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 Econometrica, Vol. 73, No. 6 (November, 2005), 1977-2016

 USING ASSET PRICES TO MEASURE THE PERSISTENCE
 OF THE MARGINAL UTILITY OF WEALTH

 BY FERNANDO ALVAREZ AND URBAN J. JERMANN'

 We derive a lower bound for the volatility of the permanent component of investors'
 marginal utility of wealth or, more generally, asset pricing kernels. The bound is based
 on return properties of long-term zero-coupon bonds, risk-free bonds, and other risky
 securities. We find the permanent component of the pricing kernel to be very volatile;
 its volatility is about at least as large as the volatility of the stochastic discount factor.
 A related measure for the transitory component suggest it to be considerably less im-
 portant. We also show that, for many cases where the pricing kernel is a function of
 consumption, innovations to consumption need to have permanent effects.

 KEYWORDS: Pricing kernel, stochastic discount factor, permanent component, unit
 roots.

 1. INTRODUCTION

 THE ABSENCE OF ARBITRAGE OPPORTUNITIES implies the existence of apricing
 kernel, that is, a stochastic process that assigns values to state-contingent pay-
 ments. As is well known, asset pricing kernels can be thought of as investors'
 marginal utility of wealth in frictionless markets. Since the properties of such
 processes are important for asset pricing, they have been the subject of much
 recent research.2 Our focus is on the persistence properties of pricing kernels;
 these are key determinants of the prices of long-lived securities.

 The main result of this paper is to derive and estimate a lower bound for the
 volatility of the permanent component of asset pricing kernels. The bound is
 based on return properties of long-term zero-coupon bonds, risk-free bonds,
 and other risky securities. We find the permanent component of pricing kernels
 to be very volatile; its volatility is about at least as large as the volatility of
 the stochastic discount factor. A related bound that measures the volatility of
 the transitory component suggests it to be considerably less important than the
 permanent component.

 Our results complement the seminal work by Hansen and Jagannathan
 (1991). They used no-arbitrage conditions to derive bounds on the volatility

 1We thank Andy Atkeson, Erzo Luttmer, Lars Hansen, Pat Kehoe, Bob King, Narayana
 Kocherlakota, Stephen Leroy, Lee Ohanian, and the participants in workshops and conferences
 at UCLA, the University of Chicago, the Federal Reserve Banks of Minneapolis, Chicago, and
 Cleveland, and Duke, Boston, Ohio State, Georgetown, and Yale Universities, NYU, Wharton,
 the SED meeting in Stockholm, SITE, the Minnesota workshop in macroeconomic theory, and
 ESSFM for their comments and suggestions. We thank Robert Bliss for providing the data for
 U.S. zero-coupon bonds. Alvarez thanks the NSF and the Sloan Foundation for support. Earlier
 versions of this paper were circulated under the title "The Size of the Permanent Component of
 Asset Pricing Kernels."

 2A few prominent examples of research along this line are Hansen and Jagannathan (1991),
 Cochrane and Hansen (1992), and Luttmer (1996).
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 1978 E ALVAREZ AND U. J. JERMANN

 of pricing kernels as a function of observed asset prices. They found that, to
 be consistent with the high Sharpe ratios in the data, stochastic discount fac-
 tors have to be very volatile. We find that, to be consistent with the low returns
 on long-term bonds relative to equity, the permanent component of pricing
 kernels has to be very large. This property is important, because the low fre-
 quency components of pricing kernels are important determinants of the prices
 of long-lived securities such as stocks. Recent work on asset pricing has high-
 lighted the need for a better understanding of these low frequency compo-
 nents; see, for instance, Bansal and Yaron (2004) and Hansen, Heaton, and Li
 (2004). Our results are also related to Hansen and Scheinkman (2003), where
 they present a general framework for linking the short and long run properties
 of asset prices.
 Asset pricing models link pricing kernels to the underlying economic funda-

 mentals. Thus, our analysis provides some insights into the long-term proper-
 ties of these fundamentals and into the functions that link pricing kernels to
 the fundamentals. On this point, we have two sets of results.
 First, under some assumptions about the function of the marginal utility of

 wealth, we derive sufficient conditions on consumption so that a pricing kernel
 has no permanent innovations. We present several examples of utility func-
 tions for which the existence of an invariant distribution of consumption im-
 plies pricing kernels with no permanent innovations. Thus, these examples are
 inconsistent with our main findings. This result is useful for macroeconomics
 because, for some issues, the persistence properties of the processes that spec-
 ify economic variables can be very important. For instance, on the issue of the
 welfare costs of economic uncertainty, see Dolmas (1998); on the issue of the
 volatility of macroeconomic variables such as consumption, investment, and
 hours worked, see Hansen (1997); and on the issue of international business
 cycle comovements, see Baxter and Crucini (1995). The lesson from our analy-
 sis for these cases and many related studies of dynamic general equilibrium
 models is that models should be calibrated so as to generate macroeconomic
 time series with important permanent components.
 Following Nelson and Plosser (1982), a large body of literature has tested

 macroeconomic time series for stationarity versus unit roots.3 More recently, a
 large and growing literature on structural vector autoregressions (VARs) is us-
 ing identifying assumptions based on restricting the origin of permanent fluctu-
 ations in macroeconomic variables to certain types of shocks. The relationship
 between such structural shocks and macroeconomic variables is then compared
 to the implications of different classes of macroeconomic models. See, for in-
 stance, Shapiro and Watson (1988), Blanchard and Quah (1989), and, more re-
 cently, Gali (1999), Fisher (2002), and Christiano, Eichenbaum, and Vigfusson
 (2002). The identification strategies used in this literature hinge critically on

 3Asset prices have also been included in multivariate analyses of persistence of grass domestic
 product (GDP) and consumption, see, for instance, Lettau and Ludvigson (2004).
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 the presence of unit roots in the key macroeconomic time series. The results
 in our paper provide validation for this approach by presenting new evidence
 about the importance of permanent fluctuations. We introduce new informa-
 tion about persistence from the prices of long-term bonds. Prices of long-term
 bonds are particularly informative about the persistence of pricing kernels be-
 cause they are the market's forecast of the long-term changes in the pricing
 kernel.

 As a second set of results, we measure the volatility of the permanent compo-
 nent in consumption directly and compare it to the volatility of the permanent
 component of pricing kernels. This can provide guidance for the specification
 of functional forms of the marginal utility of wealth.4 Specifically, we find the
 volatility of the permanent component of consumption to be lower than that
 of pricing kernels. This suggests the use of utility functions that magnify the
 permanent component.

 The rest of the paper is structured as follows. Section 2 contains definitions
 and a preview of the main results. Section 3 presents theoretical results. Sec-
 tion 4 presents empirical evidence. Section 5 relates pricing kernels and aggre-
 gate consumption. Section 6 concludes. Proofs are in Appendix A. Appendix B
 describes the data sources. Appendix C addresses a small sample bias.

 2. DEFINITIONS AND PREVIEW OF THE MAIN RESULT

 In this section we start with some key definitions and assumptions. Then, to
 preview the main theoretical result of the paper, we state without derivation an
 expression for the lower bound of the permanent component of the stochastic
 discount factor. We compute this lower bound for two benchmark cases: one
 with only permanent movements and one with only transitory movements.

 Let Dt+k be a state-contingent dividend to be paid at time t + k and let

 V,(Dt+k) be the current price of a claim to this dividend. Then, as can be seen,
 for instance, in Duffie (1996), arbitrage opportunities are ruled out in friction-
 less markets if and only if a strictly positivepricing kernel or state-price process,
 {M,}, exists so that5

 Et(Mt+k . Dt+k) (1) Vt(D,+,) =  M,

 4See Daniel and Marshall (2001) on the related issue of how consumption and asset prices are
 correlated at different frequencies.

 5As is well known, this result does not require complete markets, but assumes that portfolio
 restrictions do not bind for some agents. This last condition is sufficient, but not necessary, for the
 existence of a pricing kernel. For instance, in Alvarez and Jermann (2000), portfolio restrictions
 bind most of the time; nevertheless, a pricing kernel exists that satisfies (1).
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 1980 E ALVAREZ AND U. J. JERMANN

 For our results, it is important to distinguish between the pricing kernel, Mt+1,
 and the stochastic discount factor, Mt+I/M,.6 We use Rt,1 for the gross return
 on a generic portfolio held from t to t + 1; hence, (1) implies that

 (2) 1 = EtMt R)t+

 We define Rt+?,k as the gross return from holding from time t to time t + 1 a
 claim to one unit of the numeraire to be delivered at time t + k:

 Vt+(lt+k)
 Rt+l,k -

 The holding return on this discount bond is the ratio of the price at which
 the bond is sold, V+(1(l,+k), to the price at which it was bought, Vt(lt+k). With
 this convention, Vt(1,) - 1. Thus, for k > 2 the return consists solely of capital
 gains; for k = 1, the return is risk-free. In this paper we focus on the limiting

 long-term bond, which has return R,+1, - limk~oo Rt+1,k. Throughout the paper we maintain the assumption that stochastic discount
 factors M,+I/M, and returns Rt+ are jointly stationary and ergodic. An im-
 mediate implication of the stationarity of stochastic discount factors is that
 all bond returns are stationary. The assumption of stationarity of returns is
 standard in the asset pricing literature. In Section 4 we review some of the
 evidence on the stationarity of interest rates. Under our maintained assump-
 tion about stationarity, we find that pricing kernels M, have a large permanent
 component. Alternatively, if we were to consider Mt+1/M as nonstation-
 ary, then M, would not be stationary either. To use a time series analogy,
 if log M,,1 - log Mt were to have a unit root, then log M, would be integrated
 at least of order 2.

