znyt: Zt = ﬂt/zUz-’Et; Vg = ﬂt/z(ut + R_IWICL‘t).

As is evident from these formulas, we have absorbed the discounting directly into
the construction of the transformed state and control vectors. In addition, the cross-
product matrix S is folded into the construction of the transformed control vector.
We are left with a version of the augmented regulator problem with the following
matrices:

Ayy Ay

[ ny Qyz
Qu:' Qaz

2.2)
]:Q—WR4WA
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Assumptions 1-4 are imposed on the constructed matrices on the left-hand side of
the equal signs in (2.2).
As before, write the solution to the augmented regulator problem as

vy = —Fyyy — Fyz.
Then the solution to the discounted stochastic regulator problem is

U = —Fwt7

Fe {Fy] +RO'W

Also as before, the matrix F), can be computed by solving the corresponding de-
terministic regulator problem with the forcing sequence “zeroed out”. In subsequent
sections we will describe methods for computing F, and F,.

In macroeconomics, the discounted stochastic regulator problem is often obtained
in the fashion of Kydland and Prescott (1982), who use it to replace a nonlinear-
quadratic problem. Thus consider the nonquadratic optimization problem: choose an
adapted (to {F:}) control process {ut} to maximize

Fol, (2.3)

—-FE Z,@tr(ut, xt)
t=0

subject to
iy = Azy + Buy + Cwiyg.

Here r is not required to be a quadratic function of u; and z;. When the associated
constraints are nonlinear, sometimes we can substitute the nonlinear constraints into
the criterion function to obtain a problem of the form of (2.3). Kydland and Prescott
(1982) simply replace the function r by a quadratic form in [uy’ ' ] as required for
the discounted stochastic regulator problem, where the quadratic function is designed
to “approximate” r well near a particular value for the state vector.? In the next
subsection, we describe a different approach where, by design, the initial optimal
resource allocation problem can be directly converted into a discounted stochastic
regulator problem.

2While Kydland and Prescott (1982) apply an ad hoc global approximation to 7 in which the range
of approximation is adapted to the amount of underlying uncertainty, many subsequent researchers have
instead simply used a local Taylor series approximation around some “nonstochastic” steady state produced
by shutting down all randomness in the model. Kydland and Prescott (1982) note that for the range of
uncertainty they considered, the two methods gave similar answers.
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2.4. A class of linear-quadratic economies

We will consider several numerical examples that are members of a class of economies
used by Hansen (1987) and Hansen and Sargent (1994). As in the discounted stochastic
regulator problem, there is an exogenous information vector z; governed by

Se01 = Auz + Cowy, (2.4)

where {w,} satisfies Assumption 5 and 4, = \/BA\ZZ satisfies Assumption 4. The
vector 2; determines a time ¢ preference shock by and a time ¢ endowment shock d;
via

dt = Ud 2t7
by = Uy 3. (2.5)

A representative household has preferences ordered by

—%E <Zﬂb(15t — bi|* + |9 fo) ) (2.6)
t=0

where g; is a vector of labor-using intermediate activities (designed to capture gener-
alized adjustment costs), and s; is a vector of household services produced at time ¢
via the household technology

st = Ahy_1 + ¢,
ht = Ahht_l -+ tht. (27)

In (2.7), h; is a vector of stocks of household durable goods at ¢, ¢; is a vector of
consumption flows, and A, II, Ay, O are matrices. There is a constant returns to
scale production technology

Docy + Doty + Pygy = 'k + dy,
ke = Agki_1 + Oy, (2.8)

where k; is a vector of capital goods used in production, % is a vector of invest-
ment goods, and Ay, is a matrix.? Hansen and Sargent (1994) describe a competitive
equilibrium for this economy. Associated with the competitive equilibrium is a social
planning problem, namely, to maximize (2.6) over choices of contingency plans for
{8t,ctyit, gt, ke, bt 152 (adapted processes) subject to (2.4)~(2.8) with given initial-
izations for (2o, h—1, k-1).

3Under the constant returns to scale interpretation, dy is taken as an additional “input” available in
fixed supply.
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To map this problem into the notation of the previous section, we let

he—1
Ty = kt—l
Z

We view the first two components of the state vector to be endogenous and the third
component to be exogenous. The control vector u; can be chosen to be investment 4,

when the matrix ® = [®, &, ] is nonsingular because in this case*
Lﬂ = & NIk + Ugzy — $iiy). (2.9)
i

Using this relation, the constraints (2.7) and (2.8) can be rewritten
@41 = Azy + Buy + Cwiqg

for appropriately chosen matrices A, B, C. The matrix A is block triangular and the
bottom row block of B is zero as required for the discounted stochastic regulator
problem. Moreover, using (2.9) and (2.7), the time ¢ terms |s; — b¢|* and | g:|* in the
objective function (2.6) of the social planner both can be expressed as quadratic forms
in the control 4; and the augmented state z;. Therefore, the social planner’s problem
is a discounted stochastic regulator problem.

In permanent income economies, stability of the state vector process is not obtained
automatically as an implication of optimality. An example of such an economy is one
with a single consumption and capital good and no labor-using intermediate activities.
The counterpart to Eq. (2.9) is

Cp = Fk't—l + Udét — ’it.

We constrain the subjective discount factor to be the reciprocal of the physical return
to capital: 8 = 1/(I" + Ag). In the absence of a stability constraint, the solution to
the resulting control problem does not “stabilize” the capital stock sequence because
the sequence of capital stocks often diverges to minus infinity at a rate not even
dominated by 1/+/3. This solution to the control problem is not interesting. Therefore,
we impose stability as an additional constraint, with the consequence that the solution
to the resulting infinite-horizon control problem is equal to the limit of the solutions
to a sequence of corresponding finite-horizon problems, each of which has a zero
restriction imposed on the terminal capital stock.

“When & is singular, the control vector can be augmented to include some of the components of
consumption or the labor-using intermediate activities.
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3. Solving the deterministic linear regulator problem

In this section we describe ways to solve for the matrix F,. Recall that this matrix has
a double role. First, it gives the control law for a particular deterministic regulator
problem. More importantly for us, it also gives a piece of the solution to the discounted
stochastic regulator problem.

In describing methods for computing Fj,, it is convenient to work with the state-
costate equations associated with the Lagrangian

oo
E = — Z [ytleyyt —+ vthUt + 2/4Lt+]l(Ayyyt o+ By’Ut - %4—1)] . (31)
t=0

First-order necessary conditions for the maximization of £ with respect to {v:}$2,
and {y;}3°, are

ve: Rug+ By'ppy =0, t20, (3.2)
Y. Mt = nyyt + Ayy/#/t+17 t > 0. (33)

To obtain a composite state-costate evolution equation, solve (3.2) for v, substitute
the solution into the state evolution equation, and stack the resulting equation and
(3.3) and write the state-costate evolution equation as

L yt+l:|:NI:yt} (3.4)
Mt pe il '

where

L

Hl

I ByR7'B)/ N=| Aw O
0 Ayyl ’ - —ny I

There is also a continuous-time counterpart to this system given by

Dy, Yt
=H , 3.5
[Dm] [ut] ¢
where
A —~B,R™'B ']
H= vy v v, 3.6
[_ny "Ayy’ ( )

Equation (3.5) is the state-costate equation corresponding to the continuous-time reg-
ulator problem with criterion — [ [y(t)' Qyyy(t) + u(t)’ Ru(t)] dt and law of motion
Dy(t) = Ayyy(t)+ Byu(t), where D is the time-differentiation operator. We describe
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several methods for solving Eqs (3.4) and (3.5). Formally, we will devote most of our
attention to the discrete-time system (3.4). As we will see, methods designed for solv-
ing the continuous-time system (3.5) can be adapted easily to solve the discrete-time
system (3.4), and conversely.

The solution to (3.4) of interest to us is the one that stabilizes the state-costate
vector sequence for any initialization yp. Since we have transformed the state vector
to eliminate discounting, we impose stability in the form of square summability;

> ]

t=0
for the discrete-time system (3.4). (We impose the analogous square integrability
restriction on the continuous time system (3.5).)

One way to ascertain the solution to the deterministic regulator problem is to
find an initial costate vector expressed as a function of the initial state vector yg that
guarantees the stability of system (3.4) or (3.5). The initialization of the costate vector
takes the form pp = P,y and is replicated over time. Substituting Py, for y; into
(3.4), we find that

(I + ByR™' By Py)yer1 = Ay,
Ayy' Pyyeyr = —Quybe + Pyys. (3.8)
It is straightforward to verify that

2
< 00, 3.7

(I +B,R'B,/P)"' =1~ B,(R+B,/P,B,)"'B,/P,. (3.9)

Solving the first equation in (3.8) for y;4

Y+l = (Ayy - ByFy)yta (3.10)
where
F, = (R+ By'PyB,)"'B, P,A,. (3.11)

Premultiplying (3.10) by A,,'P, gives
Ayy' Pyyrs1 = _(Ayy,PyAyy — Ayy' PyByFy)y:. (3.12)

For the right-hand side of Eq. (3.12) to agree with the right-hand side of the second
equation of (3.8) for any initialization ¥, it must be that
Py =Qyy + Ayy/PyAyy - Ayy,PyBy(R + By/PyBy)_lBy/PyAyy
= Quy + (Ayy — ByFy)' Py(Ayy — ByF,) + F,/RF,, (3.13)
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which is the familiar Riccati equation. In other words, the matrix Fy used to set the
initial condition on the costate vector is also a solution to the Riccati equation (3.13).
With this initialization, the costate relation p; = FPyy; holds for all ¢ 2> 0. Finally, it
follows from (3.10) that this state-costate solution is implemented by the control law
V= — Lyl

The remainder of this section is organized as follows. In the first subsection, we
initially consider the case in which the matrix A, is nonsingular. While this case is
studied for pedagogical simplicity, it is also of interest in its own right. In the second
subsection, we then treat the more general case in which Ay, can be singular. As
emphasized by Pappas, Laub and Sandell (1980), singularity in A, occurs naturally
in dynamic systems with delays. One of our example economies used in our numerical
experiments has a singular matrix A,,. Finally, in the third subsection we study the
continuous-time counterpart to the deterministic regulator problem. We describe an
alternative solution method and show how to convert a discrete-time regulator problem
into a continuous-time regulator with the same relation between optimally chosen
state and costate vectors. We defer the discussion of the numerical algorithms used
for implementing these methods until the next section.

3.1. Nonsingular Ay,

When the matrix A,, is nonsingular, we can solve (3.4) for [Zii'l |:
2]z
where
M=L"'N
_ [Ay +B,RTB)/ 4, 7'Qy ~B,RT'B/ A, | 515)
Ay Quy Ay

We find the matrix P, by locating the stable invariant subspace of the matrix M.

DEFINITION. An invariant subspace of a matrix M is a linear space C of possibly
complex vectors for which MC = C.

Invariant subspaces are constructed by taking linear combinations of eigenvectors
of M. A stable invariant subspace is one for which the corresponding eigenvalues
have absolute values less than one. To solve the model, we aim to find the matrix

P, such that [ If ]y is in the stable invariant subspace of M for every n dimensional
Y
vector . We now elaborate on how to compute this subspace.
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The matrix M has a particular structure that we can exploit in characterizing its
eigenvalues. To represent this structure, we introduce a matrix J given by

10 =I
-
Notice that J=! = J' = —J.

DEFINITION. A matrix M is symplectic if MJM' = J.

It is straightforward to verify that M given by (3.15) is symplectic. It follows that
M =J "M (3.16)

Therefore, the transpose of M is similar to its inverse, Recall that similar matrices
define the same linear transtormation but with respect to a different coordinate system.
Thus M’ and M ! share the same eigenvalues. For any matrix M, the eigenvalues of
M~ are the reciprocals of the eigenvalues of M, so it follows that the eigenvalues of
a real symplectic matrix come in reciprocal pairs, and the number of stable eigenvalues
cannot exceed the number of states n. However, merely requiring M to be symplectic
permits there to be eigenvalues with absolute values equal to one, and so we will
need an additional argument to show that there are exactly n stable eigenvalues.

To locate the stable invariant subspace of the symplectic matrix M, we follow Laub
(1979) and (block) triangularize M:

VMV =W,
Wu W
W:[dlwiy (3.17)

where V' is a nonsingular matrix. By construction, the matrices M and W are similar.
The matrix partitions in (3.17) are built to coincide with the number of stable and
unstable eigenvalues. In particular, the absolute values of the eigenvalues of Wy are
stable.

A special case of this decomposition is an appropriately ordered Jordan decom-
position of M as was used by Vaughan (1970) in developing an invariant subspace
algorithm for computing F,. Laub (1991) traces this solution strategy back to the 19th
century and credits MacFarlane (1963) and Potter (1966) with introducing it to the
control literature. As emphasized by Laub (1991), it is preferable to build algorithms
based on other upper triangular decompositions that are more numerically stable. The
Jordan decomposition is particularly problematic when the symplectic matrix M has
eigenvalues with multiplicities greater than one (see also Golub and Wilkinson 1976).
In the next section, we describe alternative Schur decompositions, which are more
reliable numerically.
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To use this triangularization to calculate P, apply V! to both sides of the state
Eq. (3.14):

Yir1 = Wy,

where

r=v Y
Yt {Ht

This transformation permits us to study asymptotic properties in terms of two smaller
uncoupled subsystems. Partition y; into two blocks with dimensions given by the
number of stable and unstable eigenvalues:

%)
y;,t

H

vr
Then

* *
Y2141 = Waava

and the solution sequence {y5 .} fails to converge to zero unless it is initialized at
zero. Setting y3 ; at zero can be accomplished by an appropriate initialization of the
costate vector, as we now verify.

Partition the matrices V and V! as

Vi Wi o [vitov2
V*[VZI sz}’ VT = vu oyl

Since V is nonsingular and there exists a (stable) solution to the optimal control
problem, we must have

VA + VP = 0. (3.18)
The rank of the matrix [V21 VZZ} equals the number of unstable eigenvalues of
M, and thus the rank of its null space must equal the number of stable eigenvalues.

For a solution to exist for every initialization yy = y, it follows from (3.18) that there
must exist a g such that

Va3 + VP =0.
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Thus the dimensionality of the null space of [V?'  V?*] must also be at least n.
Therefore, M has exactly n stable eigenvalues, and the matrix partition V?* is non-
singular. Solving (3.18) for u; gives

pe = —(VE)T V2,
Consequently, the matrix P, used to initialize the costate vector is given by
Py=—(V)TVH =V Vi 7, (3.19)

Vi

where the second equality follows since [Vz 1

] has rank n, and

21 22 ‘/“ —
[va y2] [vz]] —o.

3.2. Singular Ay,

We now extend the sotution method to accommodate singularity in A,,,. This method
avoids inverting the L matrix in (3.4). Instead of locating the stable invariant subspace
of M, a deflating subspace method finds the stable deflating subspace of the pencil
AL —N.

DEFINITION. A pencil AL — N is the family of matrices {AL — N} indexed by the
complex variable A.

DEFINITION. A deflating subspace of the pencil AL — N is the subspace C of complex
vectors such that the dimension of C is at least as large as the dimension of the sum
of the subspaces LC and NC.

For the matrices L and N of Eq. (3.4), it can be verified that the intersection of their
null spaces contains only the zero vector.” This ensures that a generalized eigenvalue
problem is well posed. When a subspace C is deflating, there exists a vector z in C
that solves the generalized eigenvalue problem

ALy = Ny

3See Theorem 3 of Pappas, Laub and Sandell (1980) for the case in which (Ayy, Dy) is detectable.
As we noted previously, the restriction to a detectable system rules out some interesting economic models.
More generally, nonexistence of a common nonzero vector in the null spaces of IV and L can be shown
by way of contradiction. Suppose there is a common nonzero vector in the null space. Then the matrix
(I + QyyByR~1By') is singular. However, this singularity contradicts Theorem 1 of Kimura (1988).
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[see Stewart (1972, Theorem 2.1)]. Implicitly, we are including the possibility of a
solution with A = oo, which occurs when ¥ is in the null space of L but not in the null
space of N. As with the previous (invariant subspace) method, the deflating subspace
of interest for solving the optimal control problem is the deflating subspace associated
with the stable state-costate sequence. The stable deflating subspace is the subspace
associated with the stable generalized eigenvectors (the eigenvectors associated with
generalized eigenvalues with absolute values strictly less than one). Hence we solve

the model by finding a matrix P, such that [ }£ ]y is in the stable deflating subspace
Y
of the pencil AL — N.
Recall that when Ay, is nonsingular, the matrix M is symplectic. More generally,
system (3.4) is associated with a symplectic pencil

DEFINITION, A pencil AL — N is symplectic if LIL' = NJN'.