 Below we decompose the pricing kernel Mt into two components,

 M, = MtM,',

 where M, is a martingale, so it captures the permanent part of M,, and Mt' is
 the transitory component of M,. The main result of this paper is that the volatil-

 ity of the growth rate of the permanent component, M/,P+/Mfl, relative to the
 volatility of the stochastic discount factor, Mt+/Mt, is at least as large as

 E log Rt+1 - E log Rt+1,o
 (3) Rt+1,1 Rt+1,1

 Elog R' + ?L(1) Rt+1,1 Rt+l,1

 6For instance, in the Lucas representative agent model, the pricing kernel M, is given by
 P8'U'(c,), where p is the preference time discount factor and U'(c,) is the marginal utility of
 consumption. In this case, the stochastic discount factor, M,~1/M,, is given by PU'(c,+ )/ U'(c,).
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 MARGINAL UTILITY OF WEALTH 1981

 where R,+1 is the return of any asset and L(1/R,+1,1) is a measure of the
 volatility of the short-term interest rate to be described in detail below. For
 this preliminary discussion note that L = 0 if interest rates have zero vari-
 ance and otherwise L > 0. The numerator of this expression is the differ-
 ence between two (log) excess returns or two risk premiums. As is easily seen,
 if the term premium for the bond with infinitely long maturity is positive,
 E(log(Rt+,1,/Rt+,1)) > 0, this expression is maximized by selecting the asset
 with the highest expected log excess return E(log(Rt+1/Rt+1,1)).
 We now compute the lower bound for two examples for which the volatil-

 ity of the permanent component of the pricing kernel is obvious. Consider an
 investor with time separable expected utility, and consider two consumption
 processes: independent and identically distributed (i.i.d.) consumption growth
 and i.i.d. consumption level. The pricing kernel is

 t t

 Mt+ =U'(c,) = ct, Mtl 1+p l+p

 where U has CRRA y.

 EXAMPLE 1: Assume that ct+1/c is i.i.d. Clearly Mt has only permanent
 shocks. In this case, it is easy to verify that interest rates Rt+,1 are constant,
 which implies that L(1/Rt+1,1) = 0 and that

 Rt+l,k log = 0,
 Rt+l,1

 so that all term premiums are zero. With these values, expression (3) is equal
 to 1, so that the volatility of the permanent component of the stochastic dis-
 count factor is, indeed, at least as large as the volatility of the stochastic dis-
 count factor.

 EXAMPLE 2: Assume that ct+ is i.i.d. Clearly Mt has no permanent compo-
 nent. In this case, neither short-term interest rates nor returns on long-term
 bonds are constant in general. Indeed,

 U'(c,>)

 R,/1,1 = (1 + p)  E[U'(ct+)]
 and

 U'(ct) M, Rt+?,k = (1 + p)= for k> 2;
 U'(ct+l) Mt2,

 that is, for k > 2, the holding return equals the inverse of the stochastic dis-
 count factor. It is now easy to show that the highest lower bound computed
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 from expression (3) is attained by choosing the return Rt+1 = Rt+l,k for k > 2
 and that this lower bound equals 0. Indeed, ruling out arbitrage implies that
 for any return Rt+1,

 Et( M1Rt+l) = 1.

 Using Jensen's inequality,

 S = logE M Rt+l > E, log MR,t

 which implies

 E, log Rt+ < E, log
 Mt+,

 with equality if Rt+ and M,/M,~1 are proportional. Thus, because Rt+1,k =
 M,/Mt+, for k > 2 no log return is higher than the log return of long-term
 bonds. Setting R,+1 = Rt+1,k for k > 2 gives the highest lower bound (3) and its
 value will be zero. Hence we have verified that the bound shows that, for the
 case where the level of consumption is i.i.d., there is no permanent component.

 3. THEORETICAL RESULTS

 In this section we first show an existence result for the multiplicative de-
 composition of Mt into a transitory and permanent component, and we de-
 rive a lower bound for the volatility of the permanent component. We then
 present a related bound for the volatility of the transitory component. We also
 present a proposition that guarantees the applicability of our bound for the
 permanent component to any appropriate multiplicative decomposition under
 some regularity assumptions. Finally, we compare our bound to a result by
 Cochrane and Hansen (1992) about the conditional and unconditional volatil-
 ity of stochastic discount factors.

 We start with two conditions under which we can decompose the kernel into
 permanent and transitory components properly defined.

 ASSUMPTION 1: Assume there is a number 3 such that

 0 <lim <(lt k)
 k--+oc k

 for all t.

 In the language of Hansen and Scheinkman (2003), the number /3 is the
 dominant eigenvalue of the pricing operator. Assumption 1 can be violated
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 either if the limit does not exist or if it takes the values 0 or oo. The existence
 of the limit imposes a regularity condition on the shape of the term structure
 for large k. Specifically, it requires that the yield -(1/ k) log V,(l1t+) converges
 fast enough as k --+ c. The limit can take the value 0 or oo if bond prices are
 nonstationary. For instance, consider the case where after date s there are only
 two possible outcomes: either the yields of bonds of all maturities are equal
 to -log/3 or they are equal to -log p. In this case there is no 3 for which
 the limit in Assumption 1 is strictly positive and finite. Since we have assumed
 throughout that bond prices are stationary, this possibility is ruled out.

 ASSUMPTION 2: Assume that for each t + 1 there is a random variable xt+l
 such that

 Mt+1 Vt+1(lt+l+k)
 Xtt+1 k+1 a.s.

 with Ext+l finite for all k.

 Assumption 2 strengthens Assumption 1. Instead of requiring that
 Vt(lt+k) 13k has a finite limit, Assumption 2 requires that for each k its product
 with the marginal valuation is bounded by a variable that has a finite condi-
 tional expectation.

 PROPOSITION 1: Under Assumptions 1 and 2, there is a unique decomposition

 M, = M'MP[

 with EM1,, = MP and
 E, Mt+k M = limEM

 t k---oo 0t+k

 MT = lim t+k
 t k-o Vt(lt+k)

 Due to Assumption 1, M[P is well defined, strictly positive, and finite. As-

 sumption 2 is used to establish that MtP as defined above is a martingale. The
 decomposition obtained through Proposition 1 is unique given its constructive
 nature.

 The value of the permanent component is the expected value of the

 process M in the long run, relative to its long-term drift /3. We call MtP the permanent component because it is unaffected by information at t that does
 not lead to revisions of the expected value of M in the long run. The de-
 composition in Proposition 1 is analogous to the one used by Beveridge and
 Nelson (1981). Beveridge and Nelson's decomposition is additive instead of
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 1984 E ALVAREZ AND U. J. JERMANN

 multiplicative and their permanent component is a random walk, while in our
 decomposition the permanent component is a martingale.
 The component M[ is a scaled long-term interest rate. Given our stationarity

 assumption for the stochastic discount factor, interest rates inherit this prop-
 erty, and interpreting M[r as containing only transitory components follows
 naturally. This stationarity property for MT is again linked to a related prop-
 erty in the Beveridge and Nelson decomposition. Interest rates are a function
 of the expected growth rate of the pricing kernel. Thus, assuming stationarity
 for interest rates is similar to the assumption behind the Beveridge and Nelson
 decomposition that growth rates are stationary while levels are not.
 Nothing in Proposition 1 rules out the possibility that there exist other de-

 compositions of M into two parts, where one part is a martingale and the
 other contains transitory components. Such alternative decompositions could
 exist independently of whether Assumptions 1 and 2 apply. With Assumptions
 1 and 2 holding, it might still be possible to construct a decomposition in an-
 other way. Alternatively, Proposition 1 has nothing to say for the case where
 Assumptions 1 and 2 would not hold. However, as we will show later in this
 section, our volatility bounds also apply to such decompositions more gener-
 ally.

 To characterize the importance of permanent and transitory components,

 we use Lt(xt+,) - logE,x,+l - E log xt+l and L(x,+l) = logEx,+l - Elog x,,1
 as measures of the conditional and unconditional volatility of x,+t. Through- out the rest of the paper we refer to the expected values of different random
 variables without stating explicitly the assumption that these random variables
 are integrable. The following result can then be shown.

 PROPOSITION 2: Assume that Assumptions 1 and 2 hold. Then (i) the condi-
 tional volatility of the permanent component satisfies

 (4) Lt tP+ > Et logRt+l, - Et, logRt+,

 for any positive return Rt1. Furthermore, (ii) the unconditional volatility of the
 permanent component satisfies

 L(M ~ E (log Rt+) - E(log t+l,) (5)> mn 1 t+l, L(5) L( ' E(logR, )+L( )
 for any positive R,1 such that E(log(Rt+I/R,+,11)) + L(1/R,+1,1) > 0.

 Inequality (4) bounds the conditional volatility of the permanent component
 in the same units as L by the difference of any expected log excess return rel-
 ative to the return of the asymptotic discount bond. Inequality (5) bounds the
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 unconditional volatility of the permanent component relative to that of the
 stochastic discount factor. As we further discuss below, equation (5) describes
 a property of the data that is closely related to Cochrane's (1988) size of the
 random walk component.
 To better understand the measure of volatility L(x), note that if var(x) = 0,

 then L(x) = 0; the reverse is not true, because higher order moments than the
 variance also affect L(x). More specifically, the variance and L(x) are spe-
 cial cases of the general measure of volatility f(Ex) - Ef(x), where f(.) is
 a concave function. The statistic L(x) is obtained by making f(x) = log x,
 while for the variance, f(x) = -x2. It follows that if a random variable xl is
 more risky than x2 in the sense of Rothschild-Stiglitz, then L(xl) > L(x2)
 and, of course, var(xl) > var(x2).7 As a special case, if x is lognormal, then
 L(x) = 1/2var(logx). Volatility L(x) has been used to measure income in-
 equality and is known as Theil's second entropy measure (Theil (1967)). Based
 on Proposition 2, Luttmer (2003) has worked out a continuous-time version of
 our volatility bound and shown its relationship to Hansen and Jagannathan's
 volatility bound for stochastic discount factors.
 The following proposition characterizes the transitory component; an upper

 bound to its relative volatility can then be easily obtained along the lines of
 Proposition 2.

 PROPOSITION 3: UnderAssumptions 1 and 2, Rt+1,o = MT/M[r,, and

 L(t) L(1) Mt Rt+1,o00

 L( M) E(log Rt) + L()
 for anypositive Rt+ such that E[log(Rt+1/Rt+1,1)] + L(1/Rt+I,1) > 0.

 Our decomposition does not require the permanent and transitory compo-
 nents to be independent. Thus, knowing the amount of transitory volatility
 relative to the overall volatility of the stochastic discount factors adds inde-
 pendent information in addition to knowing the volatility of the permanent
 component relative to the volatility of the stochastic discount factor. As we will
 see below, for data availability reasons, we will be able to learn more about the
 volatility of the permanent component than about the volatility of the transi-
 tory component. Kazemi (1992), in a related result, has shown that in a Markov

 economy with a limiting stationary distribution, Rt,t+, = M,/Mt+1.
 As we mentioned above, the decomposition derived in Proposition 1 is not

 necessarily the only one that yields a martingale and a transitory component,
 and thus the bounds derived above might not necessarily apply to other cases.

 7Recall that xl is more risky than x2 in the sense of Rothschild and Stiglitz if, for E(xl) =
 E(x2), E(f(xi)) < E(f(x2)) for any concave function f.
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 To strengthen our results, we show here that the volatility bounds derived in
 Proposition 2 are valid for any decomposition of the pricing kernel into a mar-
 tingale and a transitory component under some regularity assumptions. To do
 this, we need a definition for the transitory component, which we describe as
 having no permanent innovations.

 DEFINITION: We say that a random variable indexed by time, X,, has no
 permanent innovations if

 E,1 (Xt+k)
 (6) lim = 1 a.s. for all t.

 k-oo E,(Xt+k)

 We say that there are no permanent innovations because, as the forecasting
 horizon k becomes longer, information arriving at t + 1 will not lead to revi-
 sions of the forecasts made with current period t information. Alternatively,
 condition (6) says that innovations in the forecasts of Xt+k have limited per-
 sistence, since their effect vanishes for large k. As can easily be seen, a linear
 process that is covariance-stationary has no permanent innovations.

 PROPOSITION 4: Assume that the kernel has a component with transitory in-
 novations Mi, that is, a component for which (6) holds, and a component with

 permanent innovations MtP that is a martingale, so that

 M, = MT M,~.

 Let Vt,t+k be defined as

 COvt(Mt+k , MtP+k)
 Vt, t+k T Pco(( , )

 Et(Mt+k)Et(Mt+k)
 and assume that

 lim(1 + t+,t+k) lim =1 a.s.
 k--oo (1 + Vt,t+k)

 Then the bounds in equations (4) and (5) apply.

 For an example that illustrates this result, see the supplementary material to
 this article (Alvarez and Jermann (2005)).
 Following Cochrane and Hansen (1992, pp. 134-137), one can derive the

 lower bound for the fraction of the variance of the stochastic discount factor

 accounted for by its innovations,

 E[vart(M >_ 1 1 var[V,(1,+1)] M? >1- var~Mt ( PRl1) (R-1 E[V(1+I)]) Mt o'(Rt+l1)
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 where Rt,1 stands for any return. This lower bound takes a value of about 0.99
 when Rt,1 is an asset with a Sharpe ratio of 0.5 and one-period interest volatil-
 ity is low, such as var[V,(1l,1)] = 0.052. A natural interpretation of this result is
 in terms of persistent and transitory components, and the conclusion would be
 in line with our main result. However, such an interpretation is not necessarily
 correct. Indeed, one can easily construct examples of pricing kernels with one-
 period interest rates that are arbitrarily smooth and that have no permanent
 innovations. The example we use in Section 4.3 is of this type. Nevertheless, our
 results confirm such a natural interpretation of the findings of Cochrane and
 Hansen. We learn from our analysis that the reason the two results can have
 a similar interpretation is because the term premiums for long-term bonds are
 very small.

 3.1. Yields and Forward Rates: Alternative Measures of Term Spreads

 For empirical implementation, we want to be able to extract as much infor-
 mation from long-term bond data as possible. For this purpose, we show in this
 section that for asymptotic zero-coupon bonds, the unconditional expectations
 of the yields and the forward rates are equal to the unconditional expectations
 of the holding returns.
 Consider forward rates. The k-period forward rate differential is defined as

 the rate for a one-period deposit that matures k periods from now relative to
 a one-period deposit now:

 f,(k) -log( V,(lt+k)) - log1
 )- V,(1t+k-1- )t,1

 Forward rates and expected holding returns are closely related. They both
 compare prices of bonds with a one-period maturity difference: the forward
 rate does it for a given t, while the holding return considers two periods in a
 row. Assuming that bond prices have means that are independent of calendar
 time, so that EVt(lt+k) = EV,(l,+k) for every t and k, then it is immediate that
 E[ft(k)] = E[h,(k)], where h,(k) - log(Rt+1,k/Rt+l,1), the log excess holding
 return.

 We define the continuously compoundedyield differential between a k-period
 discount bond and a one-period risk-free bond as

 yt(k) - log Vt(lt+k)l/.

 Concerning holding returns, for empirical implementation, we assume enough
 regularity so that

 Elog lim (Rt+,k = lim Elog ( Rt+ hk
 k-+o0 \R,1+ k--o Rt+l,
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 The next proposition shows that under regularity conditions, these three mea-
 sures of the term spreads are equal for the limiting zero-coupon bonds.

 PROPOSITION 5: If the limits of ht(k), ft(k), and yt(k) exist, the unconditional
 expectations of holding returns are independent of calendar time; that is,

 E(logRt+l,k) = E(logR,,l,k) for all t, r, k,

 and if holding returns and yields are dominated by an integrable function, then

 E[limh,(k)]= E[limft(k)]= E[limyt(k)].
 k --ok- - >0 k--*

 In practice, these three measures may not be equally convenient to estimate
 for two reasons. One is that the term premium is defined in terms of the con-
 ditional expectation of the holding returns. However, this will have to be esti-
 mated from ex post realized holding returns, which are very volatile. Forward
 rates and yields are, according to the theory, conditional expectations of bond
 prices. While forward rates and yields are more serially correlated than real-
 ized holding returns, they are substantially less volatile. Overall, they should be
 more precisely estimated. The other reason is that, while results are derived for
 the limiting maturity, data are available only for finite maturities. To the extent
 that a term spread measure converges more rapidly to the asymptotic value,
 it will be preferred. In the cases considered here, yields are equal to averages
 of forward rates (or holding returns), and the average only equals the last el-
 ement in the limit. For this reason, yield differentials, y, might be slightly less
 informative for k finite than the term spreads estimated from forward rates
 and holding returns.

 4. EMPIRICAL EVIDENCE

 The main objective of this section is to estimate a lower bound for the volatil-
 ity of the permanent component of pricing kernels, as well as the related upper
 bound for the transitory component. We address these two points in Sections
 4.1 and 4.2. We also present two sets of additional results that help interpret
 these estimates. First, we consider a simple process for the pricing kernel that
 corresponds to the specification implied by many studies of dynamic general
 equilibrium models. We show how our main findings can provide guidance for
 the degree of persistence that such models should reasonably display. Second,
 we measure the part of the permanent component that is due to inflation. As
 is well known, price levels are typically nonstationary. We document the extent
 to which our findings provide information about the permanent components
 of real variables over and above the permanent components in price levels.
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 MARGINAL UTILITY OF WEALTH 1989

 4.1. The Volatility of the Permanent Component

 Tables I, II, and III present estimates of the lower bound to the volatility of
 the permanent component of pricing kernels derived in Proposition 2. Specifi-
 cally, we report estimates of

 (7) E(log Rt+I ) - E(log Rt+l,)

 E(log Rt+ ) + L( 1)

 obtained by replacing each expected value with its sample analog for different
 data sets.