Pappas, Laub and Sandell (1980, Theorem 4) show that the generalized eigenvalues
of the symplectic pencil (AL — N) come in reciprocal pairs, just as the eigenvalues
of M do when A,y is nonsingular. Hence we again have that the number of stable
generalized eigenvalues is no greater than nn. Furthermore, we can imitate our argument
in the case in which A,, is nonsingular to show that there are exactly n stable
generalized eigenvalues.®

We triangularize the state-costate system (3.4) using the solutions to the generalized
eigenvalue problem. As in Theorem 2.1 of Stewart (1972), there exists a decomposi-
tion of the pencil AL — N such that

Tn T

o o (3.20)

ULV:T:{

}, UNV =W = [W” W”],

0 Wx

where U/ and V are unitary matrices and the matrix partitions have the same number,
n, of elements as the number of entries in the state vector y;. Premultiplication of the
pencil AL — N by the nonsingular matrix U preserves the solutions to the generalized
eigenvalue problem, and postmultiplication by V' alters the generalized eigenvectors
but not the eigenvalues. A consequence of the triangularization is that the solutions
to the generalized eigenvalue problem for the original system are constructed directly
from the solutions to the following two smaller problems:

ATy =Wny,
ATy = Way. (3.21)

As with the invariant subspace method, we build the blocks of the triangularization
so that the generalized eigenvalues of the first problem in (3.21) satisfy |A| < 1, and

STheorems 3 and 4 of Pappas, Laub and Sandell (1980) establish this result when the pair (Ayy, Dy)
is detectable.
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for the second problem |A| > 1. As a consequence, the span of the first n columns of
V' gives the vectors of the deflating subspace we seek. The span of the remaining n
columns contains the problematic initializations of the state-costate vector for which
the implied sequence of state-costate vectors diverges exponentially. In addition, it
includes the span of the generalized eigenvectors associated with infinite eigenvalues.
Imitating the solution.method when A, is nonsingular, we initialize the costate vector
as ¢ = P,y:, where the matrix P, is again given by (3.19).

To understand better the nature of this unstable subspace, recall that an eigenvec-
tor associated with an infinite eigenvalue is in the null space of T3,. Suppose the
triangularization of L and NN is built so that we can further partition the matrices:

My M
Ty, = [ 011 012} ,

|0 Onp
W22 - |: 0 022} )

where the matrices M); and Oy are nonsingular. Such a triangularization always
exists, Consider solving the following equation recursively for a sequence {§;41}; for
each t solve for 7:4) given y; by using

Tnvi+1 = Wag;.

For this equation to have a solution, the second component of ¢; must be zero for all
t because

Ongi2 =0, (3.22)

and Oy, is nonsingular. In addition to eliminating the nonexistence problem, impos-
ing this restriction also resolves the multiplicity problem. Note that the multiplicity
problem for the triangular system is that for a given £, (3.22) does not restrict Z;.1 5.
However, (3.22) applied to time ¢ + 1 resolves the problem.

3.3. Continuous-time systems

To conclude this section, we consider solving continuous-time Hamiltonian systems
of the form (3.5). The defining feature of a Hamiltonian matrix is:

DEFINITION. A matrix H is Hamiltonian if JH is symmetric.

The matrix H in (3.5), (3.6) clearly satisfies this property. It foliows that

H =—-JHJ,



190 E.W. Anderson et al.

which in turn implies that the matrix H' is similar to — H. Consequently, the eigenval-
ues of a real Hamiltonian matrix come in pairs that are symmetric about the imaginary
axis of the complex plane. The stable eigenvalues of a Hamiltonian matrix are those
whose real parts are strictly negative. Similar arguments to those given above guaran-
tee that there are exactly n stable eigenvalues of H. Therefore, (3.5) can be solved by
using an invariant subspace method and its associated decomposition (3.17), provided
that the classification of stable and unstable eigenvalues is modified appropriately.’

There is an alternative approach for solving a continuous-time Hamiltonian system.
Given a Hamiltonian matrix H, another Hamiltonian matrix G is constructed with the
same stable and unstable invariant subspaces. The matrix G is called the “sign” of
the matrix H, and is defined as follows. Take the Jordan decomposition of H:

- Ay 0 —
H,vl0 Azz]v,

where Ap; is an upper triangular matrix with the eigenvalues of H that have strictly
negative real parts on the diagonals, and Ay; is an upper triangular matrix with the
eigenvalues of H that have strictly positive real parts on the diagonals. Then

. B Y S V)
G—Slgn(H)_V[O I]V .

Thus the sign of a matrix is a new matrix with the same eigenvectors as the original
matrix and with eigenvalues replaced by —1 or 1 depending on the signs of the real
parts of the original eigenvalues.

The matrix P, can be inferred directly from G. To see this, we use an insight from
Roberts (1980). By construction, all of the stable eigenvalues of G are equal to —1.
Consequently, the matrix P, satisfies the following eigenvalue problem:

“lafr=-la]r

for any n dimensional vector y, and the matrix P, solves the affine equation

I I
G[Py]+|:Py]ZO. (3.23)

This method is implemented by finding fast ways to compute the “sign” of a matrix.

TDeflating subspace methods are not needed for solving the class of continuous-time quadratic control
problems considered here because we can form directly the Hamiltonian matrix and apply an invariant
subspace method. However, as we have formulated it, the continuous-time problem does not permit systems
with finite gestation lags in making investment goods productive or systems for which consumption services
depend on only a finite interval of past consumptions.



Ch. 4: Mechanics of Forming and Estimating Dynamic Linear Economies 191

While the matrix sign method is directly applicable for solving continuous-time
Hamiltonian systems, Hitz and Anderson (1972) and Gardiner and Laub (1986) show
how to use it to locate deflating subspaces of discrete-time systems. Consider the
generalized eigenvalue problem for the symplectic pencil

ALy = N.
Then
(14+M(L~-N)y=(>1-X(L+ N)y.

Since the only common vector in the null space of L and N is zero, we construct the
solution to the eigenvalue problem

8y = (N - L)"(L + N),

where

Consequently, the stability relations (2.1) carry over here as well, and we apply the
matrix sign algorithm to (N — L)~!(L + N).

It also turns out that (N — L)~!(L + N) is a Hamiltonian matrix, which we can
exploit in computation. To verify the Hamiltonian structure, note that

(L-N)J(L' + Ny=LJL' -~ NJN' - NJL'+ LJN'
=—-NJL + LJN'
=NJN' ~LJL' -~ NJL'+ LJN'
=—(L+ N)J(L' - N"),

where we have used the fact that AL — N is a symplectic pencil. Therefore,

J(L—N)"™ ML+ N)=(L'+ N')(L' + N)"'J(L - N)™(L + N)
= (L' + N)[—(L - N)J(L' + N)]"Y(L + N)
=L+ NY(L+ N)J(L = N)"HL+ N)
=(L'+ N (L' - N7,

which proves that (N — L)™' (L + N) is a Hamiltonian matrix.

In summary, by construction, the stable (unstable) invariant subspace of the Hamil-
tonian matrix (N — L)™Y(L + N) coincides with the stable (unstable) deflating
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subspace of the symplectic pencil AL — N. This coincidence permits us to compute
the matrix P, used for initializing the costate vector for the discrete-time system (3.4)
by applying a matrix sign algorithm to (N — L)~ !(L + N).

4. Computational techniques for solving Riccati equations

We consider three types of algorithms for computing P

(i) Schur algorithm;
(i) doubling algorithm;
(iil) matrix sign algorithm.

A Schur algorithm is based on locating a stable subspace using a Schur decomposition
of the state-costate system. As we noted in the previous section, once a stable subspace
is located, the relevant Riccati equation solution Py is easily computed. There are two
versions of a Schur decomposition, depending on whether the matrix Ayy 1s known to
be nonsingular or not. A Schur decomposition gives a more reliable way of locating
stable spaces than the familiar Jordan decomposition and its generalization for pencils.

A doubling algorithm is an iterative method for speeding up the dynamic pro-
gramming Riccati equation iteration by doubling the number of time periods in each
iteration. Recall from our discussion in the previous section that the stable deflating
subspace of the pencil {AL — N} coincides with the invariant subspace of the sign
of the matrix (L — N)~!(L + N) associated with the eigenvalue —1. A matrix sign
algorithm is an iterative method for computing the sign of (L — N)~}(L + N) from
which we can recover P, easily.

4.1. Schur algorithm

Suppose the matrix A, is nonsingular. As we noted in Section 3, the matrix P, can
be found by locating the stable invariant subspace of the matrix M given in (3.15).
In some of our numerical calculations, we use what is referred to as a real Schur
decomposition of M to locate its invariant subspace.

DEFINITION. The real Schur decomposition of a real matrix M is an orthogonal matrix
V and a real upper block triangular matrix W such that

— 0 Wn ... Wi

o~

0 o 0 Wom
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where W, is either a scalar or a 2 x 2 matrix with complex conjugate eigenvalues.®?

A real Schur decomposition is a computationally convenient version of the block
triangular decomposition (3.17) used to compute F, when Ay, is nonsingular. Golub
and Van Loan (1989) describe how to compute the real Schur decomposition (in
particular, see Sections 7.4 and 7.5). Recall that the block triangular matrix W in
(3.17) results from partitioning the eigenvalues into stable and unstable eigenvalues.
Algorithms that compute the real Schur decomposition of a matrix typically do not
partition the diagonal blocks of 1% according to stability. Instead, given an arbitrary
real Schur decomposition M = 17/1/17‘7’ , one can use the approaches described in either
Bai and Demmel (1993) or Stewart (1976) to construct a sequence of orthogonal
transformations that reorder the diagonal blocks of /W?, while updating ¥ so that
M = VWV’ holds at every step.

In summary, the steps for implementing a Schur algorithm are

(1) form the matrix M in (3.15);

(2) form a real Schur decomposition of M where the first n columns of 17, written in
a partitioned form as [V},/ V3’ ]I , are a basis for the stable invariant subspace
of M; R R

(3) solve PyVi = Vo1 for Py,

For the numerical computations which follow, we compute the real Schur decomposi-
tion of M using the LAPACK? function DGEES. For comparisons, we also compute
an eigenvector decomposition using the built-in MATLAB function EIG. Our eigen-
vector routine assumes that the eigenvalues of M are distinct, and we do not attempt
to implement an algorithm designed for the more troublesome case in which there
are repeated eigenvalues. We compute P, in step (3) using the built-in MATLAB
operator ‘/’, which solves a linear equation using Gaussian elimination with partial
pivoting.

A deflating subspace method is required when A, is singular and likely to be more
stable numerically when A, is nearly singular. To implement this approach in prac-
tice, we use an ordered real generalized Schur decomposition to find an appropriate
triangularization of the state-costate dynamical system [see Van Dooren (1982)].

DEFINITION. A generalized real Schur decomposition of a real matrix pencil AL — N
is a pair of orthogonal matrices U and V, a real upper triangular matrix 7', and a real

8There is also a complex Schur decomposition of a real or complex matrix in which Visa unitary
matrix and W is upper triangular.

9The algorithms described in this paper use routines from the FORTRAN packages LAPACK, LINPACK
and RICPACK. All of these packages can be obtained by anonymous ftp from netlib.att.com and various
mirrors. MATLAB is a commercial matrix algebra package available from The MathWorks, Inc. All of our
FORTRAN routines are implemented as MATLAB MEX-files.
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upper block triangular matrix W, such that

fl] 2le Tlm
grv—p- |0 T2 Tom
0 ... 0 Tum
Wn Elz ?Pm
NV == | 0 T2 T
0 ... 0 W,

where the pencil /\ﬁ-i — /I/I?ii is either a 1 x 1 matrix pencil or a 2 X 2 matrix pencil
with complex conjugate generalized eigenvalues.

As with the real Schur decomposition, we initially compute a generalized real Schur
decomposition of AL — N without regard to whether the generalized eigenvalues are
stable or not. We then reorder the diagonal blocks of T and W so that the generalized
eigenvalues are partitioned in the manner required by (3.20). This partitioning can be
done using the algorithms described in Van Dooren (1981, 1982) or in Kégstrom and
Poromaa (1994).

Thus the steps for implementing a generalized Schur algorithm are

(1) form the matrices L and N in (3.4);

(2) form a generalized real Schur decomposition of the pencil AL — N where the
first n columns of ‘7, written in a partitioned form as [I7],’ \721’}/, span the
deflating subspace of the pencil AL — N;

(3) solve PyVi) = Vo for P,.

For the numerical comparisons which follow, we implement the generalized Schur’
algorithm by using the routines QZHESW, QZITW, QVAL, and ORDER from RIC-
PACK. We also report results for a method that uses generalized cigenvectors to
compute deflating subspaces. This method takes the first n columns of the matrix V
to be the generalized eigenvectors of AL — N that correspond to stable generalized
eigenvalues. We implement this method using the built-in MATLAB function EIG,
making no attempt to handle repeated generalized eigenvalues.

4.2. Doubling algorithm

Dynamic programming solves the infinite horizon problem by backward induction,
which leads to iterations on the Riccati equation (3.13). A doubling algorithm can be
viewed as a refinement of this approach. It preserves the idea of approximating the
solution to the infinite horizon problem by a sequence of finite horizon problems, but
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instead of increasing the horizon by one time period in each iteration, the number of
time periods gets doubled.

To see how this approach works, recall that the solution to the finite horizon problem
for periods 0, ..., (71— 1) can be viewed as a two point boundary value problem where
the initial state vector yo is set to some arbitrary vector y and the costate vector at
the terminal date g, is set to zero. Suppose for simplicity that A, is nonsingular. By
iterating on relation (3.14), we find that

3]z}
where
M=M".

To approximate the matrix Py, we solve (4.1) for the initial costate vector g as a
function of yo. Partitioning M conformably to the state-costate partition, we see that

My, = yo, Mory- = po.
Therefore, the implicit initialization of the costate vector is
po = Moy (Mir) ™y,

and our approximation for the matrix P, is given by M\21(1/\4\ )L

What is needed to implement this approach is a way to compute M when the horizon
7 is large. Expanding the horizon one period at a time corresponds to multiplying the
matrix M ™!, 7 times in succession. However, when 7 is chosen to be a power of
two, computations can be sped up by using

2k+l

M = (MM (4.2)
As a consequence, when 7 = 27, the desired matrix can be computed in j iterations
instead of 27 iterations, which explains the name doubling algorithm.

Given that the matrix M ™! has unstable eigenvalues, direct iterations on (4.2)
can be very unreliable. Clearly, the sequence of matrices {M~2"} diverges. One of
the features of a doubling algorithm is to transform these computations into matrix
iterations that converge. Another feature is that a doubling algorithm exploits the fact
that the matrix M is symplectic. Symplectic matrices have several nice properties. '
We have already seen that their eigenvalues come in reciprocal pairs. In addition, the

Where is a vadation of the Schur algorithm that exploits the symplectic structurc of M. See pages
431-434 of Petkov et al. (1991) for an overview of this algorithm.
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product of symplectic matrices is symplectic, and the inverse of a symplectic matrix
is symplectic. Moreover, for any symplectic matrix S, the matrices Sy;(S1;)™! and
(S11)7!' 512 are both symmetric and

Syy = (S11) ™" + 821 (S11) ' S1a
= (S + S (S1) S (S1) 7 S,

Therefore, a (2n x 2n) symplectic matrix can be represented in terms of the three
n x n matrices & = (S11) 7, 8 = (S11) 7' S12,7 = S21(S11) 7!, the latter two of which
are symimetric.