 TABLE I

 SIZE OF PERMANENT COMPONENT BASED ON AGGREGATE EQUITY
 AND ZERO-COUPON BONDS

 Adjustment Size of
 Equity Term for Volatility Permanent (1) - (2)

 Premium Premium of Short Rate Component E[log(R/R1)]
 Maturity E[log(R/R1)] E[log(Rk/R1)] L(1/R1) L(P)/L - E[log(Rk/R1)] P[(5) <0]

 (1) (2) (3) (4) (5) (6)

 A. Forward Rates E[f (k)]; Holding Period Is 1 Year
 25 years 0.0664 -0.0004 0.0005 0.9996 0.0669 0.0003

 (0.0169) (0.0049) (0.0002) (0.0700) (0.0193)
 29 years -0.0040 1.0520 0.0704 0.0030

 (0.0070) (0.1041) (0.0256)

 B. Holding Returns E[h(k)]; Holding Period Is 1 Year
 25 years 0.0664 -0.0083 0.0005 1.1164 0.0747 0.0145

 (0.0169) (0.0340) (0.0002) (0.5186) (0.0342)
 29 years -0.0199 1.2899 0.0863 0.0266

 (0.0469) (0.7417) (0.0446)

 C. Yields E[y(k)]; Holding Period Is 1 Year
 25 years 0.0664 0.0082 0.0005 0.8701 0.0582 0.0015

 (0.0169) (0.0033) (0.0002) (0.0534) (0.0196)
 29 years 0.0082 0.8706 0.0582 0.0050

 (0.0035) (0.0602) (0.0226)

 D. Yields E[y(k)]; Holding Period Is 1 Month
 25 years 0.0763 0.0174 0.0004 0.7673 0.0588 0.0028

 (0.0180) (0.0031) (0.0002) (0.0717) (0.0213)
 29 years 0.0168 0.7755 0.0595 0.0067

 (0.0033) (0.0795) (0.0241)

 Note: For A, term premia (column 2) are given by 1-year forward rates for each maturity minus 1-year yields for
 each month. For B, term premia (column 2) are given by overlapping holding returns minus 1-year yields for each
 month. For C, term premia (column 2) are given by yields for each maturity minus 1-year yields for each month.
 For A, B, and C, equity excess returns are overlapping total returns on NYSE, Amex, and Nasdaq minus 1-year
 yields for each month. For D, short rates are monthly rates. Newey-West asymptotic standard errors using 36 lags are
 shown in parentheses. P values in column 6 are based on asymptotic distributions. The data are monthly from 1946:12
 to 1999:12. See Appendix B for more details.
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 TABLE II

 SIZE OF PERMANENT COMPONENT BASED ON GROWTH-OPTIMAL PORTFOLIOS
 AND 25-YEAR ZERO-COUPON BONDS

 Growth Term Adjustment for Volatility Size of Permanent (1) - (2)
 Optimal Premium of Short Rate Component E[log(R/R1)1

 E[log(R/R )] E[log(Rk/R1)] L(1/R1) L(P)/L - E[log(Rk/RI)] P[(5) < 0]
 (1) (2) (3) (4) (5) (6)

 A. Growth-Optimal Leveraged Market Portfolio (Portfolio Weight: 3.46 for Monthly Holding Period; 2.14 for Yearly)
 One-year holding period
 Forward rates 0.1095 -0.0004 0.0005 0.9998 0.11 0.0093

 (0.0402) (0.0049) (0.0002) (0.0426) (0.0467)
 Holding return -0.0083 1.0708 0.1178 0.0092

 (0.0340) (0.3203) (0.050)
 Yields 0.0082 0.9210 0.1013 0.0159

 (0.0033) (0.0381) (0.0472)
 One-month holding period
 Yields 0.1689 0.0174 0.0004 0.8946 0.1515 0.0317

 (0.0686) (0.0031) (0.0002) (0.0519) (0.0816)

 B. Growth-Optimal Portfolio Based on the 10 CRSP Size-Decile Portfolios
 One-year holding period
 Forward rates 0.1692 -0.0004 0.0005 0.9999 0.1697 0.0005

 (0.0437) (0.0049) (0.0002) (0.0276) (0.0519)
 Holding return -0.0083 1.0459 0.1775 0.0004

 (0.0340) (0.2053) (0.0628)
 Yields 0.0082 0.9488 0.161 0.0008

 (0.0033) (0.0199) (0.0512)
 One-month holding period
 Yields 0.2251 0.0174 0.0004 0.9209 0.2076 0.0089

 (0.0737) (0.0031) (0.0002) (0.0320) (0.0872)

 z

 t'q

 N,

 0 \
 (7N
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 TABLE III

 SIZE OF PERMANENT COMPONENT BASED ON AGGREGATE EQUITY AND COUPON BONDS

 Equity Size of Permanent
 Premium Term Premium Adjustment Component
 E[logR/R1] E[y] E[h] L(1/R1) L(P)/L (1) - (2)
 (1) (2) (3) (4) (5) P[(5) < 0]

 U.S. 1871-1997 0.0494 0.0034 0.0003 0.9265 0.0461 0.0003

 (0.0142) (0.0028) (0.0001) (0.054) (0.0136)
 0.0043 0.9077 0.0452 0.0006

 (0.0064) (0.1235) (0.0139)
 1946-1997 0.0715 0.0122 0.0004 0.8245 0.0593 0.0007

 (0.0193) (0.0025) (0.0001) (0.0462) (0.0185)
 0.006 0.9113 0.0656 0.0004

 (0.0129) (0.1728) (0.0196)

 U.K. 1801-1998 0.0239 0.0002 0.0003 0.9781 0.0237 0.0014

 (0.0083) (0.0020) (0.0001) (0.0808) (0.0079)
 0.0036 0.8361 0.0202 0.0053

 (0.0058) (0.2228) (0.0079)
 1946-1998 0.0604 0.0092 0.0007 0.8370 0.0511 0.0074

 (0.0198) (0.0038) (0.0002) (0.0904) (0.0210)
 0.0018 0.9583 0.0585 0.0006

 (0.0143) (0.2289) (0.0181)
 Note: Column 1 gives the average annual log return on equity minus the average short rate for the year. Column 2 gives the average yield on long-term government coupon

 bonds minus the average short rate for the year, or the average annual holding period return on long-term government coupon bonds minus the average short rate for the year.
 Newey-West asymptotic standard errors with five lags are shown in parentheses. See Appendix B for more details.

This content downloaded from 142.58.129.109 on Wed, 27 Jun 2018 16:14:02 UTC
All use subject to http://about.jstor.org/terms



 1992 E ALVAREZ AND U. J. JERMANN

 In Table I, we report estimates of the lower bound given in equation (7)
 and of each of the three quantities entering into it, as well as the asymptotic
 normal probability that the numerator is negative. We present estimates using
 zero-coupon bonds for maturities at 25 and 29 years, for various measures of
 the term spread (based on yields, forward rates, and holding returns), and for
 holding periods of 1 year and 1 month. As return R,+1, we use the CRSP value-
 weighted index that covers the NYSE, Amex, and NASDAQ. The data are
 monthly, from 1946:12 to 1999:12. Standard errors of the estimated quantities
 are presented in parentheses; for the size of the permanent component, we
 use the delta method. The variance-covariance of the estimates is computed by
 using a Newey and West (1987) window with 36 lags to account for the overlap
 in returns and the persistence of the different measures of the spreads.8
 Based on the asymptotic (normal) distribution, the probability that the term

 spread is larger than the log equity premium is very small, in most cases well
 below 1%. Hence, the hypothesis that the pricing kernel has no permanent
 innovation is clearly rejected. Not only is there a permanent component, it is
 very volatile. We find that the lower bound of the volatility of the permanent
 component is about 100%; none of our estimates is below 75%. The estimates
 are precise; standard errors are at or below 10%, except for holding returns.
 Two points about the result in Table I are noteworthy. First, the choice of

 the holding period, and hence the level of the risk-free rate, has some effects
 on our estimates. For instance, by using yields with a yearly holding period, the
 size of the permanent component is estimated to be about 87%. Instead, by
 using yields and a monthly holding period, we estimate it to be 77%. This dif-
 ference is due to the fact that monthly yields are about 1% below annual yields,
 affecting the estimate of the denominator of the lower bound.9 Second, by esti-
 mating equation (7) as the ratio of sample means, our estimates are consistent
 but biased in small samples because the denominator has nonzero variance. In
 Appendix C we present estimates of this bias. They are quantitatively negligi-
 ble for forward rates and yields, on the order of about 1% in absolute value
 terms. Estimates of the bias are somewhat larger for holding returns.
 Since (7) is defined for any return Rt+1, we select portfolios with high

 E(log(Rt+1/Rt+1,1)) in Table II to sharpen the bounds based on the equity pre-
 mium in Table I. Table II contains the same information as Table I, except

 8For maturities longer than 13 years, we do not have a complete data set for zero-coupon
 bonds. In particular, long-term bonds have not been consistently issued during this period. For
 instance, for zero-coupon bonds that mature in 29 years, we have data for slightly more than
 half of the sample period: data are missing at the beginning and in the middle of our sample.
 The estimates of the various expected values on the right-hand side of (7) are based on different
 numbers of observations. We take this into account when computing the variance-covariance of
 our estimators. Our procedure gives consistent estimates as long as the periods with missing bond
 data are not systematically related to the magnitudes of the returns.