The doubling algorithm described by Anderson (1978) and Anderson and Moore
(1979) exploits such a representation by using the following parameterization of
M2

(ag)™! (ar) ™" Bk

M = ,
(o)™t o’ + yrelow) ' Bk

where the n X n matrices «y, Bk, v, are given by the recursions

ak1 = ar(l + Beve) ™k,
Bier1 = B + ar(I + Beve) ™ Bec’,
Va1 = Yk + (I + Beve) ™ g (4.3)

While this alternative parameterization introduces a matrix inverse into the recursions
(4.3) that is absent in (4.2), the matrix I + Gy, being inverted is only n dimensional.
The nonsingularity of this matrix for all & is established in Kimura (1988). To initialize
the doubling algorithm, we simply deduce the implicit parameterization of M ~' given
in partitioned form by

—] —1 —
Ay‘}/ Ayy B’UR lByl

M7'=N'L= 1 ~1 “1p 1o
QuyAyy QuyAyy ™ ByR™ By + Ayy

(4.4)

which leads to the initializations
~1
Qg = Ayy: /60 = ByR Byl; Yo = ny

While our derivation took the matrix Ay, to be nonsingular, Anderson (1978) argues
that the doubling algorithm is more generally applicable.

A convenient feature of this parameterization is that there are known conditions un-
der which the matrix sequences {a}, {Bs}, {7} converge. When the pair (A,,, D,)
is detectable, then the sequence {7} is nondecreasing and converges to the matrix P,.
(Here we are adopting the usual partial ordering for positive semidefinite matrices.)
As noted by Kimura (1988, Theorem 5), under the same restrictions, the sequence
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{Bx} is nondecreasing and converges to a positive semidefinite matrix P associated
with a “dual” to the deterministic regulator problem.

The convergence of the {oy, } sequence is more problematic. Unfortunately, without
simultaneous convergence of {ay}, it is not evident that iterations of the form given
in (4.3) can be used as the basis of a numerical algorithm. If this latter sequence
diverges, small numerical errors may get magnified, causing the resulting algorithm
to be poorly behaved. Kimura (1988) provides some sufficient conditions for {c}
to converge to a matrix of zeros. His sufficient conditions are used to guarantee that
either P, or Py is nonsingular.

As we noted previously, a sufficient condition for P, to be nonsingular is that the
pair (A,y, D) be observable. Sufficient conditions for the nonsingularity of the matrix
Py are that (i) (Ayy, By) is controllable; and (ii) (Ayy, D) is detectable [Kimura
(1988)]. Recall that controllability is often achieved by our a priori partitioning of
the state vector into endogenous and exogenous components. Thus for our purposes,
the restrictions guaranteeing the nonsingularity of P may be of particular interest.
Even so, detectability is too strong for some of our applications.

To apply a doubling algorithm more generally, we sometimes modify the control
problem by adding small quadratic penalties to linear combinations of the states and
controls. As long as these penalties are sufficient to guarantee that either I, or P is
nonsingular, we are assured of convergence of all three sequences. Of course, there
is a danger that the penalty distorts the solution to the original control problem in a
nontrivial way, which must be checked in practice.

4.2.1. Initialization from a positive definite matrix

Instead of adding small quadratic penalties to the objective function for each calendar
date, we could add a terminal penalty to the finite horizon approximation to the con-
trol problem. From Chan, Goodwin and Sin (1984), it is known that iterations on the
Riccati difference equation converge to the unique stabilizing solution whenever the
Riccati equation is initialized at a positive definite matrix.!! Initializing the Riccati
difference equation at a positive definite matrix is equivalent to imposing a terminal
penalty that is a negative definite quadratic form in the state vector. We will now show
how to initialize the doubling algorithm to impose a terminal penalty. This will permit
us to compute P, via a doubling algorithm for a richer class of control problems.
Consider first a finite time horizon problem with a quadratic penalty on the terminal

state. We sclect this penalty so that the terminal multiplier p, = P,y, for some
positive definite matrix P,. Then Eq. (4.1) is altered to be

il L — | W

7w [2] »

"Here we are using the fact that the pair (Ayy, By) is stabilizable and that there exists a solution to
the deterministic regulator problem when constraint (2.1) is imposed. The result follows from (i) and (iii)
of Theorem 3.1 and Theorem 4.2 of Chan, Goodwin and Sin (1984).
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Build a matrix K
I 0
e=[L9)
Then Eq. (4.5) can be rewritten as

K‘lﬂKK‘l[ ! :|yT =K~ [yo} .

P, 120
Equivalently,
* | Yr Yo
M = 3
[ 0 } [Mo - PoyO:i
where
M* = K-'MK.

Partitioning M™ consistently with the state-costate vector, the implicit initialization
of the costate vector is now

po = Poyg + Ml*z(Ml*l)«lym

and our approximation for P, is given by M}, (M)~ ! + P,.
We are now left with computing the matrix M™* when the horizon 7 is very large.
Notice that

M* = (K~'MK)™".

It is straightforward to verify that because M is symplectic, so is K~'M K. This
means that doubling algorithm (4.3) is applicable for computing (K " 'M K )_2k; how-
ever, the initializations must be altered. The new initializations can be deduced by
looking at the implicit parameterization of the symplectic matrix K ~!M 1K, and
they are given by

ap= (I + ByR™'B,'P,) 'A,,,
Bo= I+ B,R"'B,/P,)"'B,R™'B,/, (4.6)
0= Quy — Po + Ayy'Po(I + ByR™' B,/ P,) ™' Ay

Not surprisingly, the original initializations coincide with setting P, to zero in (4.6).
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There are two related advantages to these initializations over the previous ones.
First, the sequence {;} converges to P, — P, whenever P, is positive definite. This
follows from the Riccati difference equation convergence described previously and
does not require that (Ay,, D, ) be detectable. Second, the sequence {(,} converges
and satisfies the bounds

0<B; < (P)™!

even when (A, D) is not detectable.!? Although we do not have a complete char-
acterization of convergence of the resulting algorithm, all three matrix sequences
(including {c;}) are guaranteed to converge with these alternative initializations if
they converge with the original ones.

In summary, the steps for implementing the doubling algorithm are

(1) initialize «g, Bo, and o according to (4.6);
(2) iterate in accordance with (4.3);
(3) form P, as the limit of {vx} + Po.

We implement the doubling algorithm in FORTRAN, exploiting the fact that 8 and
~;, are symmetric matrices for all k.1* We use two different settings for P,. To obtain
the original doubling algorithm, we set P, to zero; and to investigate the potential
advantages of including a terminal penalty, we set P, to an identity matrix.

12The convergence and bound can be established as follows. Let {ﬁ;‘} denote the sequence starting
from the original initialization. Then it is straightforward to show that

Bi = (I + B Po)™' ;.
Exploiting the nonsingularity of P,, the following equivalent formula can be deduced:
Bj = (Po) ' = (Po+ PoPj Po) ™"

The reported bound follows immediately. The sequence {ﬁ;‘} is monotone increasing because it is a
subsequence of Riccati difference equation iterations for a dual problem initialized at zero. Therefore, the
sequence {f8;} is also monotone increasing. Given the upper bound {(P,)™1, this latter sequence must
converge.

3We iterate on (4.3) until

e = v—illy < ellvelly,

where we set € = 1 x 10715 on a computer with a machine precision of 2752 ~ 2.2204 x 10~'%. Here
HX||, denotes the matrix 1-norm of a matrix X:

X1, = m;xelXijl.



200 E.W. Anderson et al.

4.2.2. Application to continuous time

As noted by Anderson (1978) and Kimura (1989), a doubling algorithm for a discrete-
time symplectic system can be used to solve a continuous-time Hamiltonian system.
Recall that in our discussion of solving control problems via a matrix sign algorithm,
we showed how to convert a discrete-time symplectic system into a continuous-
time Hamiltonian system. To apply a doubling algorithm, we want to “invert” this
mapping, e.g., given a Hamiltonian matrix H, we construct a symplectic pencil with
the same stable deflating subspace. The symplectic pencil associated with H is given
by MI + H) — (I — H). By adopting a very similar argument as before, we found it
easy to show that the generalized eigenvectors for the constructed pencil coincide with
the eigenvectors of the original Hamiltonian matrix H. Moreover, the classification
of stable and unstable (generalized) eigenvalues is preserved.

4.3. Matrix sign algorithm

In Section 3.3 we showed how to compute P, from the sign of the Hamiltonian
matrix for a continuous-time state-costate system. To compute F, for a symplectic
pencil AL — N, we first form the Hamiltonian matrix

H=(L-N)"Y(L+N)

and then compute sign(H ). For this to be a viable solution method, we must be able
to compute sign(H) easily.
There are alternative matrix sign algorithms. An algorithm advocated by Roberts

(1980) and Denman and Beavers (1976) is to average a matrix and its inverse:

Gy=H,

1 -

Gk+1:Gk+~2-[(Gk) I—Gk], k=0,1,.... 4.7

To speed up convergence, Gardiner and Laub (1986) suggest using the recursion

GO:H7

1 _
Gry1 = 3o (Gr, + e*Gy ™",
€k
where

ep = | det Gyl (4.8)
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Bierman (1984) and Byers (1987) propose a further refinement, which exploits the
fact that the matrix Gy is a Hamiltonian matrix for each k. Recall that if H is a
Hamiltonian matrix, then JH is symmetric where

. [0 -1
J= [I 0 ] '
Hence
JGry1 = %(JG;C + &2 JIGy 1), (4.9)
€k

where ¢ is either set to one as in the original sign algorithm or set via for-
mula (4.8) using JG in place of Gj. Consequently, it suffices to compute the se-
quence of symmetric matrices { JG } recursively via (4.9) starting from the initializa-
tion JH.!1*

In summary, the steps for implementing a matrix sign algorithm are

(1) form the matrices L and N in (3.4);
(2) compute G, the sign of (N — L)~!(L 4+ N);
(3) compute P, by solving the over-determined sysiem

G _ G +1
[Gzz +I] P, = { Gy } 4.10)

for Py.

For our numerical comparisons, we compute the sign of G by iterating on (4.9) until
convergence with e = | det JkaI/".15 To compute (JGy)™! we use the symmetric
inversion routines DSIFA and DSIDI from LINPACK. We solve (4.10) for F, using
least squares.

As noted in Anderson (1978), the original sign algorithm (4.7) also can be viewed
as a doubling algorithm. Interpreted in this manner, it uses (at least implicitly) an
alternative parameterization of the symplectic matrix M ~! to that used in doubling
algorithm (4.3). Both recursions entail inverting a matrix. While recursion (4.9) re-
quires that a symmetric (2n x 2n) matrix be inverted in each iteration, the doubling
algorithm (4.3) requires that a nonsymmetric n x n matrix be computed at each
iteration.

MKenney, Laub and Papadopoulos (1993) and Lu and Lin (1993) discuss further improvements to the
matrix sign algorithm.
BMore precisely, we iterate on (4.9) until

TGk — JGr-1ll, < el TG,

where € = | x 10713,



202 E.W. Anderson et al.
5. Solving the augmented regulator problem

So far, we have shown how to compute the matrix F,, which provides us with the
optimal control law for the deterministic regulator problem. This matrix also gives us
a piece of the solution to the augmented control problem and, hence, to the problem
of interest: the discounted stochastic regulator problem. The missing ingredient is the
matrix F}, where the optimal control law for the augmented regulator problem is
given by v, = —F,y: — F,z. In this section, we show that F), can be calculated by
solving a particular Sylvester equation.

We start by forming a Lagrangian modified to incorporate the exogenous state
vector sequence {z}:

oo
L=~ [y Quyys + 291’ Quzze +vi' Rog + 20641 (Ayyys + Ayzze + Byve — ye1)],
t=0

where the evolution of the forcing sequence is given by

Zt41 = Az z. 5.1
First-order necessary conditions for the maximization of £ with respect to {v;}2,
and {y;}32, are

ve: R + By',qu =0, t=0, (5.2)

Yo pr = Quyls + Quaze + Ay ey, 20 (5.3)

Solve Eq. (5.2) for v;; substitute it into the state equation; and stack the resulting
equation along with (5.3) and (5.1) as composite system

Y41 Yt
LY pyr | = N* | pe |
Zi+1 2t
where
I B.yR'lBy' 0 Ay 0 Ay
L*=10 Ayy' 01, Nt=|-Qyy I —Qu: . (5.4)
0 0 I 0 0 A,

As with the deterministic regulator problem, the relevant solution is the one that
stabilizes the state-costate vector for any initialization of yy and zp. Hence we seek a
characterization of the multiplier p; of the form

/j't:Pl:yt])

2t
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such that the resulting composite sequence [y’ 'z ]’ is in the stable deflat-
ing subspace of the augmented pencil AL® — N®. Assuming for the moment that a
solution P exists, it must be the case that P = [P, P, ], where P, is the Riccati
equation solution that was characterized in Section 3, and P, is a matrix that has
not yet been characterized. To see why this must be the case, note that the solution
to the augmented regulator problem with z = 0 coincides with the solution to the
deterministic regulator problem. We have previously shown that P, is a matrix, such
that all vectors in the deflating subspace of the pencil AL — N can be represented
as [y y'P, ]/. When the forcing sequence is initialized at zero, so it remains there

for all t, it must also be the case that [y y'P, O}l is in the stable deflating sub-
space of the augmented pencil AL* — N®. This justifies our previous claim that the
solution to the deterministic regulator problem gives us a piece of the solution to the
augmented regulator problem.

To deduce the control law associated with the matrix P, we substitute P into (5.4),
which yields

Yt+1 a
L% | Pyyes1 + Pozg1 | = N* | Pyy, + Pz
Zi+1 2t

If we write the three equations in this composite system separately,
(I + ByR™'B)/Py)yt+1 + ByR™'B, P21 = Ay + Ay 2e,

Ayy,PyytH + Ayy,Pzth = (Py — Quy)yt + (Pz — Qyz)2,
i+l = A,z (5.5)

Substitute the last equation into the first and solve for g;4;:
i1 = (I + ByR™'By'P)) " [Ayyye + (Ay: — ByR™'B)/ P, A..)z).
It follows from relation (3.9) that this evolution equation for y; can be rewritten as
Yer1 = (Ayy — ByFy)ye + (Ay, — ByF;)z, (5.6)
where F), and F), are given by

F, = (R+ B,/P,B,)"'B,/P, Ay,

6.7
F,=(R+ B,/P,B,) 'B/(PyA,. + P,A,,).

For the reasons given previously, our construction of F, coincides with (3.11) used to
represent the optimal control law for the deterministic regulator problem. Stability of
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the state vector sequence {y; } is guaranteed by evolution Eq. (5.6) because the matrix
Ayy — ByF, is the same matrix that appears in the state evolution equation for the
deterministic regulator problem under the optimal control law. Since the solution to
the deterministic regulator problem is stable by design, the eigenvalues of A, — B, F,,
have absolute values that are strictly less than one. The optimal control law for the
augmented regulator problem is given by

Vg = — yyt — FzZt.

The matrix F, can be computed using formula (5.7) once we know P,. We
now show that P, is the solution to a Sylvester equation. Premultiply (5.6) by
Ay Py

Ayy' Pyyrsr = Ay Py(Ayy — ByFy)ye + Ayy' Py(Ay: — ByF. )z .8)
Using formula (5.7), we rewrite the coefficient matrix on 2, as

Ayy/Py(Ayz - Fz) = (Ayy - ByFy)/(PyAyZ + PzAzz) - Ayy/PzAzz-

To obtain an alternative formula for this coefficient, substitute the last equation of
(5.5) into the second equation and solve for A,," Pyysi1:

Ayy/PyUHl = (Pz - Qyz - AnyPzAZZ)Zt + (Py - ny)yt- (5.9
Equating coefficients on z; in (5.8) and (5.9) results in
(Ayy - ByFy)/(IDyAyz + PzAzz) - Ayy/PzAzz = Pz - Qyz - Ayy,PzAzz-

Rewriting this in the form of a Sylvester equation (in the unknown matrix P,), we
have that

P, = Qy. + (Ayy — ByF))' P Ay, + (Ayy — ByF,) P, A,,. (5.10)

As we noted previously, the matrix (A, — ByF,) has only stable eigenvalues.
Also, we assumed that the matrix A,. has only stable eigenvalues (Assumption 4).
These restrictions are sufficient for there to exist a unique solution P, to (5.10). Up

to now, our disqussion proceeded under the presumption that there exists a matrix P,

Y
z

work backwards using the (unique) solution to the Sylvester equation to show that
indeed such a matrix P does exist.

such that by setting p; = P [ z], we stabilize the state, vector sequence. We can now
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6. Computational techniques for solving Sylvester equations

A Sylvester equation is represented by
M=W+S5MT, 6.1)

where the matrices W, S, and T are specified in advance and M is the matrix to be
computed. Consistent with (5.10), the matrices S and T have stable eigenvalues.!®
There is a variety of ways to depict the solution to a Sylvester equation. One is to
vectorize (60.1) as

[I —T"® S]vec(M) = vec(W), (6.2)

where vec(-) denotes stacks of the columns of a matrix argument. [To derive (6.2)
from (6.1), use the identity vec(SMT) = [T" ® S]vec(M).] Hence vec(M) is the
solution to a linear equation system. Alternatively, M is given by the infinite sum

M = Z SIWTI. (6.3)

=0

This representation can be deduced by iterating on Eq. (6.1), starting from any initial
matrix with the appropriate dimensions.
We consider two types of algorithms for computing M

(i) Hessenberg—Schur algorithm;
(ii) doubling algorithm.

The Hessenberg—Schur algorithm uses a Schur decomposition of the matrix T to
convert a single Sylvester equation to a collection of much smaller Sylvester equations,
each of which can be vectorized as in (6.2). A Hessenberg decomposition of the matrix
S is used further to simplify the calculations. The doubling algorithm is an iterative
algorithm that approximates the infinite sum on the right-hand side of (6.3) by a finite
sum. Similar to the doubling algorithm for solving a Riccati equation, the number of
terms included in the finite sum approximation “doubles” at each iteration.

6.1. The Hessenberg—Schur algorithm

As suggested by Bartels and Stewart (1972), one strategy for solving Sylvester equa-
tions entails block triangularizing the matrices 7 and/or S. We follow Golub, Nash

16We offer the following word of caution (or apology) to the reader. We are compelled to recycle some
of the notation used in previous sections.
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and Van Loan (1979) by forming a Schur decomposition of the matrix 7: V'TV = T,
where V is an orthogonal matrix and 7' is upper block triangular with row and column
blocks that are either one or two dimensional (see Section 4.1 for a formal definition).
Postmuitiply Sylvester equation (6.1) by V and rewrite the equation as

M=W + SMT, (6.4)

where M = MV, W = WV, and § = S. Notice that (6.4) is in the form of a
Sylvester equation in the matrix M.

The block triangularity of T can now be exploited to reduce (6.4) into m_smaller
Sylvester eq\uatlons, where m is the number of row and column blocks of T. Write
the matrix 7" in partitioned form as

fn flz . jjlm
T\ _ O 7'122 R sz
0 ... 0 Tum

Use the column partition of W to partition M and W, and let ]\//.TJ and Wj denote the
corresponding jth partitions. Decompose Sylvester equation (6.4):

M, =W, + §-7\71T\11, (6.5)
j—
Z MiTi; + SMTy;, j=2,...,m. (6.6)
k=1

Notlce that (6.5) is a Sylvester equanon in M1 and that (6.6) is a Sylvester equation in
M as long as the matrices M, i for k=1,2,...,7 — 1 have already been computed.
Thus these m Sylvester equations can be solved sequentially as linear equations using
vectorization (6.2).

An additional refinement advocated by Golub, Nash and Van Loan (1979) entails
taking a Hessenberg decomposition of the matrix S.!7

DEFINITION. The Hessenberg decomposition of the square matrix S is an orthogonal
matrix U and a matrix S that has all zeros below the first subdiagonal, such that
§=USU

In addition to postmultiplying Eq. (6.1) by V', we now also premultiply this equation
by U’. Equation (6.4) continues to hold with M = U'MV, W = U'WV, and
S = U’SU. This Sylvester equation can still be decomposed as in (6.5) and (6.6). With

17 Alternatively, we could take the Schur decomposition of S as proposed by Bartels and Stewart (1972).
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S in Hessenberg form, we can solve these latter Sylvester equations more efficiently
using an equation solver designed for Hessenberg systems.'8

In summary, the steps for implementing a Hessenberg-Schur algorithm for com-
puting P, are

(i) form the matrices W = Q. + (Ayy — ByFy)' PyAy;, S = (Ayy — ByFy)', and
T = A, ) =

(i) form a Hessenberg decomposition § = USU’ and a Schur decomposition
T=VTV', . —

(iii) compute the solution M to (6.5) and (6.6) and form P, = UMV".

Since the Hessenberg decomposition of a matrix can be computed faster than the real
Schur decomposition, one should always arrange the Sylvester equation so that the
Hessenberg decomposition is taken of the matrix (A,, — ByFy)" or A,,, whichever
has more entries. The steps just described should be implemented if there are more el-
ements in the vector y,; than z;. If z; has more elements, then the alternative Sylvester
equation

P = Qys' + Ay’ Py(Ayy — ByFy) + A:.'P,/(Ayy — ByF,)

should be solved for the matrix P,’.

In the numerical comparisons that follow, we form the Hessenberg decomposition of
a matrix using MATLAB subroutine HESS and the Schur decomposition of a matrix
with SCHUR. We solve Hessenberg systems using the routines HSFA and HSSL,
which are part of the package described in Gardiner et al. (1992).1°

6.2. Doubling algorithm

The doubling algorithm for Sylvester equations iterates

Oyl = OO,
Br+1 = BBk, (6.7)
Ye+1 = V& + ke VkOk
to convergence, where ap = S, Gy = T, and v = W. By repeated substitution, it can
be shown that

2k 1 _
Y=y SIWIT.
5=0

BInteresting variations on the Hessenberg—Schur algorithm have been proposed by Hammarling (1982)
and Gardiner et al. (1992).

YSee pp. 364-370 of Golub and Van Loan (1989) for a discussion of how to compute the Hessenberg
decomposition.



208 E.W. Anderson et al.

In other words, each iteration doubles the number of terms in the sum.?

To use this doubling algorithm to compute P,

() initialize g = (Ayy — By Fy)', Bo = Asz, and v = Qy.+ (Ayy — By Fy) PyAy.:;
(ii) iterate in accordance to (6.7);
(iii) form P, as the limit of {~;}.

We implement the doubling algorithm in FORTRAN.

7. Distorted economies

Some of the algorithms described previously are directly applicable to solving models
whose equilibrium quantity allocations are not the solutions to optimal resource allo-
cation problems. To illustrate this point, we use a simplified version of McGrattan’s
(1994) model of a distorted economy.?? Consider a setup with a representative agent
who chooses a control sequence {v;} to maximize

a0}

= (' Ror + v’ Quyye + 25 Quie),

t=0
subject to

Yer1 = Ayyls + Aygls + By,
o0

(lvel* + lye]?) < oo, (7.1)
t=0

where the sequence {{:} is viewed by the agent as being beyond his control when
making decisions. As an equilibrium condition, §: is an exact function of y; and v;:

U1 = 2y + V. (7.2)

In formulating the decision problem for the representative agent, we have abstracted
from uncertainty and used analogous tricks to those described earlier for eliminating

20This algorithm is a slight generalization of the doubling algorithm for Lyapunov equations discussed
in Anderson and Moore (1979). A Lyapunov equation is a Sylvester equation in which S = T".
21'We iterate on (6.7) until

Nve — ve—ill; < ellvell

where we set € = 1 x 10713,
22In Appendix B.3, we take another version of McGrattan’s formulation and differentiate the equilibrium
law with respect to parameters in the control problem and equilibrium conditions.
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discounting and cross products between states and controls. [See McGrattan (1994)
and Appendix B.3 of this paper for a more complete treatment.] Also, we have zeroed
out the forcing sequence {z; }, so this setup should be viewed as a distorted equilibrium
counterpart to the deterministic regulator problem.

To define an equilibrium for this model, we introduce a process {y;} that in equi-
librium coincides with {y;}. This additional process is used to capture the perceived
evolution of {f;} by economic agents in making their decisions. Formally, the per-
ceived evolution equation is given by

Y1 = Ay,

?)t = Q*y:>
where the eigenvalues of A* are assumed to have absolute values that are strictly less
than one. Adding this evolution equation to the decision problem of the private agent

is sufficient to make his problem a fully specified deterministic regulator problem.
Write the solution to this decision problem as

v = —Fyys — Fy; (7.3)
Then a rational expectations equilibrium is a specification of (Fy, F;, A*, £2*) such
that

A" = Ayy + Ay — (Ayg¥ + By)(Fy + Fy),

0 =0 —W(F, + F),

where control law (7.3) solves the decision problem of the private agent.
As an initial step in solving for an equilibrium, we obtain first-order necessary
conditions for the private agent’s control problem:

20, (7.4)
20, (1.5)

(' R'U,t -+ Bylﬂt+1 = 0, t
Yo e = nyyt + ng}'gt -+ Ayy,ﬂt—}‘l, 3

where {u:} are Lagrange multipliers associated with the constraint Eq. (7.1). At
this stage, we are free to substitute for 4, from equilibrium condition (7.2). Solving
Eq. (7.3) for v, substituting it and Eq. (7.2) into Eqs (7.1) and (7.5), and rearranging
gives

I l:yt+l ]
ft1
where

I BR'B,’ A 0
L:{o Z’J}’ N:[~A ’

=N [yt] , (71.6)

Hi
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and A = Ay, + A2, Q = Quy + Quyf, B = By + AW, and A = A,y —
B,R™1¥'Q,'. Note how these equations generalize (3.4) to a distorted equilibrium
model. When distortions are active, the pencil AL — N may fail to be symplectic, so
the eigenvalues do not necessarily occur in reciprocal pairs. When the eigenvalues can
be split with half inside the unit circle and half outside and the analog of V}; in (3.19)
is nonsingular, then the deflating subspace and matrix sign methods described earlier
can be used to compute the unique stable equilibrium.?> Under the same conditions,
if either A or A4 is nonsingular and well conditioned, then invariant subspace methods
also can be used. Finally, Anderson (1995) describes a generalization of the doubling
algorithm for Riccati equations that can be used to solve distorted equilibria. Since the
pencil is not symplectic, this generalized doubling algorithm includes an additional
partition.

For economies with a forcing sequence {z;} with first-order dynamics, there is an
analogous formulation of a distorted economy equilibrium. As with the augmented
regulator problem, the equilibrium can be computed in two steps. First, a distorted
equilibrium for 2z set to zero can be computed using one of the methods described
above. Then the full equilibrium can be deduced by solving a Sylvester equation
analogous to that deduced for the augmented control problem. The Hessenberg—Schur
algorithm and the doubling algorithm described in Section 6 are both applicable in
this second step.

8. Example economies

In preparation for our numerical work, we describe three examples with features that
“stretch” our algorithms to the boundaries of their domains of applicability.

8.1. A model of permanent income with habit persistence

Our first example is an economy with two interacting unit roots in the endogenous
dynamics. As in Hall (1978), Flavin (1981), and Sargent (1987), one unit root comes
from the permanent income character of the model. The technology is specified so that
the rate of return on capital and the subjective rate of time discount are equated. As in
Hansen (1987), Becker and Murphy (1988) and Heaton (1993), we use an extended
version of the permanent income model to accommodate preferences that are not time
separable. The second unit root occurs because of the special way we model habit
persistence.

2*When applying matrix sign methods, one should iterate on (4.7) or (4.8) instead of (4.9), since the
matrix J(L — N)7!(L + N) is not, in general, symmetric.
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There is a single consumption good ¢, a single investment good 4., a single physical
capital stock k¢, and a single household capital stock, h;, in each time period. The
household capital stock is constructed to be a geometric average of current and past
consumptions:

ht = 0.9ht_] + O.lct,

where 0.9 dictates the geometric decay in the average. We capture habit persistence
by introducing a service process:

St = Ct — ht—l-

One source for a unit root in the endogenous dynamics is that the magnitude of the
time t service is the difference between current and an average of past consump-
tions.

The production technology is given by the two relations:

e + iy = 0.1ky_y + d,
ke = 0.95ky_ + iy

To provide a permanent income character to this model, we set the subjective discount
rate 3 = 1/1.05.

The preference shock process is restricted to be constant over time (b = 30),
and the technology shock process {d;} is a first-order autoregression with mean 5
and autoregressive coefficient 0.8. We represent these processes using the setup of
Section 2.4 by introducing an exogenous state vector 2; with two components. Recall
that the exogenous state vector process is assumed to have first-order dynamics. The
autoregressive matrix for this process is given by

~ 1 0
A= o 0]

where the first component of Z; is initialized at one and remains constant over time.
While the second component of 2; can be subject to shocks in each time period,
certainty equivalence makes the magnitude of the uncertainty inconsequential for
solving the model. Hence it is unnecessary to specify the matrix C,. The selection
matrices Uy and Uy are given by U, = [30 0] and Ug= {5 1].*

21n this economy, there are no intermediate goods g:. As suggested in Section 2.4, we still use 1; as
the control vector, and we can clearly solve for ¢¢ as a linear function of the control and state vectors.
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For this particular economy, there are potential problems in applying two of the
algorithms we described in Sections 3 and 4. Since the economy has repeated unit roots
in the endogenous dynamics, an invariant subspace method that uses an eigenvector
routine designed for distinct eigenvalues might give a poor approximation to the
solution. Also, this is an economy in which the square summability constraint (2.1)
is binding. In other words, it is not optimal to stabilize the endogenous state vector
process in the absence of such a constraint. As a consequence, Riccati difference
equation iterations starting from the zero matrix converge to the wrong solution, as
does the corresponding partition of the P, = 0 doubling algorithm.

As a potential remedy for both of these pitfalls, we “approximate” our economy
by one in which there is a very tiny adjustment cost for physical capital. The cost is
captured by introducing a single intermediate good g, such that

¢ie — gr = 0,

where we set ¢ = 1 x 1077, This small adjustment cost is enough to eliminate
the repeated unit roots in the endogenous dynamics. Moreover, it makes (A4,,, D, )
detectable, so that it is optimal to stabilize the endogenous state vector process. Since
the pair (A, By) is controllable, this small adjustment cost is enough to guarantee
convergence of the P, = 0 version of -the doubling algorithm. One of the issues
considered in our numerical experiments is how well this “fix up” works in practice.
Does the introduction of small adjustment costs make either the eigenvector algorithm
or the doubling algorithm a viable method for solving the original control problem?
We shall also study this economy with the adjustment costs set equal to zero and with
the P, = I version of the doubling algorithm.

8.2. A model of education

This example is a version of a time-to-build (or time-to-educate) model of wage skill
differentials that was formulated by Siow (1984). Siow’s model interprets the premium
on educated labor as a present-value-equalizing differential required to compensate
for the income foregone during training years. To accord with the framework of Sec-
tion 2.4, we reformulate a version of Siow’s model as an optimal resource allocation
problem.

Suppose there are three skill levels of labor: “low skill”, “medium skill”, and “high
skill”. We adopt the notational convention that low skill work is engaged in home
production, while the other two skill levels produce market goods. We assume that
it takes four periods to train skilled workers and eight periods to train highly skilled
workers. Trainees are not permitted to switch training programs. This gives rise to
gestation lags in the production technology.
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Let ¢, denote the number of workers who choose the medium-skilled training
program and ¢, ; the number who choose the high-skilled training program at time £.
Let ky, ¢ and kp ;+ be the corresponding stocks of workers. Then

Et = 0.97km t—1 +0.97% 44,
kni = 0.9Tkpt—1 +0.97% 45,

where (1 — 0.97) is the exit rate from the labor force. To capture this gestation lag
with the first-order specification of Section 2.4, we include in k; the following:

ki=[kms kng 09Pimi—3 097%mi—n 097imi—1 tme 0.97in_7
0.97in1-1 ne] -

The first-order evolution equation for {k;} can now be constructed in the obvious way.
Hence to capture the delays in the dynamic technology, we are compelled to augment
the endogenous state vector. This augmentation is the source of the singularity in the
matrix Ay,. The control vector is iz = [ im, ih,t],.