 90ur data set does not contain the information necessary to present results for monthly holding
 periods for forward rates and holding returns.
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 MARGINAL UTILITY OF WEALTH 1993

 that Table II covers only bonds with 25-year maturity. We find estimates of

 E(log(Rt+1/Rt+,1)) of up to 22.5% compared to 7.6% in Table I. The smallest
 estimate of the lower bound in Table II is 89% as opposed to 77% in Table I.
 In panel A of Table II we let R,+1 be a fixed-weight portfolio of aggregate

 equity and the risk-free rate that maximizes E(log(Rt+1/Rt1,1)), that is, we
 are deriving the so-called growth-optimal portfolio (see Bansal and Lehmann

 (1997)). Depending on the choice of the holding period, E(log(Rt+/Rt+,1)) is
 up to 9% larger than the premium presented in Table I, with a share of equity
 of 2.14 or 3.46. In panel B of Table II, we choose a fixed-weight portfolio from
 the menu of the 10 CRSP size-decile portfolios. This leads to an average log
 excess return of up to 22.5%.
 Table III extends the sample period to over 100 years and adds an additional

 country, the United Kingdom. For the United States, given data availability,
 we use coupon bonds with about 20-year maturity. For the United Kingdom,
 we use consoles. For the United States, we estimate the size of the permanent
 component between 82% and 93%, depending on the time period and whether
 we consider the term premium or the yield differential. Estimated values for
 the United Kingdom are similar to those for the United States.
 A natural concern is whether 25- or 29-year bonds allow for good approxima-

 tions of the limiting term spread. From Figure 1, which plots term structures for
 three definitions of term spreads, we take the long end of the term structure to

 be either flat or decreasing. Extrapolating from these pictures suggests, if any-
 thing, that our estimates of the size of the permanent component presented in
 Tables I and II are on the low side. In this figure, the standard error bands are
 wider for longer maturities, which is due to two effects. One is that spreads on
 long-term bonds are more volatile, especially for holding returns. The other is
 that for longer maturities, as discussed before, our data set is smaller.

 Note that for equation (7) to be well defined, specifically for L(1/Rt+,1)
 to be finite, we have assumed that interest rates are stationary.'0 While the
 assumption of stationary interest rates is confirmed by many studies (for in-
 stance, Ait-Sahalia (1996)), others report the inability to reject unit roots (for
 instance, Hall, Anderson, and Granger (1992)). Cochrane (2005, p. 199) sums
 up the issue eloquently: "the level of nominal interest rates is surely a station-
 ary variable in a fundamental sense: we have observations near 6% as far back
 as ancient Babylon, and it is about 6% again today." Also, consistent with the
 idea that interest rates are stationary and, therefore, L(1/R,~,,,) is finite, Ta-
 ble III shows lower estimates for the very long samples than for the postwar
 period.

 10Equation (4), which defines a bound for the size of the permanent component in absolute
 terms, does not require this assumption.
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 4.2. The Volatility of the Transitory Component

 We now report on estimates for volatility of the transitory component and
 the related upper bound for the volatility of the transitory component rela-
 tive to the volatility of the stochastic discount factor. As shown in Figure 2,
 L(1/R,) goes up to 0.04 for 29-year maturity, while it is about 0.015 for 20-year
 maturity. The corresponding upper bound for the volatility relative to the over-
 all volatility L(1/R,)/L(M'/M) reaches a maximum of 23% for 29-year ma-
 turity, while it is about 9% for 20-year maturity. This upper bound is based
 on the CRSP decile portfolios as reported in Table II. Unfortunately, these
 estimates are somewhat difficult to interpret because there is no apparent con-
 vergence for the available maturities. Moreover, the lack of a complete data
 set for all maturities seems to result in a substantial upward bias of the esti-
 mates of L(1/Rk) for maturities k > 20 years. Figure 3 shows that the data
 for the longest maturities are concentrated in the part of the sample charac-
 terized by high volatility. A simple way to adjust for this sample bias would be
 to assume that the ratio of the volatilities for different maturities is constant

 across the entire sample. We can then consider the volatility for the 13-year
 bond, the longest span for which we have a complete sample, as a bench-

 L(1/R k ) with one standard deviation band Upper bound for L(1/R k )/L(M'/M) with one standard deviation band
 0.06 0.35
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 0.05

 0.25
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 FIGURE 2.
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 Log holding returns for selected discount bonds
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 FIGURE 3.-Log holding returns for selected discount bonds.

 mark. The ratio of the volatilities of the 13-year bond for the entire sample
 over that for the sample covered by the longest available maturity, 29 years, is
 about 0.8, so the relative upper bound would be adjusted to about 18%, down
 from 23%.
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 MARGINAL UTILITY OF WEALTH 1997

 Concerning the measurement of the permanent component, note that the
 average term spread for the 13-year bond is actually larger for the shorter sam-
 ple covered by the 29-year bond, although by only 20 basis points. Thus, any
 adjustment would, if anything, further increase the estimates of the volatility
 of the permanent component in equation (7).

 4.3. An Example of a Pricing Kernel

 We present here an example that illustrates the power of bond data to dis-
 tinguish between similar levels of persistence. In particular, the example shows
 that even for bonds with maturities between 10 and 30 years, one can obtain
 strong implications for the degree of persistence. Alternatively, the example
 shows that to explain the low observed term premia for long-term bonds at
 finite maturities with a stationary pricing kernel, the largest root has to be ex-
 tremely close to 1. The example is relevant, because many studies of dynamic
 general equilibrium models imply stationary pricing kernels.

 Assume that

 log M,+1 = log 3 + p log M, + et+1

 with et,l ~ N(0, o-). Simple algebra shows that

 (8) ht(k)E= (I 2

 This expression suggests that if the volatility of the innovation of the pricing

 kernel, a"2, is large, then values of p only slightly below 1 may have a significant
 quantitative effect on the term spread. In Table IV, we calculate the level of
 persistence, p, required to explain various levels of term spreads for discount
 bonds with maturities of 10, 20, and 30 years. As is clear from Table IV, p has
 to be extremely close to 1.

 For this calculation we have set ,2 = 0.4 for the following reasons. Based on
 Proposition 2 and assuming lognormality, we get

 var log Mt - E Rt+log + var(log Rt+,1,), Mt 1M1 )

 TABLE IV

 REQUIRED PERSISTENCE FOR BONDS WITH FINITE MATURITIES

 Term Spread
 Maturity

 (Years) 0% 0.50% 1% 1.50%

 10 1.0000 0.9986 0.9972 0.9957
 20 1.0000 0.9993 0.9987 0.9980
 30 1.0000 0.9996 0.9991 0.9987
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 where R,,1 can be any risky return. Based on our estimates in Table II,
 the growth-optimal excess return should be at least 20%, so that
 var(log(M,+1/M,)) > 0.4. Finally, for p close to 1 we can write

 var log Mt = + 2 or -. S)-M, 1 + p

 4.4. Nominal versus Real Pricing Kernels

 Because we have so far used bond data for nominal bonds, we have implicitly
 measured the size of the permanent component of nominal pricing kernels,
 that is, the processes that price future dollar amounts. We present now two sets
 of evidence that show that the permanent component is to a large extent real,
 so that we have a direct link between the volatility of the permanent component
 of pricing kernels and real economic fundamentals.

 First, assume, for the sake of this argument, that all of the permanent move-
 ments in the (nominal) pricing kernel come from the aggregate price level.

 Specifically, assume that M- = (1/P,)M,, where Pt is the aggregate price level.
 Thus 1/Pt converts nominal payouts into real payouts and Mr prices real pay-
 outs. Because 1/P, is directly observable, we can measure the volatility of its
 permanent component directly and then compare it to the estimated volatil-
 ity of the permanent component of pricing kernels reported in Tables I, II,
 and III. It turns out that the volatility of the permanent component in 1/P, is
 estimated at up to 100 times smaller than the lower bound of the volatility of
 the permanent component in pricing kernels estimated above. This suggests
 that movements in the aggregate price level have a minor importance in the
 permanent component of pricing kernels and, thus, permanent components in
 pricing kernels are primarily real. It should be noted that this interpretation
 is only valid to the extent that the behavior of the official consumer price in-
 dex accurately reflects the properties of the price level faced by asset market
 participants.

 The next proposition shows how to estimate the volatility of the permanent
 component based on the L(.) measure.

 PROPOSITION 6: Assume that the process X, satisfies Assumptions 1 and 2
 and that the following regularity conditions are satisfied: (a) Xt+1/Xt is strictly
 stationary and (b) limko ,L (EX t+k / Xt) = 0. Then

 (9) LQX =X = lim-L Xt+k ) XP k-+ck X,

 The usefulness of this proposition is that L (XP /Xf) is a natural measure
 for the volatility of the permanent component. However, it cannot directly be

This content downloaded from 142.58.129.109 on Wed, 27 Jun 2018 16:14:02 UTC
All use subject to http://about.jstor.org/terms



 MARGINAL UTILITY OF WEALTH 1999

 estimated if only X, is observable, but X' and X' are not observable sep-
 arately. The quantity limk_,0(1/k)L(Xt+k/X,) can be estimated with knowl-
 edge of only X,. This result is analogous to a result in Cochrane (1988), with
 the main difference that he uses the variance as a measure of volatility.
 Cochrane (1988) proposes a simple method for correcting for small sample

 bias and for computing standard errors when using the variance as a measure
 of volatility. Thus, we will focus our presentation of the results on the variance,
 having established first that, without adjusting for small sample bias, the vari-
 ance equals approximately one-half of the L (.) estimates, which would suggest
 that departures from lognormality are small. Overall, we estimate the volatility
 of the permanent component of inflation to be below 0.5% based on data for
 1947-1999 and below 0.8% based on data for 1870-1999. This compares to the
 lower bound of the (absolute) volatility of the permanent component of the
 pricing kernel,

 (10) L MtP) > E[logR,t1 - logRt+,,l,
 that we have estimated to be up to about 20% as reported in column 5 in Tables
 I, II, and III.