The rest of the people engage in home production. Let d; ¢ denote the time ¢ flow
of newborn or raw labor. The difference

et =dit — tmk — thk

is the flow of workers into home production. We include ¢; ¢ as a component of the
consumption goods vector for notational convenience. In addition to ¢, there are
two other components to ¢;: goods produced by medium-skilled workers and goods
produced by high-skilled workers. These goods are produced according to the (linear)
constant returns to scale technology:

Cmi = 0.Tkm i1,

Ch,t = O.9kh’t,1.
To capture the disutility of working, we introduce two intermediate goods that sa-
tisfy

Im,t = km,t——h

Ght = Kni—15

and to capture costs associated with matching new entrants with training programs,
we introduce two additional intermediate goods that satisfy

gm,t = OOOOZ’Lm,t,
gh,t = OOOO?”Lh,t
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When these constraints are combined, the technology for producing intermediate goods
and consumption goods is given by

‘10 0 00 0 01
01 0 00 0 0
0 0 1| e 00 0 of]|9m™
0 0 0| |cme|+|1 0 0 o}
0 0 0|/ che 01 0 o] |9
00 0 00 —1 0| -9
o 0 ol Lo 0 0 -1
-1 1 - 0 01 17
0 0 07 0 0
0 0 . 0 09|, 0
+ 0 0 [Z.mt]: 1 0 [m’t*‘]Jr 0| dis.
0 0 bt 0 1 | Lk 0
0.0002 0 0 0 0
L 0 0.0003] Lo o L0

Consider next the household technology. Recall that by our notational convention,
¢y,+ denotes the quantity of new entrants into household production. The stock of such
workers at time f (after including the new entrants) is denoted h;. This “household
capital stock” evolves according to

hy = 097h;_, +ci,ty

so the depreciation factor is the same as for the other two types of labor. Consumption
services s1,; are produced according to the linear technology

S1,t = O.Sht_l.
To capture the disutility of working in the household, we introduce a second service
831 = —hi_1;

and to capture the (utility) costs to matching new entrants to the household technology,
we introduce a third consumption service

534 = —0.0001c¢y 4.
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All total, there are five components to the consumption service vector s; because
we also include the consumption goods produced by medium-skilled and high-skilled
workers:

!
sp=[s1¢ St 831 Cmst Chtl -

The household’s subjective rate of time discount is 8 = 1/1.05. Forcing process
{d1,+} is given recursively by

47
Dt = Eijt~j + 2,
=1

dit = pt-18, (8.1

where p; are the new births at date ¢ and the 8;’s are set to match the birth rates in
the United States in 1990 as reported in the American Almanac: Statistical Abstract
of the United States 1993—1994. We abstract from long term population growth by
appropriately scaling the #;’s to sum to one.” The process {2;} has a first-order
autoregressive representation with coefficient 0.9. The variable p;_ig occurs with an
18 period lag in the second equation of (8.1) because we assume that it takes 18
periods (years) before a new born person is ready to enter a training program or
produce household goods.
The preference shock process has three nondegenerate components:

/
by=[biz 0 O byt buil .
The zeros in the preference shock process b; are associated with (dis)services to
working in the household and to matching labor to household production. The three
nondegenerate components are independent first-order autoregressive processes aug-
mented by 300. For each scalar autoregression, the autoregressive coefficient is 0.9.

8.3. A model of cattle cycles

In this subsection, we present three versions of Rosen, Murphy and Scheinkman’s
(1994) model of cattle cycles. The versions differ according to whether the time units

Formally, the 6;’s were constructed as follows. We took birthrates for women from Table 93 of
the American Almanac: Statistical Abstract of the United States 1993--1994 in the year 1990 and divided
by two. Since birthrates are only recorded for women grouped in five year age brackets, we interpolated
linearly from the midpoints of each age bracket. Birthrates for ages 12 and 47 were set to zero when
doing this interpolation, and birth rates up to age 12 were set to zero. The resulting birthrates imply an
autoregression with an explosive root that induces geometric growth in population. We then scaled the
birth rate parameters by the inverse of the growth factor raised to the appropriate powers to climinate the
growth, The resulting autoregressive process has a unit root by construction.
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are years, quarters, or months. To match the setup of Section 2.4, we reformulate
Rosen, Murphy, and Scheinkman’s market equilibrium model as an optimal resource
problem. We initially describe the yearly model. For our numerical speed and accu-
racy comparisons with the annual version of this model, we estimated some of the
parameters using the methods to be described in subsequent sections. The parame-
ters for the versions of the model at the quarterly and monthly timing intervals were
deduced in ways described below.

Let ky; denote the total stock of breeding cows. Each such animal gives birth to
7 calves, and calves become part of the adult stock after two years. For simplicity,
we set the death rate of cattle to zero. Therefore, the law of motion for the breeding
stock is given by

kv = kpt—1 + nkpg_3 + iz, (8.2)

where i; denotes deletions from the breeding stock due to slaughtering. Stacking the
breeding stocks so as to represent this evolution equation as a first-order system, we
obtain

Kb,¢ 1 07 kyt -1 1
kb1 | =11 0 O kpiz | + | O] it
kpi—2 0 1 0] [kpi-s 0
Consumption ¢; = —%;. We use one intermediate good to capture slaughtering costs

and three additional ones to capture the holding costs. Holding costs differ depending
on whether the animal is a calf, a yearling, or an adult. Let

g1 =¢€c; + (1/e)ds s,

92,6 = €kpt—1 + (vim/€)dn,e,

93t = €kpt—2 + (12n/€)dn s,

G4t = €kp,e + (1/€)dn ¢ (8.3)

As specified, the holding and slaughtering costs are quadratic. The parameter € is set
to a small positive number to approximate the linear cost structure used by Rosen,
Murphy and Scheinkman (1994). The parameters y; and -, dictate the holding costs
for calves and yearlings, respectively, relative to those for fully grown animals. For
instance, the approximate holding period cost is dp, ¢ for an adult, -, d}, ; for a calf,
and v,dp ¢ for a yearling. In our computational experiments, the parameters -y; and
-2 are set to 1/3 and to 2/3, respectively. Substituting for ks ; in (8.3) using (8.2) and
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stacking the equations for consumption and intermediate goods into a system, we get

1 1 00 0 07 _

—e 0 1 00 of |9

0 |c+loli,+]0 1 0 of |92

0 0 00 1 of |9

¢ 0 0 0 0 1“9
0 0 0 00
0 0 0} [koe 1o

=e{1 0 O kpt-2| +(1/€) 10 mn [ds’t].
0 1 0 |kpt—s 0 7 ot
10 n 0 1

Consumption goods and services are related trivially by
St = (1/(11)Ct,

where « is positive. As a consequence, preferences for consumption are time sepa-
rable, and the slope of the Frisch demand function for beef is —a;.

The exogenous processes are specified as follows. The preference shock process
is given by the constant (op/ay). The parameter ag is the intercept in the Frisch
demand function. The two technology shock processes {ds+} and {dn:} are each
scalar first-order autoregressive processes with unconditional means us and up and
autoregressive coefficients p; and pp, respectively.

As a device for proliferating endogenous state variables, we construct analogous
quarterly and monthly versions of a cattle cycle model. In so doing, we abstract from

Table 4.1
Parameter values for yearly, monthly, and quarterly formulations
of the cattle cycles model

Parameters Yearly Quarterly Monthly

Jé] 0.960 0.990 0.997
gy 146.0 36.5 12.17
ay 1.270 0.318 0.106

1+4+n 1.938 1.180 1.057
On 0.888 0.971 0.990
Ps - 0.699 0914 0.971
Lk 37.00 9.250 3.083
s 63.00 63.00 63.00

€ 1x10~% 2.5 x 10~ 8.33 x 10796
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any (realistic) periodic specification whereby, for example, a certain season of the
year is designated as a calving season. Also, we design the higher frequency models
to be only roughly compatible with the annual model. The parameter values selected
for all three versions are reported in Table 4.1. The higher frequency parameters are
obtained from the following algorithms. Let 7 denote the number of seasons in a year
(either four or twelve). The higher frequency versions of 3, 1 + 7, pn, and ps are
obtained by taking the annual parameters and raising them to the power 1/7. The
higher frequency versions of «, €, and g, are constructed by dividing the annual
parameters by 7. The parameter p, is the same for all versions of the model. Finally,
as we proliferate time periods, we extend the number of periods it takes for a calf to
become a cow. Instead of two periods, it now takes the animal 27 periods to be an
adult. Accordingly, there are 27 cost parameters v;,j = 1,...,27. As in the annual
model, we assumed these parameters increased linearly from zero to one. Hence

v =J/(T+1).

9. Numerical comparisons

In this section, we study the performance of algorithms for computing solutions to
the optimal resource allocation problems described in Section 8. We report results
for six different economies: two permanent income/habit persistence economies, three
cattle cycle economies, and one time-to-educate model. Recall that the two permanent
income economies are very similar except the second one introduces a very small
adjustment cost term so that the resulting (A,,, D,) is detectable. We label these
two economies Permanent Income and Permanent Income (with adjustment costs)
in the subsequent tables. The three cattle cycle economies differ with respect to the
presumed decision time interval. The three cattle cycle economies are calibrated to be
yearly, quarterly, and monthly decision periods and are labeled Yearly Cattle Cycles,
Quarterly Cattle Cycles, and Monthly Cattle Cycles, respectively. Finally, the time-
to-educate economy is labeled Education in our tables.

Table 4.2 gives the number of endogenous and exogenous state variables for each of
six optimal resource allocation problems.?® There are four exogenous state variables
for the cattle cycle economy because we included a state that could be used to represent
a preference shock. The autoregressive parameter for this state was set to zero. Since
the gestation time period for a newborn calf to become a cow is held fixed across the
three cattle cycle economies, the number of endogenous state variables is larger for
Monthly Cattle Cycles than for the other two cattle cycle economies. Recall that the

26We also give approximate matrix one-norms for the true solutions. For the Permanent Income economy
we used the true solutions to calculate the norms. For the other economies we used the solutions computed
by the Riccati Iteration algorithm and the doubling algorithm for Sylvester equations. Given the tables
that follow, these norms allow a reader to construct a relative measure of accuracy for the candidate
solutions.
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Table 4.2
Number of state variables
Economy Endogenous Exogenous Norm of Py Norm of P,
states states
Permanent income 2 2.45 x 10190 2.08 x 10112
Yearly cattle cycles 4 1.37 x 101% 2.88 x 10102
Quarterly cattle cycles 9 4 3.53 x 10100 1.26 x 10+
Monthly cattle cycles 25 4 9.67 x 10+ 3.93 x 10103
Education 15 52 8.76 x 10TV 3.77 x 10T

number of exogenous state variables and endogenous state variables is large for the
Education economy because of the presumed population dynamics and the number
of time periods it takes to get highly skilled.

Associated with each of the six optimal resource allocation problems is a Riccati
equation and a Sylvester equation that are solved in finding the optimal decision rule.
We report the Riccati equation comparisons in the first subsection and the Sylvester
equation comparisons in the second subsection. Recall that Sylvester equations take
as one of their inputs a matrix constructed from the solution to the corresponding
Riccati equation. To simplify comparisons, we use the same input matrix for each of
the two Sylvester equation algorithms.

9.1. Solutions to Riccati equations

We compare the performance of seven of the Riccati equation solving algorithms
described in Section 4. We consider two invariant subspace algorithms: one is based
on an eigenvector decomposition labeled Eigenvector and the other on the Schur
decomposition labeled Schur in the tables described below. We study two deflating
subspace algorithms that are generalizations of the two invariant subspace algorithms
designed to permit the state evolution matrix (A, ) to be singular. (In fact, this matrix
is singular for the Education resource allocation problem.) We label these deflating
subspace algorithms Generalized Eigenvector and Generalized Schur. We investigate
two doubling algorithms that differ with respect to how they are initialized. The
first doubling algorithm uses the standard initialization (P, = 0), and the second
one initializes the doubling algorithm so that the terminal state and costate vectors
coincide (P, = I). Since the (P, = 0) doubling algorithm gives the wrong solution to
the Permanent Income resource allocation problem, it is not included for that control
problem. Both of these algorithms are labeled Doubling with the specification of P,
given in parentheses. Our seventh algorithm is the matrix sign algorithm and is labeled
accordingly. As a benchmark, one of the algorithms iterates on the Riccati difference
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equation from dynamic programming.?’ This algorithm is labeled Riccati Iteration in
the tables.

Table 4.3 reports comparisons of the performance of the eight algorithms
used to compute candidate solutions (Py, F(Py;)) to the associated determinis-
tic regulator problem’s given the inputs (Ayy, By, Qyy, R). Here F(P) = (R -+
B,'PB,)"'B,/PA,,.*® To measure the accuracy of the computed solutions, we use
the matrix one-norm of the Riccati equation residual Py — T'(Py) where

T(P) = Qyy + Ayy' PAyy — Ayy' PBy(R + By'PBy)«lBy,PAyy-

Gudmundsson, Kenney and Laub (1992) show that P7 is an accurate solution of the
Riccati equation (3.13) if it has a small residual and the Riccati equation is “well-
conditioned”.

For the Permanent Income resource allocation problems, Table 4.4 reports the ab-
solute errors

17 = Bl 17 = FED

These errors were computed under the presumption that the first problem (without
adjustment costs) is the problem of interest. That is, we compare the true solutions to
the Permanent Income Economy to the computed solutions to the Permanent Income
Economy and the Permanent Income Economy (with adjustment costs). Recall that the
primary reason we introduced the adjustment costs is to make the doubling (P, = 0)
algorithm applicable. For the Permanent Income economy, we calculated the true
solutions for F, and P, by hand:

P, = [_77//360 7_/71/260%} , Fy=[-1/3 1/60].

The results verify that (for the Permanent Income economy) the residual errors re-
ported in Table 4.3 are close proxies for the absolute errors reported in Table 4.4.

Z1The Riccati iteration algorithm iterates on
Pjt1 = Quy + (Ayy — ByFy) Pj(Ayy — ByFy) + Fj'REy,
where
Fj = (R + By'P;By)™' By'Pj Ay,
until | Py — Pj|l < e Pjll,, where we set € = | x 1015 We initialize this algorithm at P, = /.
28 All comparisons reported in the section were performed on an HP-9000/730 computer with 64MB of

memory using version 4.2a of MATLAB and HP’s FORTRAN compiler. We base our CPU times on 1100
replications.
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Since solutions to Permanent Income (with adjustment costs) approximate closely
the solutions to Permanent Income, applying the doubling algorithm to the adjust-
ment cost version gives a reliable solution to the resource allocation problem without
adjustment costs.

. Table 4.3
Performance of algorithms that solve Riccati equations
Economy Algorithm CPU time Residual norm
Permanent income Riccati iteration 0.0334 2.8 x 10~15
Eigenvector 0.0047 1.0 x 109
Schur 0.0039 4.4 x 10~16
Generalized eigenvector 0.0045 1.5 x 10~
Generalized Schur 0.0037 4.6 x 1016
Doubling (P, = I) 0.0031 6.1 x 10~16
Matrix sign 0.0058 9.7 x 10716
Permanent income Riccati iteration 0.0334 1.9 x {015
(with adjustment costs) Eigenvector 0.0057 2.4 x 10~
Schur 0.0046 1.4x10°1
Generalized eigenvector 0.0048 2.9 x 10"
Generalized Schur 0.0037 1.1 x 1016
Doubling (P, = 0) 0.0022 9.2 x 10~16
Doubling (P, = I) 0.0030 9.4 x 10716
Matrix sign 0.0062 3.7 x 10715
Yearly cattle cycles Riccati iteration 0.0056 9.7 x 1016
Eigenvector 0.0076 2.3 x 1071
Schur 0.0079 3.3 x 10716
Generalized eigenvector 0.0125 1.7 x 1015
Generalized Schur 0.0054 2.1 x 10715
Doubling (P, = 0) 0.0026 5.6 x 10716
Doubling (P, = I) 0.0036 3.9 x 10716
Matrix sign 0.0089 6.7 x 10~16
Quarterly cattle cycles Riccati iteration 0.0520 2.6 x 10713
Eigenvector 0.0400 9.4 x 10~15
Schur 0.0373 1.1 x 10~
Generalized eigenvector 0.1177 6.2 x 10-15
-Generalized Schur 0.0248 6.9 x 1015
Doubling (P, = 0) 0.0125 6.7 x 10716
Doubling (P, = I) 0.0131 5.6 x 10716

Matrix sign 0.0314 2.3 x 10715
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Table 4.3
(Continued)
Economy Algorithm CPU time Residual norm
Monthly cattle cycles Riccati iteration 1.3860 1.0 x 10~14
Eigenvector 0.6904 2.9 x 10~
Schur 0.6575 8.2 x 10714
Generalized eigenvector 1.3100 5.9 x 10-4
Generalized Schur 0.3370 6.1 x 10714
Doubling (P, = 0) 0.1435 3.7 x 10715
Doubling (P, = I) 0.1437 1.4 x 1071
Matrix sign 0.2569 22x 10714
Education Riccati iteration 0.2554 8.2 x 101
Generalized eigenvector 0.2437 2.2 x 10104
Generalized Schur 0.0394 2.2 x 1096
Doubling (P, = 0) 0.0371 3.1 x 1077
Doubling (P, = I) 0.0447 2.7 x 1097
Matrix sign 0.0841 1.9 x 107%7
Table 4.4
Accuracy of solutions to the permanent income model
Economy Algorithm Absolute error of P7  Absolute error of F
Permanent income Riccati iteration 6.6 x 1014 8.8 x 1015
Eigenvector 2.4 x 10702 3.0 x 1079
Schur 8.8 x 1015 1.1 x 10715
Generalized eigenvector 3.1 x 1079 4.0 x 10~04
Generalized Schur 1.9 x 10~ 14 2.6 x 10715
Doubling (P, = I) 8.2 x 10713 1.3 x 1013
Matrix sign 2.8 x 10~ 14 3.7 x 10715
Permanent income Riccati iteration 5.7 x 10713 8.2 x 1014
(with adjustment costs)  Eigenvector 4.9 x 1079 6.4 x 10797
Schur 5.0 x 10—14 1.1 x 10=15
Generalized eigenvector 6.0 x 1079 7.8 x 10—%
Generalized Schur 1.4 x 10—8 1.5 x 10~
Doubling (P, = 0) 5.0 x 10~13 7.3 x 1014
Doubling (Pp = I) 1.7 x 10—12 2.8 x 1071
Matrix sign 5.7 %1071 8.3 x 1014

Returning now to the result in Table 4.3, the following comparisons are noteworthy.

(1) The eigenvector and generalized eigenvector algorithms are unreliable for three
of our six economies. Not suprisingly, the presence of repeated roots in the solu-
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tion to the Permanent Income control problem caused the eigenvector algorithm
to give unreliable solutions. Shifting to the generalized eigenvector algorithm
resulted only in marginal improvements in accuracy. While introducing tiny ad-
justment costs to the Permanent Income control problem improved the accuracy
of the eigenvector method, it failed to make the eigenvector method as accurate
as the other methods. The generalized eigenvector method performed poorly for
both this control problem and the Education problem.

(2) The Riccati iteration algorithm computed accurate solutions for all of the control
problems and, in particular, computed the most accurate solution for the Educa-
tion problem. Hence if accuracy is the primary concern, rather than speed, this
algorithm is a reasonable choice. However, in situations in which repeated solu-
tions are required, other algorithms can save the researcher a significant amount
of time.?’ Speed gains are likely to be important in econometric estimation and
in determining the sensitivity of solutions to changes in parameter settings.

(3) Algorithms that allow A, to be singular do not suffer any “penalties” in speed
or in accuracy. Hence for our discrete-time control problems, there does not seem
to be a good reason to use the invariant subspace algorithms.

(4) Both doubling algorithms performed relatively well across the six economies. The
P, = 0 algorithm is a little faster than the P, = I algorithm for the Permanent
Income (with adjustment costs) and for the Yearly Cattle Cycles control problems
with comparable accuracy. The P, = I algorithm is the quickest of the seven
applicable algorithms in solving the original Permanent Income control problem.
The P, = 0 doubling algorithm outperforms the generalized Schur and matrix
sign algorithms. A possible reason it is faster than the generalized Schur algorithm
is that the generalized Schur algorithm does not exploit the symplectic structure
of the control problem.

9.2. Solutions to Sylvester equations

Table 4.5 compares the performance of the Sylvester equation algorithms discussed
in Section 6 applied to the five control problems. The algorithms take as inputs the
matrices (S, T, W). To assess the accuracy of the solutions, we use the matrix one-
norm of the Sylvester equation residual W + SM°T — M€, where M¢ is a candidate
solution. For the Permanent Income control problem, the absolute error, | M — M°||, ,
of the Hessenberg—Schur solution is 9.1 x 10~!? and the absolute error of the doubling
algorithm’s solution is 1.0 x 10712,

YThe speed of the Riccati iteration algorithm can be increased by lowering the tolerance €. For instance,
if ¢ is changed to I x 1079, for the Permanent Income Economy the CPU is reduced to 0.0163 with an
absolute error of 5.3 x 107% for P,;. Comparable changes in tolerance settings for the other iterative
algorithms had very minor changes in speed and accuracy for the Permanent Income Economy. Our
experience with the matrix sign algorithm applied to other economies is that significantly lowering the
tolerance can have disastrous consequences for accuracy.
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Table 4.5
Performance of algorithms that solve Sylvester equations

Economy Algorithm CPU time Residual norm
Permanent income Hessenberg—Schur 0.0017 3.6 x 10715
Doubling 0.0010 3.6 x 1071

Yearly cattle cycles Hessenberg—Schur 0.0027 3.3 x 10-13
Doubling 0.0014 2.8 x 1074

Quarterly cattle cycles Hessenberg—Schur 0.0041 7.8 x 10713
Doubling 0.0028 2.6 x 10713

Monthly cattle cycles Hessenberg-Schur 0.0154 2.6 x 10712
Doubling 0.0186 6.5 x 1013

Education Hessenberg—Schur 0.2601 4.3 x 10~1
Doubling 0.1233 5.2 x 10712

The accuracy of the doubling and Hessenberg—Schur algorithms are comparable.
While the doubling algorithm is faster in solving four of the five Sylvester equations,
the Hessenberg—Schur algorithm is faster in solving the Sylvester equation for the
Monthly Cattle Cycles control problem. Recall that this problem has 25 endogenous
states but only four exogenous states. The Hessenberg—Schur algorithm is apparently
better at exploiting this asymmetry.

10. Innovations representations

Constructing an innovations representation is a key step in deducing the implica-
tions of a model for vector autoregressions and for evaluating a Gaussian likelihood
function.’® An innovations representation is a state-space representation in which the
vector white noise driving the system is of the correct dimension (equal to that of the
vector of observables) and lives in the proper space (the space spanned by current
and lagged values of the observables).

Suppose that our theorizing and data collection lead us to a system of the form®!

Tpp1 = Aoy + Cwiyy,
Zt = GZL’t -+ Vt,
Vi1 = Duy + ['th_H, (10.1)

where D is a matrix whose eigenvalues are bounded in modulus by unity, and {wt}
is a martingale difference sequence with E(wipiwiyy’ | Ft) = I, where Fy is the

¥The calculations in this section are versions of ones described by Anderson and Moore (1979). We
alert the reader that we are “recycling” or “reinitializing” some of the notation used in earlier sections,
such as z¢, ve, ut, D, R.

3n particular, the solution to the discounted stochastic regulator problem can be expressed as T4 =
Aozt + Cwiqy where Ao = A — BE.
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sigma field generated by the history of ws up to . We take z; to be the time ¢
vector of variables on which an econometrician has observations, and we interpret
v; as a serially correlated measurement error vector. We let R = HH', which is the
covariance matrix of Hw;y;. We impose CH’ = 0, by way of assuming that the
“state” and “measurement” errors are uncorrelated.

We define the following quasi-differenced process

:Z-t = Zt+1 — DZt. (102)
From Eq. (10.1) and the definition (10.2), it follows that
zZ, = (GA, — DG)z + (GC + H)wyy1.

Then (z:, Z;) is governed by the state space system
Tpy = Aoty + Cwpgy,
Z = Gay + (GC + H)wy, (10.3)

where G = GA, — DG. This system has nonzero covariance between the state noise
Cwgyy and the “measurement noise” (GC' + H)wgqr. Let [Ky, Xy] be the Kalman
gain and state covariance matrix associated with the Kalman filter, namely,

K; = (CC'G' + A, G, (10.4)

2 =GX,G' + R+ GCC'G, (10.5)

Tiw1 = A S A, + CC' — (CC'G + AE.GN T G XL A, + GCC'). (10.6)
Then an innovations representation for system (10.3) is

ey = Aoy + Koug,

Z = Gat + Us, (10.7)
where

& = Blwy | 21, Zi2,- - -, 50, o),

u =% — B[z | Z-1,. - -, %0, %),

2 = Fuguy’ = GE,G' + R+ GCC'G'. (10.8)
Initial conditions for the system are &, and 2. From definition (10.2), it follows that
(2641, 2t5 - .+ 20, Zo] and [Z¢, Ze—1, . . ., Zo, Zo] span the same space, so that

By = E[xt | 2, Zt—1, - - - » 205 L0),

Up = Zgp] — E[th | zt, ..., 20, Zo).

The process u; is said to be an innovation process in zy..1.
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Equation (10.6) is a matrix Riccati difference equation. The Kalman filter has
a steady-state solution if there exists a time-invariant positive semi-definite matrix
2 which satisfies Eq. (10.6) with ¥, = X, i.e., one that satisfies the algebraic
matrix Riccati equation. In this case, the same computational procedures used for
the optimal linear regulator problem apply: a benefit of the duality of filtering and
control. The steady-state Kalman gain K is given by Eq. (10.4) with &, = X and {2
=GEG' + R+ GCC'G.

10.1. Wold and autoregressive representations

The innovations representation is associated with a Wold representation or vector au-
toregression. Estimates of these representations are recovered in empirical work using
the vector autoregressive techniques promoted by Sims (1980) and Doan, Litterman
and Sims (1984). Wold and vector autoregressive representations are easy to obtain
when A — KG is a stable matrix. To get a Wold representation for z, substitute
Eq. (10.2) into Eq. (10.7) to obtain

iy = Aoty + Kuy,
Zip1 — Dzg = GEy + uy. (10.9)

A Wold representation for z; is
zew1 = I — DL} "I + G — A,L)"' K L]uy, (10.10)

where, again, L is the lag operator. From Eq. (10.9) a recursive whitening filter for
obtaining {u;} from {z:} is given by
up = zg4y — Dz — éiﬁt,

Fr1 = Aody + Kug. (10.11)

Hansen and Sargent (1994) show that an autoregressive representation for z; is
21 ={D+ (I - DL)G[I — (A, — KG)L|"'KL} 2 + u (10.12)
or

zZi41 =D+ GK)z + Z[G(AO — KC_;')jK
j=1
~ DG(A, — KGY 'Kz j + us. (10.13)

This equation expresses z;4; as the sum of the one-step-ahead linear least squares
forecast and the one-step prediction error.
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11. The likelihood function

Obtaining the Kalman gain sequence { K} of the previous section is a key step in con-
structing and manipulating a recursive representation of a Gaussian quasi-likelihood
function. It is often necessary to transform the observations into a form matching the
linear state-space form. Thus, we start with a “raw” time series {y;} that determines
an adjusted series z; according to

Zt = f(yt78)>

where @ is the vector containing the free parameters of the model, including parame-
ters determining particular detrending procedures. For example, if our raw series has
a geometric growth trend equal to pt which is to be removed before estimation, then
the adjusted series is z; = y;/ut. We assume that the state-space model of the form
(10.3) and the associated innovations representation (10.7) pertain to the adjusted
data {z;}. We can use the innovations representation (10.7) recursively to compute
the innovation series, then calculate the Gaussian log-likelithood function

T-1
L(O) = Z {log19t| + trace(2; "uguy') — 2log af(Ty;(?ll} (11.1)
£=0 St

and find estimates, © = argming L(©), where (2, = Fu,u,’ is the covariance matrix
of the innovations computed from (10.8).3? To find the minimizer é, we can use a
standard optimization program. In practice, it is best if we can calculate both the log-
likelihood function and its derivatives analytically. First, the computational burden
is much lower with analytical derivatives. Consider, for example, the model of Mc-
Grattan, Rogerson and Wright (1995), which has 64 elements in ©. For each step of
a quasi-Newton optimization routine, L and 8L/96 are computed. To obtain 9L/30
numerically for the McGrattan, Rogerson, Wright (1995) example, the log-likelihood
function must be evaluated 128 times if central differences are used in computing an
approximation for 9L/26, e.g.,

oL  L(O +ee) — L(O — ce)

26 2e ’

(11.2)

32The log likelihood is conveniently factored as
log Pr(z¢, ze—1,. .., z0) = logPr(zt | z¢—1, ..., 20) - - - log Pr(z | z0) log Pr(zo).

For alternative ways of modelling Zg, see Ansley and Kohn (1985), Hamilton (1994) and Hansen and
Sargent (1994).
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where e is a vector of zeros except for a 1 in the element corresponding to 6 and
€ is some positive number. Usually, the costs of computing L a large number of
times far outweigh the costs of computing 0L/98 once. If L and 9L/36 are to
be computed many times, which is typically the case, then the costs of computing
numerical derivatives can be quite large. A second advantage to analytical derivatives
is numerical accuracy. If the log-likelihood function is not very smooth for the entire
parameter space, there may be problems with the accuracy of approximations such
as Eq. (11.2). With inaccurate derivatives, it is difficult to determine the curvature of
the function and, hence, to find a minimum.

For L(©) in Eq. (11.1), the derivatives 0L(©)/06 can be derived by following
procedures of Kashyap (1970), Wilson and Kumar (1982) and Zadrozny (1988a, 1989,
1992). We display these derivatives in Appendix B and distinguish formulas that are
steps in the derivation from those that would be put into a computer code. Note that
although the final expression for 0L/08 derived in Appendix B is complicated, we
can use numerical approximations such as Eq. (11.2) to uncover coding errors.

Once we have the log-likelihood function and its derivatives, we can apply standard
optimization methods to the problem of finding the maximum likelihood estimates.
In practice, we will have a constrained optimization problem since the equilibrium
is not typically computable for all possible parameterizations. For example, we may.
have simple constraints such as £ < © < u, where ¢ and u are the lower and upper
bounds for the parameter vector. In this case, we use either a constrained optimization
package or penalty functions [see Fletcher (1987)].

After computing the maximum likelihood estimates, we need to compute their
standard errors,

oL, oL, \ "
, (11.3)

S(®) = diag ( —
— 00 06

where L;(©) is the logarithm of the density function of the date ¢ innovation, i.e.,

L(0) = log 2| + us' 027 'uy — 2 1og
Oyt

(11.4)

The formula for 9L./96 is also given in Appendix B.

12. Estimating the cattle cycles model

In this section, we present estimates of some of the parameters of Rosen, Murphy and
Scheinkman’s (1994) model.** We let p; be the price of freshly slaughtered beef, ds,

3 We have used estimates of key parameters from this section in the numerical experiments for the
annual model.
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the feeding cost of preparing an animal for slaughter, dj, ; the one-period holding cost
for a mature animal, y;dy ; the one-period holding cost for a yearling, and ~v,d}, ; the
one-period holding cost for a calf. The costs {dp ¢, ds 1 }52, are exogenous stochastic
processes, while the stochastic process {p:}32, is determined by an equilibrium. Let
ks be the breeding stock and y; be the total stock of animals. Each animal that is
reserved for breeding. gives birth to n calves. Calves that survive become part of the
adult stock after 2 years. Letting ¢ index years, the law of motion for stocks is**

kye = ky -1 +nkpi—3 — ct, (12.1)
where ¢, is a rate of slaughtering. The total head count of cattle is
Yt = ke + ko1 + 1ky-, (12.2)

which is the sum of adults, yearlings, and calves, respectively.
A representative farmer maximizes

Ey > B {ptct = dp,tke,e — (n1dn,e)(Mkbt—1) — (v2dnt) (Mke,t—2)
t=0

—dsper — %Wt} (12.3)
where
Wy = (kb +kipy + kg2 +ch)

Here € is a small positive parameter which measures the quadratic costs of carrying
stocks and slaughtering.
Demand is govérned by

Ct = Qp — QP (12.4)

where ag > 0 and o > 0. The stochastic processes {dp, 1, d, ¢} are univariate autore-
gressions with orthogonal innovations

dh,t+1 = (1 — pr)pn + prdne + €ng,

dst+1 = (1 — ps)ts + psdm,t + €s,t,
where Ee} , = o7 and Eel = o7. The disturbance processes {ex,:} and {e;;} are
white noises that are uncorrelated at all lags.