 Table V contains our estimates. The first two rows display results based on
 estimating an AR1 or AR2 for inflation and then computing the volatility

 TABLE V

 SIZE OF THE PERMANENT COMPONENT DUE TO INFLATION

 1947-1999 AR(1) AR(2) r2 Size of Permanent Component

 AR1 0.66 0.0005 0.0021 (0.0009)
 AR2 0.87 -0.24 0.0004 0.0015 (0.0006)
 (1/2k)var(logPt+k/Pt) k = 20 0.0043 (0.0031)

 k = 30 0.0030 (0.0027)

 L(Pt/Pt+k)/ var(log Pt+k/Pt) (k = 20) 0.50
 (k = 30) 0.51

 1870-1999 AR(1) AR(2) U2 Size of Permanent Component

 AR1 0.28 0.0052 0.0049 (0.0013)
 AR2 0.27 0.00 0.0052 0.0050 (0.0006)
 (1/2k)var(logPt+k/Pt) k = 20 0.0077 (0.0035)

 k = 30 0.0067 (0.0038)

 L(Pt/Pt+k)/ var(log Pt+k /Pt) (k = 20) 0.51
 (k = 30) 0.49

 Note: For the AR(1) and AR(2) cases, the size of the permanent component is computed as one-half of the spectral
 density at frequency zero. The numbers in parentheses are standard errors obtained through Monte Carlo simulations.
 For (1/2k)var(logPt+k/Pt), we have used the methods proposed by Cochrane (1988) for small sample corrections
 and standard errors. See our discussion in the text for more details.
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 of the permanent component as one-half of the (population) spectral den-
 sity at frequency zero. For the postwar sample, 1947-1999, we find 0.21%
 and 0.15% for AR1 and AR2, respectively. The third row presents the re-

 sults using Cochrane's (1988) method that estimates var(logXt1/XP') using limk-,, (1/k) var(log X+k/X,). For the postwar period, the volatility of the
 permanent component is 0.43% or 0.30%, depending on whether k = 20
 or 30.11 The table also shows that L(Xt+k/Xt)/var(logXt+k /Xt) is approxi-
 mately 0.5. Note that the roots of the process for inflation reported in Table V
 are far from 1, supporting our implicit assumption that inflation rates are sta-
 tionary.

 A second view about the volatility of the permanent component can be
 obtained from inflation-indexed bonds. Such bonds have been traded in the

 United Kingdom since 1982. Considering that an inflation-indexed bond rep-
 resents a claim to a fixed number of units of goods, its price provides direct
 evidence about the real pricing kernel. However, because of the 8-month in-
 dexation lag for U.K. inflation-indexed bonds, it is not possible to obtain much
 information about the short end of the real term structure. Specifically, an
 inflation-indexed bond with outstanding maturity of less than 8 months is ef-
 fectively a nominal bond. For our estimates, this implies that we will not be
 able to obtain direct evidence of E(log R,1,1) and L(1/Rt+1,1) in the definition
 of the volatility of the permanent component as given in equation (5). Because
 of this, we focus on the bound for the absolute volatility of the pricing kernel as
 given in equation (10). For the nominal kernel, we use average nominal equity
 returns for ElogR,+1, and, for Elog R+,1,, we use forward rates and yields
 for 20 and 25 years, from the Bank of England's estimates of the zero-coupon
 term structures, to obtain an estimate of the right-hand side of (10). For the
 real kernel, we take the average nominal equity return minus the average infla-
 tion rate to get E log R,~1; for E log R,+1,, we use real forward rates and yields
 from a zero-coupon term structure of inflation-indexed bonds. The right-hand
 side of (10) differs for nominal and real pricing kernels only if there is an in-
 flation risk premium for long-term nominal bonds. If long-term nominal bonds
 have a positive inflation risk premium, then the lower bound for the permanent
 component for real kernels will be larger than for nominal kernels.

 Table VI reports estimates for nominal and real kernels. The data are further
 described in Appendix B. Consistent with our finding that the volatility of the
 permanent component of inflation is very small, the differences in volatility of
 the permanent components for nominal and real kernels are very small. Com-
 paring columns 3 and 6, for one point estimate the volatility of the permanent
 component of real kernels is larger than the estimate for the corresponding
 nominal kernels; for the second case, they are basically identical. In any case,

 "Cochrane's (1988) estimator is defined as -&= (=I-)( ) E=k[Xj X k
 (XT - x0)]1, with T the sample size, x = logX, and standard errors given by (I -L )o-5.
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 TABLE VI

 INFLATION-INDEXED BONDS AND THE SIZE OF THE PERMANENT COMPONENT OF PRICING KERNELS: UNITED KINGDOM 1982-1999

 Nominal Kernel Real Kernel

 (1)-(2) (1)-(4)-(5)
 Size of Size of

 Permanent Permanent

 Equity Forward Yield Component Inflation Rate Forward Yield Component
 Maturity E[log(R)] E[log(F)] Eflog(Y)] L(P) E[log(vr)] E[log(F)] E[log(Y)] L(P)
 (Years) (1) (2) (3) (4) (5) (6)

 25 0.1706 0.0762 0.0944 0.0422 0.0342 0.0943

 (0.0197) (0.0040) (0.0212) (0.0063) (0.0023) (0.0230)
 0.0815 0.089 0.0347 0.0937

 (0.0046) (0.0200) (0.0018) (0.0224)
 Note: Real and nominal forward rates and yields are from the Bank of England. Stock returns and inflation rates are from Global Financial Data. Asymptotic standard errors,

 given in parentheses, are computed with the Newey-West method with 3 years of lags and leads. See Appendix B for more details.
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 the corresponding standard errors are larger than the differences between the
 results for nominal and real kernels.

 5. PRICING KERNELS AND AGGREGATE CONSUMPTION

 In many models used in the literature, the pricing kernel is a function of
 current or lagged consumption. Thus, the stochastic process for consumption
 is a determinant of the process of the pricing kernel. In this section, we present
 sufficient conditions on consumption and the function mapping consumption
 into the pricing kernel so that pricing kernels have no permanent innovations.
 We are able to define a large class of stochastic processes for consumption that,
 combined with standard preference specifications, will result in counterfactual
 asset pricing implications. We also present an example of a utility function in
 which the resulting pricing kernels have permanent innovations because of the
 persistence introduced through the utility function. Finally, we estimate the
 volatility of the permanent component in consumption directly and compare
 it to our estimates of the volatility of the permanent component of pricing
 kernels.

 As a starting point, we present sufficient conditions for kernels that follow
 Markov processes to have no permanent innovations. We then consider con-
 sumption within this class of processes. Assume that

 M,= 3(t)f (st),

 where f is a positive function, and that s, E S is Markov with transition func-

 tion Q, which has the interpretation Pr(s,+l ~ Als, = s) = Q(s, A).
 We assume that Q has an invariant distribution A* and that the process {st}

 is drawn at time t = 0 from A*. In this case, st is strictly stationary and the
 unconditional expectations are taken with respect to A*. We use the standard
 notation

 (Tkf)(s) jf(sf)Qk(s, ds'),

 where Qk is the k-step ahead transition constructed from Q.

 PROPOSITION 7: Assume that there is a unique invariant measure, A*. In

 addition, if either (i) limk_,-(Tkf)(s) = ff dA* > 0 and is finite or in case limk0,,(Tkf)(s) is not finite, if (ii) limk-.j[(Tk-lf)(s') - (Tkf)(s)] < A(s) for
 each s and s', then

 lim =1.
 k--0 Et(Mt+k)
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 We are now ready to consider consumption explicitly. Assume that

 Ct = 7(t)c, = r(t)g(St),

 where g is a positive function, st E S is Markov with transition function Q, and
 r(t) represents a deterministic trend. We assume (a) that a unique invariant
 measure A* exists. Furthermore, assume (b) that

 lim (Tkh)(s) = hdA*
 k-+0J

 for all h(.) bounded and continuous.

 PROPOSITION 8: Assume that M, = f3(t)f (ct, xt) with f () positive, bounded,

 and continuous, and that (c,, x,) - st satisfies properties (a) and (b) with f(.) > 0
 with positive probability. Then M, has no permanent innovations.

 An example covered by this proposition is CRRA utility, 1/(1 - y)c -c with
 relative risk aversion y, where f(c,) = c, with c > c t > > 0. If consumption
 would have a unit root, then properties (a) and (b) would not be satisfied.

 For the CRRA case, even with consumption satisfying properties (a) and (b),

 Proposition 8 could fail to be satisfied because cY is unbounded if c, gets
 arbitrarily close to zero with large enough probability. It is possible to con-
 struct examples where this is the case, for instance, along the lines of the
 model in Aiyagari (1994). This outcome is driven by the Inada condition
 u'(0) = oo. Note also that the bound might not be necessary. For instance, if

 log c, = p log c,_l + e, with e - N(0, o"2) and I p I < 1, then, log f(c,) = -y log c,,
 and direct calculations show that condition (6), which defines the property of
 no permanent innovations, is satisfied.