34We have set the death probability in Rosen, Murphy and Scheinkman’s (1994) model to zero.
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Table 4.6
Parameter estimates for “Cattle cycle” example

Parameters  Estimates  Standard errors

a 146 33.4

o 1.27 0.323
M 0.647 11.5

¥ 1.77 2.0

n 0.938 0.0222
Ph 0.888 0.115
ps 0.699 0.0417
oh 6.82 10.6

os 4.04 1.05
oy 0.273 0.0383
oc 4.82 0.531

To compute parameter estimates, we use the data of Rosen, Murphy and Scheinkman
(1994), which include annual observations for y;, ¢;, and p; for the United States
during the period 1900-1990.% We assume that there is error in measuring the total
stock of cattle y; and the slaughter rate c;. In particular, we assume that the (1,1)
element of R, the variance-covariance matrix of the measurement errors, is equal to
o2, and we assume that the (2,2) element of R is equal to 2. All other elements of
R are set equal to zero.

We are now equipped to estimate the parameters of this model by applying the
formulas of the previous sections. We start with some a priori restrictions. Assume
that 8 = 0.96, ¢ = 1 x 107* p; = 37, and p; = 63. The remaining parameters
are elements of O, i.e., @ = [a, ai, Vi, Y2, 1N, Phs Pss Ohs Ts, Oy, 0cl. In Table 4.6,
we report estimates of these parameters and standard errors for the estimates. Note
that from the values for o and «; we can get an estimate of the demand elasticity.
For this model, the elasticity is given by —0.61.% The values of y; and v, give us
information about the holding costs. The estimates indicate that the costs are higher
for calves than for yearlings. However, the standard errors on -y, and -y, indicate that
these parameters are not precisely estimated. The value of 7 implies that 0.94kp ;—;
calves are born at date ¢, where kp ;| is the breeding stock at £ — 1. This estimate is
higher than Rosen, Murphy and Scheinkman’s (1994) estimate of 0.85. The estimates
of pn and ps imply that there is persistence in the processes for holding and feeding
costs. Finally, the estimates of o, and o, indicate that the measurement error is higher
for the slaughter rate than for the total stock.

35The sources of these data are the Historical Statistics of the United States, Colonial Times to 1970
and Agricultural Statistics. In the data, y is the total stock of cattle excluding milk cows, c is the cattle
slaughtered, and p is price of slaughtered cattle.

36This estimate is oy x pp/cy (—1.27x0.48),
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In Figs 4.1 through 4.3, we plot the predicted and actual time series for the stock
of cattle, the slaughter rate, and the price. The predicted series are the one-_step-ahead
forecasts. Using the notation of section 10 these are given by the vector GZ;.

70 T T T T T T T

1
tForecast

Actual |

11 900 1910 1920 1930 1940 1950 1960 1870 1980 1990
Figure 4.1. One-step-ahead forecast and actual total stock.

24 T T T T T T T T

100 1910 1920 1930 1940 1050 1960 1970 1980 1990
Figure 4.2. One-step-ahead forecast and actual slaughter rate.
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1

90 L s . . . I .
1900 1910 1920 1930 1940 1950 1960 1970 1980 1990

Figure 4.3. One-step-ahead forecast and actual price of slaughtered beef.

Appendix A. Computing 0/96 and 3L;/06 for a state-space model

Differentiating the log-likelihood function with respect to the free parameters of the
economic model can be broken into two steps: first, differentiating the log-likelihood
function with respect to matrices appearing in the state-space model (10.7); and sec-
ond, differentiating the parameters of the state-space model (10.3) with respect to the
free parameters of the underlying economic model. In this appendix, we derive 3L /06
in terms of the derivatives of A,, C, G, D, R, &g, Xy, and {z,t = 0,...,T}. We
ignore the Jacobian in Eq. (11.1) since it differs for each problem. In Appendix B,
we show how to compute derivatives of A, for the linear-quadratic and nonlinear
economies with and without distortions.

A.l. The formula for 0L /00

For the first step, we take as given A,, C, G, D, R, Zo, X0, and {z,t =0,...,T}
and their derivatives with respect to the deeper economic parameters. We shall show
that the derivative of the log-likelihood function is

T-1
oL 04, _, = . _ oC
5= ;:0 {2 trace{WEtG’MtG’ — Zyuy' 2, IG} +2 trace{—a—e— C”G’MtG}

+2 trace{%cg— (A Z,G' My — 5,G'MyD + CC'G' My — Aodiyus’ 82,

+ :f:tut'Qt"lD)}
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aD = 12 —1 A ry—1
— 2 trace ‘50— (GEtGIMt — ZtUg ‘Qt -+ th’u,t Qt )
oR 0X: - = 0% _
+ trace{ 7 Mt} + trace{ —a—éi G’MtG} -2 trace{ —a—? uy 2,7 G}

azt 1 — aZt —
+2 trace{a—g uy' (25 1} -2 trace{—agut’ﬂt DY, (A.1)

where

0%, 0A, . ., 8%, ., 24, oC , _aC’
TRATT T Tana ] Ao_— 0 02 “Aan —C A
30~ g Ztde Ao Ao T AT + 5 O Oy

°Cc ., ., .3C', 3G 34,
—<690G+C60G+CC 5 5%

0%, ~ G’
—a‘e‘t' G+ Aoztge_ )Kt/ + K

oG

a5y
Gl
_ K(g DA, +C¥aa—%Ao’ + G, a;;"/
+¥CC'+G%C'+GC%—§—/>,

+ Kt<azt+l -D %> (A3)

The expressions in (A.2) and (A.3) follow from the definitions of X in Eq. (10.6) and
#; in Bq. (10.7). The initial conditions 9 and X and their derivatives are assumed
to be given.

If X is given by the steady state solution of the Riccati equation, then the compu-
tation can be simplified. The formula for the derivative of the log-likelihood function
is given by

oL

aA et
_ o ' -l A
20 =27 trace{ 20 (ZJG MG — I3,027'G FmA(I KG)

+ A, K

(A2)

— G 07 ' - KG) — XA,/ T,/ 07'G+ SA, II(I - KG))}
oC 1 ¢ ty—1
+ 2T trace EC’(GMG—G.Q Iy, - KG)

—(I—-GKNWR''G+(I-GK)I(I-KG))

N
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oG 5 5 o

+ 27 trace =7 (A ZG'M — ZG'MD + CC'G'M
— ATy 27 + T30 27D + Ao T50 K
—I32ZKD —~CC'(I - G'K')[,,' 27!
+CC'G NI K — A LA Ty 027!
+ XA TN 27D+ A XG0 ' T K
— NG Q'NZKD — ANAIIK + XA IIKD
- CC'IIK + CO’G’K’HK)}
oD - .

— 2T trace —@(GEG’M + (D — GT34) 02
+ GIppK — T)hK — GEZA,/ T,/ N7}
+GEG Q' MK ~ szio’m{)}

0
+2T trace{a—lg(%M + 7T K + %K’HK)}
-1
02411 02t \ ;-1
+2trace{ 2 ( 30 _Daa ug §2

! 0z aZ 653
t t—1 ' 0y v
~4
2trace{ 1 (ae D 52 ))\tK}—Ztrace{———ae Ao }, (A4

t=

where X is the asymptotic state covariance matrix found by iterating on Eq. (10.6)
and G, K, 12, u; and 3, are defined in Eqs (10.3)—(10.5), and (10.7), and

At = (Ao — K@) Ay1 + G027y, t=0,...,T -2,
Moy =G 027 ur g,

T-1

1 /

L = T E Uglly
1=0
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T-1

1
qu - 'j: LUt
t=
] T
I = T Z ztutl,
t=0
=
L=z D A, (A.5)
t=1
[ It
I'gy = T T A (A.6)
1=l
=
I = T Z Zi-1 A (A7)

M=0"'—0 '[!

A, =A, - KG,

I=ATTA, +GMG - G2 'T LA, - A/T,'27'G.
In the remainder of this appendix, we derive the formulas in Eq. (A.1) and Eq. (A.4).
Readers who are not interested in this derivation can skip the rest of this appendix.

A.2. Derivation of the formula

The derivative of the log-likelihood function with respect to any element 6 of the
parameter vector is given by

= du du,’
I i —1
E trac {———Mt} E trace{(Wut —t—ut—a—é-)ﬂt }

t=0
= 51 + 55, (A.8)

where M; = Q_ lut uy' 2 "and (2, = Fusu;’. We start with the first term in
the expression for the derwanve of the log-likelihood function S}. For this, we need
the derivative of the covariance matrix {2; which satisfies

/

002, oG 05, 0G¢' R G
b G o g9 Gy g % cerer
30~ g 0 T Oy T HGligg g+ 5 CCC
3’ Yel
It ! 74 _Gl !
+G690G +GC S G+ GCO
oG 94, oD 0G\ . -, A0 ~
(aa 30 30 C Da9>EtG+G 35
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) 0G' A, oD’ 3¢’
o(a/= o~ 9 Oy
+Gt( 00 "5 ¢ 9% aeD>
9R oG ., ., . 0C ., . 2c’ el
el g fepac ac® LGN
+ 25+ 2p CC'G + G2 C'G + GC o G+ GCC'SL . (A9)

The second equality follows from the definition of G. If we post-multiply the deriva-
tive of {2 by M; and take the trace of the result, we have the first term of the
derivative of the log-likelihood function in Eq. (A.8):

! 34, _ - 3C
S| = ; [2 trace(—é—eﬁ ZtG’MtG> +2 trace<¥ C”G'MtG>

+2 trace(%{AOZtC"Mt — ZtGIMtD + CC/G/Mt}>

oD _ OR
— - ' Bl
2 trace< 39 GG Mt> + trace( Y Mt>

+ trace(%goJE G’MtC:’)] . (A.10)

Note that the formula for S| depends on derivatives 04,/08, 0C/06, 0G/d6, and
0R/06, which are known, and 0.X,/96, which is yet to be derived.

We now turn to the second term of the log-likelihood function derivative, Sy =
trace(autut’/ﬁﬁﬂt_l). Let Fuu(t) = utut’. By deﬁnition, [‘uu(t) = (Zt — éit)(gt —
G#;)' and, therefore, its derivative is given by

3l (t) (azt oG . _g@_t)m, ut<azt oG 6@)’

56 ~\as a0t %% W 0 %
0z oD 0z oG | . 0A, .
(M - G- D o~ g A~ G
E)D R aGA = ait !
+—5?0‘—G.Z't+D€9‘$t_Gﬁ'>ut
! I ! / !
oD’ oG’ % -
+ii’th/—a'§' +£t/"é“9'Dl~"5/Ig—G,>' (All)

If we post-multiply this derivative by (2, !, take the trace of the resulting matrix,
and sum over £, then we have the second term of the derivative of the log-likelihood
function, i.e.,

T-1 A
Sy = — Z |:2 trace{—a-gﬁ fi’gutlﬂt_lG}

=0
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Gle
2 trac
+ race{ 30 (

Aodiyuy 7 — .f:tut’ﬂ[lD)}

T—
+2 trace{a—(ztut — Gy )27 b — 2 trace { Z }
=0
T 2 T
+ 2 trace {Z—H o 1D}+2t1race{z uy' 02 G} . (A12)
=0 =0

Sum the expressions in Eqs (A.10) and (A.12) to get the expression for the derivative
of the log-likelihood function in (A.1).

For the time-invariant case, several more steps are needed. First, we derive the last
term in Eq. (A.12) in terms of the derivatives that are taken as inputs. Following
Kashyap (1970), Wilson and Kumar (1982) and Zadrozny (1988a), we can simplify
the computations by working with sequences {d;} and {A;} defined as follows

04, 0K . _0oG\, OK_ 23z
dt——(ae agG Kﬁ>xt+WZt+K'a—9—, t-—-O,...,T—l,
At = (Ao — KG)IAH_l + C:”(Z_lut, t= T 2
Aroy = G2 up_y. (A.13)

Notice that the time subscripts have been dropped from K and {2 since the time-
invariant case assumes that X, = 5 for all ¢. Let A, = A, — KG. Notice that since
Ty = ApZy + K7, its derivative is given by

0f¢q1 5 Oy

30~

+d;. (A.14)

Write out the last term in Eq. (A.12) and substitute in &; = Afn -+ Zi;z) Az_ldt_s.
Then group terms involving £ and d;, t =0,...,T — 2. These steps lead to

2 oz 2 dio !
?trace( a—et ug £2° 10) :—Ttrace< =5 Ao’ —I—Zdt 1/\¢>

t=0
2 g . , 04, oG
——?trace(—ﬁ/\o)~2trace{< 30 60 G Ka A,
04, oD oG oK
o0 TH ¢ TEL ae) » g =

T-1

1 0z oD 1 0z
+ = K;——i,\t - —91})\~—KDE—?——‘~A{}
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aAO
= =7 — 1% —_
trace{ 30 A KG)}

+2 trace{ %(AOF@AK — FmKD}

-2 trace{%—le)—(GFﬂK — I’Z)\K)}
2 0z 0z Ly
—Ttrace{KZ—)\t—KDz }

2 aK
-7 trace(ﬁ Ao > -2 trace{ 30 } (A.15)

where I‘u)\, A and I, are the sums defined in Egs (A.5) through Eq. (A.7) and
= Zt | Zi— 1A' /T. The second equality follows from the definitions of d;—
and G and some algebraic manipulation. The last term in Eq. (A.15) uses the fact
that u, = z; — GZ;. With the exception of 0K /26, the expression in Eq. (A.15) is a
function of known derivatives. The expression for 0K /06 follows from the definition
in Eq. (10.4) and is given by

; 3G’ dA, a8
%: acca'+c£a'+ca’ af: aag +A09——G’
! / !
+aza, 2 aA — 4,26 35 aD 4,55 oo
29 26
) Ay - 3D
—(CC'G + A, 2GR { And+ 62 = - 55 GZC
3G _ G . A,
O , & 5 el 0yt
~ D~ 54 +G69G+GEAO 5 T0T =,
I !
—GZG’%-?— ed> aG D’+%+ECCG’
+G—-CG'+GC—C— G’ +GCC' aa] (A.16)

Note that we have written 3G /98 in terms of 3G/26, dA,/06, and 9D /d6. Substi-
tuting 3K /06 into the expression in Eq. (A.15) and rearranging terms, we have

T-1
7 trace( 2 69 ug' §27 G’)

_2trace{a§9 ( (I - KG)—}-ZG/_Q T - KG)
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+ ZA uA’Q“‘G)}
oC i t y—1 ! gt -1

— 2 traceq == C'(G'27' Tua(I = KG) + (I - G'K") [’ 27'G)
oG

+2 trace{ (Ao Fw,\K T'sxKD — CC'(I — G'K") I\ 27!
+CC'G' ' TpK — A S A,/ T/ 27 + ZA, ' T,)'07'D
+ A XG0T T K — EG’Q‘IFU,\KD)}
oD i ty—1 Sr—1

— 2 trace W(GT@,\K—FZ)\K—GEAO wA 27+ GEG' 2 Fu)\K)

+2 trace{ % Q“IFuAK}

2 0z azt 1
-7 trace{KZ—)\t KDZ }

— 7 trace{ Y] Ao } -2 trace{ 9 (G'02 Fu,\AO)}. (A1)

Therefore, the expression for the second term of the log-likelihood function derivative
S, is given by

(Fu27'G + Dpa(I — KG) + £G' Q7' T (I ~ KG)