 5.1. Examples with Additional State Variables

 There are many examples in the literature for which marginal utility is a func-
 tion of additional state variables and for which it is straightforward to apply
 Proposition 8, very much like for the CRRA utility shown above. For instance,
 the utility functions that display various forms of habits such as those used by
 Ferson and Constantinides (1991), Abel (1999), and Campbell and Cochrane
 (1999). On the other hand, there are cases where Proposition 8 does not apply;
 for instance, as we show below, for the Epstein-Zin-Weil utility function. In
 this case, even with consumption satisfying the conditions required for Propo-
 sition 8, the additional state variable does not have an invariant distributions.
 Thus, innovations to pricing kernels always have permanent effects.
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 Assume the representative agent has preferences represented by nonex-
 pected utility of the recursive form

 Ut = c(ct,, EU,t+),

 where U, is the utility starting at time t and 4 is an increasing concave func-
 tion. Epstein and Zin (1989) and Weil (1990) develop a parametric case in
 which the risk aversion coefficient, y, and the reciprocal of the elasticity of in-
 tertemporal substitution, p, are constant. They also characterize the stochastic
 discount factor M,+1l/M for a representative agent economy with an arbitrary
 consumption process { C,) as

 M(Mt+l Ct+1 C I 1 - (1-0)>
 (11) =1

 M, CtRt+l
 with 0 = (1 - y)/(1 - p), where 0 is the time discount factor and Rc+I is the gross return on the consumption equity, that is, the gross return on an asset
 that pays a of dividends equal to consumption {C,}.

 Inspection of (11) reveals that a pricing kernel Mt+ for this model is

 (12) Mt+l = 3p (t+)YtellC,t+?l?, where Yt+,= R,? Y
 and Yo = 1.

 The next proposition shows that the nonseparabilities that characterize these
 preferences for 0 : 1 are such that, even if consumption is i.i.d., the pricing
 kernel has permanent innovations. More precisely, assume that consumption
 satisfies

 (13) C, = ='c,,

 where ct E [c, c] is i.i.d. with cumulative distribution function (c.d.f.) F. Let

 Vc be the price of the consumption equity, so that R+1- = (Vt~, + C,+ )/Vtc. We assume that agents discount the future enough so as to have a well-defined
 price-dividend ratio. Specifically, we assume that

 (14) max Pr'-P - dF(c') < 1.
 cE[c,cl C

 PROPOSITION 9: Let the pricing kernel be given by (12), let the detrended con-
 sumption be i.i.d. as in (13), and assume that (14) holds. Then theprice-dividend

 ratio for the consumption equity is given by Vtc/C, = d/c7t- for some constant
 ip > 0; hence, Vc/ Ct is i.i.d. Moreover,

 E,1(Mitk) C( 1Y) 0-1
 Etl((15) t+k) (1 + t+)

 x' Et(Mt+k) E,{ (1+ c ) -I
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 thus the pricing kernel has permanent innovations if and only if 0 0 1, y 4 1, and
 c, has strictly positive variance.

 Note that 0 = 1 corresponds to the case in which preferences are given by
 time separable expected discounted utility; hence, with i.i.d. consumption, the
 pricing kernel has only temporary innovations. Expression (15) also makes
 clear that for values of 0 close to 1, the volatility of the permanent component
 is small.

 5.2. The Volatility of the Permanent Component in Consumption

 We present here estimates of the volatility of the permanent component of
 consumption, obtained directly from consumption data. We end up drawing
 two conclusions. One is that the volatility of the permanent component in con-
 sumption is about half the size of the overall volatility of the growth rate, which
 is lower than our estimates of the volatility of the permanent component of
 pricing kernels. This suggests that, within a representative agent asset pric-
 ing framework, preferences should be such as to magnify the importance of
 the permanent component in consumption.12 The other conclusion, as noted
 in Cochrane (1988) for the random walk component in GDP, is that standard
 errors for these direct estimates are large.

 As in Section 4.4 for inflation, we use Cochrane's method based on
 the variance, since L(Xt+k/X,)/var(logXt+k/Xt) is close to 0.5. Specifi-
 cally, for k up to 35, it lies between 0.47 and 0.49. Our estimates for
 (1/k)var(logXt+k/Xt)/var(logXt+/Xt), with associated standard error
 bands, are presented in Figures 4 and 5 for the periods 1889-1997 and
 1946-1997, respectively. For the period 1889-1997, shown in Figure 4, the
 estimates stabilize at around 0.5 and 0.6 for k larger than 15. For the post-
 war period, shown in Figure 5, standard error bands are too wide to draw firm
 conclusions.

 6. CONCLUSIONS

 The main contribution of this paper is to derive and estimate a lower bound
 for the volatility of the permanent component of asset pricing kernels. We find
 that the permanent component is about at least as volatile as the stochastic
 discount factor itself. This result is driven by the historically low yields on long-
 term bonds. These yields contain the market's forecasts for the growth rate of
 the marginal utility of wealth over the period that corresponds to the matu-
 rity of the bond. A related bound that measures the volatility of the transitory
 component suggests it to be considerably less important than the permanent

 12This conclusion would not be valid if asset market participation is limited, unless the partici-
 pants' consumption exhibits the same persistence properties as the aggregate.
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 FIGURE 4.-1/k times the variance of k differences of consumption divided by the variance
 of the first difference: 1889-1997. Bands show one asymptotic standard error; a period is 1 year.
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 FIGURE 5.-1/ k times the variance of k differences of consumption divided by the variance
 of the first difference: 1846-1997. Bands show one asymptotic standard error; a period is 1 year.
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 component. We also relate the persistence of pricing kernels to the persistence
 of their determinants in standard models, notably consumption. We present
 sufficient conditions for consumption and preference specifications to imply a
 pricing kernel with no permanent innovations. We present evidence that the
 permanent component of pricing kernels is determined, to a large extent, by
 real as opposed to nominal factors. Finally, we present some evidence that the
 importance of the permanent component in consumption is smaller than the
 permanent component in pricing kernels. Within a representative agent frame-
 work, this evidence points toward utility functions that magnify the permanent
 component.

 Dept. of Economics, University of Chicago, Chicago, IL 60637, U.S.A.;
 and NBER; f-alvarezl @uchicago.edu

 and

 Dept. of Finance, The Wharton School, University of Pennsylvania, 3620 Lo-
 cust Walk, Philadelphia, PA 19104-6367, U.S.A.; and NBER; jermann@wharton.
 upenn. edu; http://finance. wharton. upenn. edul /jermann.

 Manuscript received January, 2002; final revision received April, 2005.

 APPENDIX A: PROOFS

 PROOF OF PROPOSITION 2: We show that (i) R,,,t+, = M1/Mr+, and (ii)

 M,,, MP1 Rt+l,
 Lt M Lt M + E,log Rl+o

 and then that this implies

 (Mt P Rt+l Rt+,
 Lt t+ M > Et log. - Et log

 (i) Using Assumption 1,

 Et+lMt+k Et+lMt+k/ 3t+k
 Vt+1(lt+k) Mt+1 lim Mt+1 R t+1- hlim = lim = lim ' - k-oo V(lt+k) k-*oo EtMt+k k--+o EtMt+k/ft+k

 Mt Mt

 limk 0 Et+1Mt+k/lt+k MP Mt+I MtJl mk
 limk__EMM/r'+ Mt Mt+1

 Mt Mt

This content downloaded from 142.58.129.109 on Wed, 27 Jun 2018 16:14:02 UTC
All use subject to http://about.jstor.org/terms



 2008 E ALVAREZ AND U. J. JERMANN

 (ii) By definition,

 L Mt+=log EMt+l- E, log ` M t+M
 M, M MtM

 =-log Elog + L IMt
 t(lt+) t MrT MP

 /Mt M
 = E, log R + Lt . Rt+,, ' MP!

 Hence

 (A.1) L t = logEt,+- - E, log Mt Mt+t

 = -E, log t - log Rt+,1 M,

 > E, log Rt+ - log Rt+,1

 because from no-arbitrage and concavity of the log,

 logE,(Rt, =0 > Elog= Rt+o , ,

 -Et log > E, log(Rt,,). M,

 For an unconditional version of the bound we use that L(xt+) = ELt(xt+l) +
 L(Etxt+). Using this result, we take unconditional expectations

 (M, (M Mt Rt+,t,
 L t+1 L Mt+l - L Et - E lo(gtMMOR MtP Mt M, Rt+l,

 = LMt+ - L Elog Rt+l'O ( Mt (Rt+,x Rt+,,

 L Mt > Elog RtRt+L
 and form the ratio

 L( - L( , -L( )-Elog -
 L( M+1( ) Mt LMt~l-t
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 MARGINAL UTILITY OF WEALTH 2009

 so that if [-L(1/Rt+1,1) - Elog(Rt+l,oo/Rt+l,1)] < 0 and Elog(Rt+/Rt+,1) +
 L(1/Rt+1,1) > 0,

 L( PI) E log R -Elog Rt+1,oo
 MlgRt+l,1 Rt+l,1 1> > R

 - L(Mt)- ElogRt+1 +L( ) Mt Rt+l,1 Rt+l,1

 and if [-L(1/R,+,1,) - Elog(Rt+1,oo/Rt+,1)] > 0 and Elog(Rt+l/Rt+l,1) +
 L(1/Rt+1,1) > 0,

 L( t+) E log Rt+ - E log Rt+l,oQ MPRt+l,1 Rt+l,l S L )Q.E.D.