(2 )
Sg:—?,trace{éA

+ DA uk’n—la)}
oC ! 1 H—1 ! 7! 1 -1

— 2 trace —agC (GQ Iin(I-KG)+ (I -G K"I,'$2 G)
oG —1 —1

— 2 trace a—H(AOFju.Q = T3 827'D — AT K + T50 KD
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— A ZG' QT T K + EG’Q_IFMKD)}
-2 trace{% (Fw = GI3u) 27" + GIupK — I\ K — GEA,/ T,/ 07!
+ GEG"Q“FU,\K)}

oR
— N7 MK
+2 trace{ 30 2 }

+ 2 trace S 02141 w7ty — 2 trace ji 3 u/ 27D
T <9 T 99

2 il gy P8 az
—ftrace{KZ—l/\t —KDZ LLIp\ }

— 2 raced 205
Trace 39 0

X - >_
—2 trace{ 57 G’Q"II‘U,\AO}. (A.18)

Our expressions for S in Eq. (A.10) and S; in Eq. (A.18) depend on 9A4,/00,
0C/26, 3G /06, 9D /06, dR/06, which are known, and 9.X'/06, which we will now
derive. Using the expression in Eq. (A.2) with Xy, = Xy = X, we get

AT AW W, (A.19)
where
/ /
W= 65?9" 0 f?% (o aac C'G'K' - c%—g G'K'—CC' %g- K’
- %%‘i LG'K' - A, ZA ’%—C;/K' A, aA ’ K'
+A(,ZG’%§/ AE%DK’ —K%—?K’
+K %C;- A LG K + K af;" YK — K % GXG'K'
- KD %2 G'K'+ K %C; CC'G'K' + KG ac(; C'G'K'. (A.20)
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The terms W and W’ in Eq. (A.19) include all derivatives but 0X/26. To get the
expression in Eq. (A.20), we substituted the expressions for 342/06 and 9G/06 into
Eq. (A.19). Let IT be a symmetric matrix that satisfies

II=A/ITA, + $(H + H'), (A21)
where
H=GMG -2G'27 "I, A,. (A22)
Then
0
lrace(%H) :trace.{w %(H + H’)}
ox — -
=1 -—(IT - A/IIA,
race{ 59 ( A )}
= trace 9y IT } — traced A4, 9% ASIT
f 0
XY
—trace{ (6_9 — A, 30 A, >H}
= trace{ (W + W')II'}
=2 trace{ WII}. (A.23)

If we post-multiply W by IT and take 2 times the trace, then we have an expression
for trace(dX/96)H in terms of known derivatives, i.e.,

ox : 0A, 11
trace<ﬁH> =2 tra(,e{ 30 YA, IO - KG)}

oC
+2 trace{ﬁ C'"(I-GKHYIT(I - KG)}

0G

55 (Ao DA K ~ 24,/ IIKD

-2 trace{

+oc(l - G’K’)HK)}

a6

Sum S, which appears in Eq. (A.10) with Xy = X and 2; = {2, and \S; in (A.18).
Substitute in the expression for trace(d8.X/00)H from Eq. (A.24). The result is the
derivative of the log-likelihood function which is given in Eq. (A.4).

oD - 0
+2 trace{w GZ,’AO’HK} + trace{v—jE K'HK}. (A.24)
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A.3. Standard errors

After we have computed parameter estimates, we want to compute their standard
errors as given in Eq. (11.3). For this we need to compute the derivative of

Lt(@) = 10g thl + Utlﬂt—lut

with respect to any element 6 of the parameter vector.?” This derivative is given by

a0\ du’ d
Laf) + ot O Ny 27N 0 S oy,

oL, -
7t 0 _
20 trace( " 20 20 t

012
:trace{(ﬂt“l - Q{lutut’ﬂfl)a*ot}

duy’ _;du
+trace{a—9t 27 g 4 ug' 82 1—2#}

0 0 !
- trace{ —5% Mt} n trace{ o —%gil } , (A.25)
where My = ;7' — 27 'uguy’ 2771, Above, we calculated 842,/06 and d(usu,’)/6.
These expressions are given in Eq. (A.9) and Eq. (A.11).

Appendix B. Differentiating the state-space model with respect to economic
parameters

In this appendix, we describe how to compute derivatives of A, with respect to the
free parameters of an economic model. We do this for four economies: a linear-
quadratic economy without distortions; a nonlinear economy without distortions; a
linear-quadratic economy with distortions; and a nonlinear economy with distortions.
Because we use linear approximations for the nonlinear economies, most of the work
is in deriving the formulas for the linear-quadratic economies.

B.1. A linear-quadratic economy without distortions

We consider a discounted stochastic regulator problem. The optimization problem is

00
1{na>}( E()Z ,Bt(iL't/Q.’Et + ’U,tIR’LLt -+ th/Wut), (Bl)
AR
subject to x4 = Ax; + Buy + th-}-l .

¥ Note that we are again ignoring the Jacobian since the relationship between z and y differs for each
problem.
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We assume that the matrices Q, B, W, A, and B depend on a vector of parameters
©. For the remainder of this section we assume that C' = 0. Typically, the number of
elements in & is small relative to the combined number of elements in these matrices.
We also assume that the derivatives of the matrices in Eq. (B.1) with respect to the
elements of @ are known.

The optimal decision function is given by u; = — F'z;, where

F=(R+pBB'PB)" (BB'PA+W') (B.2)
for P satisfying

P=Q+pBA'PA
— (W + BA'PB)(R+ 8B'PB) ' (BB'PA+W'). (B.3)

The law of motion for z in equilibrium is
Ly = Ao.’I)t, AO = A — BF. (B4)

Therefore, the derivative of A, with respect to an element of © is

04, _0A 3B . OF

% ~o6 ! Pag (B.5)

The derivatives 0A/00 and 9B/06 depend on the specification of the problem in
Eq. (B.1) and are assumed to be known. The derivative of F is

oF . (3R 9B’ , P ,_ 3B
-ag_—(R—kﬁBPB) (a9+ﬁa9 PB+ 3B aeBJrﬂBPae F

' dB’ P 04 W'

! -1 ’ 1
+(R+ (B'PB) <ﬁ—~aa PA+ (B ——69A+ﬂBP—ao+-—ae > (B.6)

Notice that this formula depends on the derivative of P, with the remaining derivatives
provided by the modeler. The derivative 0P/380 satisfies the following equation:

OF  9Q A’ JOP ., DA
oW dA , 9P , 3B
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P 2Q 94’ 3B’ , [0A 0B
- _‘Ao A Aan A o o An T A
Pho g Aot g+ 0 5g — 1 5g |PA PP 55 — 5 F
114 oW’ OR
SRy B A el ) .
w5 [ ' + F' 0 F (B.7)

Although this formula determines only an implicit function for 9P/96, the gradient
of P can be represented explicitly in terms of things we know. Define the gradient
operator as follows: for any matrix A that depends on the parameter 8, VyA =
vec(0A/06). Then,

VoP =(I - BA,' ® A) N { V@ + B(A'P & I) Vg A' + B(I ® A,'P) Ve A
— B(A,/P & F')VsB' — B(F' ® A,'P) V4B — (F' @ I) VoW
~(I@F)VW'+ (F'®& F')VyR}, (B.8)

which is a function of the gradients of A, B, @, R, and W. The gradient of P can
then be substituted into the following formula for Vi F:

VoF =B(I @ RB'P) VWA — B(F' ® RB'P)V,B + B(A,'P @ R) Vy B’
—(FFQR)VoR+(I®R) VoW’ + (A, ® RB') VP, (B.9)

where R = (R + 8B'PB)~!. Finally, we substitute this expression for VpF into

VA, = VoA — (F/ ®I) Vo B —~ (I®B) Vo F. (B.10)

B.2. A nonlinear economy without distortions

The optimization problem that we start with is
o0
max Fjo Zﬁtr(zt,G), (B.11)
{uck =0
subject to zy41 = Axy + Buy + Cwiyy,
Z = [ﬂftl,ut’]/,

where {w;4+1} is a martingale difference sequence and Ep is the mathematical expec-
tation conditioned on time O information. We solve a related problem, namely:

o0
r{na;}( Ey Z Btz Mz, (B.12)
e t=0

Ty = Az + Bug,
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where
M=e(r(2,0) - aiéifllﬂ %5%2—%>e
N R
- az’;fz’ P 622(; 2) 53

and where e is a vector of zeros except for a 1 in the element corresponding to
the constant term in xz;, Z and w are the steady state values of z; and wy, and
Sy = [In;0ky) and Sy, = [0y k; Ii] (where the “;” denotes stacking) are selector
matrices and imply 2 = Spx: + Syu, where n is the dimension of z; and k is
the dimension of u;. The latter problem yields the same decision function as that of
Eq. (B.1) (where Q = S,’M S, R=S,/MS,, and W = S, M S,).

In the nonlinear case, however, the derivatives are slightly more complicated. To
derive 0A,/06, we need to calculate derivatives of the coefficient matrices of the
objective function. For this, we need the derivative of M with respect to 6:

oM [or(z,0) 621"(2,6) | 5 2°r(z,0) 0z
W‘e< 20 20 -T2 \ Ve ag) )7
1 , 0%r(z,0) ,
E 0z200 z)e
1 627"(2,9) . o%r(z,0) 0z,
'2"( azae ozo0 ¢ ¢ <V’ T

— — 3 — 3 —_—
3 <Vz %r(z,0) %) () 7¢! — e o'r(z,0) 0°r(z,0) se!

022 030 922060  0z%00

d’r(z,0) d%*r(z,0) 0z
2720 +(vz——az2 a—9>(.) , (B.14)

where V,A(z) = [0A(2)/02,...,0A(2)/0zy,] for A(z) which is n X n and b(:} is
an n x n matrix created from a vector of length n? by stacking the first n elements
of b into column 1, the next n elements of b into column 2, etc. As this formula
indicates, the modeler must provide first, second, and third-order derivatives of the
return function. The derivatives of ¢, R, and W follow immediately from 0M /96,
e.g., 0Q/98 = S, (3M/06)S,. The remaining derivations are the same as in the
linear-quadratic case.
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B.3. A linear-quadratic economy with distortions

The optimization problem that we start with is given by
o] _ ! = = _
max E, | Y @ Q- Yo\ 4 u/Ra
{2} Ogﬁ { [Zt Q) Qn||Z b

2] )<}

Jer1 = Ayl + A2 + Byt + Chry .

subject to

Equilibrium conditions are imposed in the form of a set of linear equations
z, = Oy + Uiy

In the notation of this subsection (which differs from that used in Section 7 in the
text), 7+ denotes the endogenous state variables affected by the representative agent,
and Z; denotes variables that the agent takes as beyond its control. To ease notation,
we convert the problem to one without cross-products or discounting. Let

Y = ,Btﬂﬂt,

z = B%,

u = B4,
wy = %,
R=R,

By = \/BB%
O =I+¥9R'W,)"Y6 - FRT'W,"),
¥ =(I+%R'W,)" &, (B.16)
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With these definitions, we can restate the optimization problem as follows

o~ [v] @ @ [w] .
s (2] (80 G [n] +wemf @1

subject to
Yt+1 = Ayyt + Azzt -+ Byut.

Let A = A, + A0, Q= Qy+QZ@ B= B,+A, !7 and A = Ay — B,RWWQ, .
The dec131on function in thls case is given by

F=(R+B,’PB)"'B, P4, (B.18)
where P satisfies
P=Q+APA—-APBR+ B,/PB)"'B,/PA. (B.19)

The decision function for the original problem is given by
=R+ W,)"Y(RF +W,/ + W,/0), (B.20)
and the equilibrium law of motion for §; is
Tor1 = Ao, Ao=Ay+A,0— AVF — B,F
=B~ Y%A - BF). (B.21)

Therefore, the derivative of A, with respect to a parameter  is given by

aA 34 8B -oF
—2 =p (ae 2 F-B35 ) (B.22)

To calculate 0A,/06 requires several steps. First, we need the derivatives of X, ]§,
and F' with respect to 6:

0A 04, 0A, )

0B 0B, 0A, ow

=t — B.24
50 20 "0 " T o8 (B-24)
OF , , ~1(3R 3B,/ , 0P

55 = (R+By/PB, + B,/PA.Y) (ae ~4-PBy+ By 5 B,
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9B, 0B,/ oP 0A,
! y ! !
+ By P———ae + 30 PA, ¥ + B, aeAE/JrB P— 30 v

ow .
+ B, PA, ——) F+ (R+ By/PB, + B,/ PA, W)™

x<afg PA, yaeA B’P%

+a§;IPA O+ By’ %J;A o + B, A WP A, a;j)
:(R+By’P§)_I<~%§F+a§;I P(A- BF)

+B’aP(A BF)—|—B’P(%—%BT”F>

+ B, )+ B,'PA, (%? ?ZF)) (B.25)

Note that these derivatives are functions of of 9R/06, 3B,/06, 0A,/06, 0A,/00,
00/00, 0¥/00, and dP/d6. The derivative of R is given since R = R. The deriva-
tives for By, Ay, A;, ©, and ¥ follow from their definitions above, e.g.,

0B,  ,=0B,
0A,  ~(0A, 0By o ., = - 0R -,
W_\/B< 0 o0 B BRI G RTW,
_ oW,
~ B,R™! a;), (B.27)
04, 0A, 0By - -, = = OR __,
=4 \/B< 55~ a5 & Wi+ ByRTI S RTW,
Wy
- B,R™! 55 ) (B.28)
%QZ_ = ([ +PR'W,)"! (%— rwe - e 2 prwe
__ 0w, 80 ¥ __, ., .. R __ .
—1 z v 2 op-1 L -1+ -1 !
ORI =2 0 - oo+ s RTWL - URT S R,

- 0w
R ) (B.29)
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oW . GIZNN LR
=5 =—(I+PR'W,')” (aeR W,'w — ¥ R g WY
— 0w, 61'%
+ WR‘IWJI — ﬁ) (B.30)
The derivative for P-is given by
opP ~ ,dP 30 04’ -, 3B
A = Ao/ Ao Ao vy - o
7=V +a¢9+‘/ﬁ{aa ae]PA
0A 9B ~, 3R
12 13
+ A, P{ao 7l ] F = (B.31)
where F = (R + By’PE)~‘§P'Z, A, =A— B,F, and
3Q _0Q,  3Q.
20— 06 a0 OF Qz (B.32)
0A 24, 3B, ., R __,
0= 30 20 7'Q,' + ByR 6’5R v'Q,
au'/’ 0Q,
- B,R'— Qz ~ ByR™'W' ?9 . (B.33)
The last two derivatives needed are 9, /06 and 8Q),/96:
3Q, 0Q, W, __, _,OR - | oW,/
= — W w. 34
20 =30 o6 & W HWRTSERUW - W RTI—, (B.34)
0Q. 0Q. oW, ., LOR -, o o OW,
= - W, - . (B.
50 5 =5 R™'W, + W,R™! 55 WS - WyR = (B.33)

We now have everything that we need to compute the derivatives of the matrices
in the decision rule and the law of motion for the state vector. To avoid iterating on
Eq. (B.31) for 0.P/00, we instead take the gradient, e.g.,

VoP = (I — /BA, ® &))" { Ve + (I ® A, P) Vy A
+/B(A P @ I)VyA' — (F' ® A,/ P')VyB
— VB(ASP' ® F')VsB,' + (F' ® F')VsR}. (B.36)
Thus the gradient of F' is given by
VoF = (I @ RB,'P) VA, + (( — ¥F') ® RB,'P) Vg A,
— (F' @ RB,/P) V4B, + /B(A, P’ @ R) VB,
+/B(A, ® RB,')VoP — (F' @ R') Vo R
+ (I ® RB,’PA,) VO — (F' @ RB,'PA,) VsV, (B.37)
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where R = (R+ B, PB)~". In terms of the computer code, we start with Eqs (B.26)—
(B.30) and Egs (B.34)—(B.35), which relate the derivatives of the original problem
to those of the problem without discounting or cross-product terms. To compute the
gradients of these objects in terms of our inputs, we use the fact that vec(ABC) =
(C' @ A)vec(B) for any matrices A, B, and C with the > appropriate dimensions such
that ABC exists. We next compute the derivatives for A, B, Q and A which appear
in Eqs (B.23), (B.24), (B.32), and (B.33). Finally, we compute VP in Eq. (B.36),
Vo F' in Eq. (B.37), and

A, =BV (VeA - (F' ® ) VsB — (I ® B)VF).
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