 PROOF OF PROPOSITION 4: Given the proof of Proposition 2, we only need

 to show that under the stated assumptions, Rt,t+l,, = M[t/Mt,1. By definition,

 iVt+ (1t+k) Et+lMt+k Mt
 Ri, - m = lim k-oo Vt(lt+k) k--oo EtMt+k Mt+1

 and by the definition of vt,t+k, the first term equals

 E,,1[Mt+k] _ E+1 [Mt+k]Et+l[Mt+k](1 + Vt+1,t+k)

 E,[Mt+k] Et[Mtr+k]Et[M+k](1 + vt,t+k)

 Taking limits gives limkoo{Et+1 [Mt+k]/Et[Mt+k]} = MtP+I/MP, due to the as-
 sumption that

 lim 1 + vt+1,t+?k1 tim =1,

 k--+co 1 + ~Ut, t+k

 that MtP +/MP is a martingale, and due to the definition of no permanent inno-
 vations. Thus Rt,t+,,,, = (M,+1/M[)(Mt/Mt+) = MTI/M7,. Q.E.D.

 PROOF OF PROPOSITION 5: By definition,

 h,(co) - yt(oo) = lim E, logRt+1 ,k - lim - Rt+jok(j-1) k-o-o ' k-+o kElogR  j=1

 Taking unconditional expectations on both sides, we have that

 E{h,(oo) - yt(oo)}

 =E lim E, logRt+L~,k - E lim 1 ogR k-o' k-+oc k l j=1
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 Since, by assumption, expected holding returns and yields, E, log Rt+?,k and

 (1/ k) E~ log Rt+j,k-(j-1), are dominated by an integrable random variable and
 the limit of the right-hand side exists, then by the Lebesgue dominated conver-
 gence theorem,

 E lim E, log Rt+l,k = lim E log Rt+l,k,
 k- oc k--*

 1k k

 Elim- logRt+j,k-(j-1) = lim - YElogRt+jk(jl). k-+oc k k-+oo k ' j=1 j=1

 Denote the limit

 (A.2) lim E log Rt+l,k = r, k--oc

 which we assume to be finite. Since, by hypothesis, ElogRt+j,k(j1) =
 E log Rt+l,k-(j-1) for all j, then

 1k k

 lim E log Rt+j,k-(j-1) = lim 1 Elog Rt+,k-(j-1) k-0 k k-- r k j=1 j=1

 where the second inequality follows from (A.2). Thus, we have that

 E{ht(oc) - y,(oo)}

 = lim ElogRt+lk - lim ElogRt+j,k-(j-1) j=1

 = r - r = 0. Q.E.D.

 PROOF OF PROPOSITION 6: Using assumption (a) that Mt+~1/M is strictly
 stationary, some algebra shows that

 1 LMt+k 1 Mt+k t+1
 -L(M ) - l~og E ( )+Elog( . kM M, k Mt ) M, Again using the stationarity assumption and some algebra, we have

 1 (Mt+k
 k Mt )

 E Mt + E log RR+,,1.
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 Going to the limit, which given Assumptions 1 and 2 exists, we get

 lim1 Mt+k

 1 Mt+k )_logRt+l,, M+,, =lim-L Et - E '+ELt .
 k- ook Mt log Rt+,1 Mt

 Finally, with assumption (b) we have the postulated result, given that from the
 proof of Proposition 2 it is easy to see that

 EL MtP+1M t Mt+ - E logRt+'1,0 Q.E.D. EL MtP ( M, Rt+l,1
 PROOF OF PROPOSITION 7: Using the Markov assumption under (i) and (ii),

 we have

 Et+ (Mt+k) (Tk-f)(s') lim = lim = 1. Q.E.D.
 k-?-oo Et(Mt+k) k-oo (Tkf)(s)

 PROOF OF PROPOSITION 8: Properties (a) and (b) define setwise conver-
 gence, and with f(.) bounded, expected values converge. Q.E.D.

 PROOF OF PROPOSITION 9: First, we show a lemma that consumption equity
 prices and consumption equity dividend-price ratios are i.i.d. Then we use the
 lemma to show that the kernel has permanent innovations.

 LEMMA A.1: Assume that ct is i.i.d. with c.d.f. F and that r < 1, where

 ( C/
 T) -_max fr13T- - dF(c') c[ic,C] ( c)I

 Then the price of consumption equity Vc/Ct = f*(ct), where the function f* is the
 unique solution to

 T*f* = f*, f*(c) = fcy-1

 for some constant qI > 0 and the operator T is defined as

 (Tf)(c) = /rA-P -) [f(c') + 1]0 dF(c')

 Moreover, VJ' = r'v(ct) - f (ct) . C,.
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 PROOF: Using the pricing kernel (12), we obtain that consumption equity
 must satisfy

 LJKClo = Et[[p (-t+l Ct )1[1/7 + tt*

 Guessing that Vtc = v-', we obtain

 Vt - Et[[r(TCt+1 )]-p t+ +1] 1/6
 and dividing by c, on both sides, we can write

 (C/, (1-Y) 1) 6 [Tf](c)-= r'-T - [f(c') + 1] dF(c') ,

 where f is the price-dividend ratio of the consumption equity: f(c) = v(c)/c.
 The operator T can be shown to be a contraction: hence, it has a unique fixed
 point. Moreover, qf is given by

 =Tt- p''-P" c'-Y[f*(c') + 1]' dF(c')

 where f* satisfies Tf* = f*. Q.E.D.

 Using Lemma A.1, we can write the return on the consumption equity as

 (v(Ct+1) + c,+1

 (A.3) Rf+ = 7 vz
 Then using (12) and (15), and through some algebra, we get

 Et+,Mt+k Et+ [p18(t'l)C+ColY,O-Q
 Xt+,k= EtMt+k E,[pO(t+l)Ct, Yt-1] (t+1 t+ 1

 = EC-1 1 + c 01. Q.E.D.

 -t+ C) E j t+_l1
 APPENDIX B: DATA

 For Table I, the data on monthly yields of zero-coupon bonds from 1946:12
 to 1985:12 come from McCulloch and Kwon (1993), who use a cubic spline
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 to approximate the discount function of zero-coupon bonds using the price of
 coupon bonds. They make some adjustments based on tax effects and for the
 callable feature of some of the long-term bonds. The data for 1986:1 to 1999:12
 are from Bliss (1997). From the four methods available, we use the method
 proposed by McCulloch and Kwon (1993). The second part of the sample does
 not use callable bonds and does not adjust for tax effects. Forward rates and
 holding period returns are calculated from the yields of zero-coupon bonds.
 The 1-month short rate is the yield on a 1-month zero-coupon bond. Yields
 are available for bonds of maturities going from 1 month to 30 years, although
 for longer maturities, yields are not available for all years.
 For Table III, for the United States, equity returns are from Shiller (1998);

 short-term rates are from Shiller (1998) before 1926 and from Ibbotson Asso-
 ciates (2000) after 1926; and long-term rates are from Campbell (1996) before
 1926 and from Ibbotson Associates (2000) after 1926.
 Ibbotson Associates' (2000) short-term rate is based on the total monthly

 holding return for the shortest bill not having less than 1-month maturity.
 Shiller (1998), for equity returns, used the Standard and Poor Composite Stock
 Price Index. The short-term rate is the total return to investing for 6 months
 at 4-6-month prime commercial paper rates. To adjust for a default premium,
 we subtract 0.92% from this rate. This is the average difference between T-bills
 from Ibbotson Associates (2000) and Shiller's (1998) commercial paper rates
 for 1926-1998.

 The data for the United Kingdom are from the Global Financial Data-
 base: http://www.globalfindata.com. Specifically, the bill index uses the 3-month
 yield on commercial bills from 1800 through 1899 and the yield on treasury
 bills from 1900 on. The stock index uses Bank of England shares exclusively
 through 1917. The stock price index uses the Banker's Index from 1917 un-
 til 1932 and the Actuaries General/All-Share Index from 1932 on. To adjust
 for a default premium, we have subtracted 0.037% from the short rate for
 1801-1999. This is the average difference between the rates on commercial
 bills and treasury bills for 1900-1998.

 For Table V, the inflation rates are computed using a price index from Janu-
 ary to December of each year. Until 1926, the price index is the PPI; afterward,
 the consumer price index (CPI) index is from Ibbotson Associates (2000).

 For Table VI, the aggregate equity index is from Global Financial Data,
 further described above. Inflation is based on the CPI, given by Global Fi-
 nancial Data. The Bank of England publishes estimates of nominal and real
 term structures for forward rates and yields. We use the series that corre-
 sponds to the Svensson method, because these are available for the whole sam-
 ple period, 1982-2000. See http://www.bankofengland.co.uk/ and Anderson and
 Sleath (1999) for details.
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 APPENDIX C: SMALL SAMPLE BIAS

 We derive here an estimate of the size of the small sample bias in our esti-
 mates in Table I. For notational convenience, define

 a Elog R - E log R

 b Elog R+--- Rt1 1J( )
 In Table I, we estimate this ratio as the ratio of the estimates ~/b - f (, b). Us-
 ing a second-order Taylor series approximation around the population values
 and considering that a is an unbiased estimator of a, we can write

 E[~ - [(a)-( var(b) - cov(a, b) )] [ E(b - b)] ?b, b b2 b b2
 a

 - - + bias1 + bias2. b

 We estimate bias1 directly from the point estimates and the variance-covarian-
 ce matrix of the underlying sample means. We estimate bias2 by 1 a var(s),

 with C the sample mean of 1/R,,,+1. For forward rates, we estimate the size
 of the overall bias, bias, + bias2, as [0.0071, -0.0012] for the two maturities in
 panel A of Table I, where a negative number means that our estimate should
 be increased by that amount. Corresponding values for panels B, C, and D are
 [0.0591, 0.1277], [-0.0077, -0.0112], and [-0.0165, -0.0209].
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