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A Ramsey planner chooses a distorting tax on labor and manages a portfolio of
securities in an economy with incomplete markets. We develop a method that uses
second order approximations of Ramsey policies to obtain formulas for conditional
and unconditional moments of government debt and taxes that include means
and variances of the invariant distribution as well as speeds of mean reversion.
The asymptotic mean of the planner’s portfolio minimizes a measure of fiscal
risk. We obtain analytic expressions that approximate moments of the invariant
distribution and apply them to data on a primary government deficit, aggregate
consumption, and returns on traded securities. For U.S. data, we find that the
optimal target debt level is negative but close to zero, the invariant distribution of
debt is very dispersed, and mean reversion is slow. JEL Codes: E62, H63, G18.

I. INTRODUCTION

This article models a Ramsey planner who optimally manages
a portfolio of debts and other securities to smooth fluctuations in
tax distortions in an incomplete markets economy subject to ag-
gregate shocks. Within a production economy without capital, the
government raises revenue by issuing securities and imposing a
linear tax on labor income, which it spends on exogenous govern-
ment expenditures, payouts on government securities, and trans-
fers. The government and private agents trade an exogenously
specified set of risky securities whose returns depend on the ag-
gregate state. An economy with complete markets and an econ-
omy with a one-period risk-free bond only are interesting special
cases.

We make extensive use of an approximation to a Ramsey plan
that we construct from second-order perturbations around cur-
rent levels of government debt. We confirm that these quadratic
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approximations are accurate by comparing them to solutions
obtained using numerical methods. Under conditions that we de-
scribe, the approximating laws of motion are linear functions of
the aggregate shocks and the current level of government debt.
Our quadratic approximations then enable analytic and inter-
pretable expressions for means, variances, and rates of conver-
gence to an invariant distribution of debt, tax revenues, and tax
rates.1 Empirical counterparts to our expressions for these ob-
jects can be constructed from data on the primary government
deficit, aggregate consumption, and returns on securities traded
by the government. We show that the mean of the government’s
optimal debt portfolio eventually minimizes a particular criterion
that measures fiscal risk.

To isolate underlying principles, we start with a baseline set-
ting in which agents have quasilinear preferences and the market
structure is restricted to a single security whose payout we allow
to be correlated with the government purchase process. The joint
distribution of returns and government purchases is independent
and i.i.d. over time. From the planner’s Euler equations, we es-
tablish the existence of an invariant distribution of government
debt. Up to third-order terms, we show that the drift in the dy-
namics of debt is proportional to the covariance of returns with
total government spending (debt service plus exogenous govern-
ment purchases). A level of debt that minimizes the variance of
total government spending sets this covariance to zero and serves
as a point of attraction for the stochastic process for debt. The
speed of mean reversion is inversely proportional to the variance
of the return on the security, and the variance of the invariant
distribution is proportional to the amount of risk that the govern-
ment bears at its risk-minimizing debt level. Later sections of the
article show that the principle that government debt approaches
a level that minimizes fiscal risk extends well beyond our baseline
case.

Allowing trade in more securities yields additional insights.
If returns satisfy a spanning condition, the planner can replicate a
complete markets allocation like Lucas and Stokey’s (1983). When
that spanning condition is not satisfied, being able to trade more
securities decreases the speed of convergence to the invariant
distribution because additional securities facilitate hedging and

1. We can also use our quadratic approximation to get analytic expressions
for other moments.
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FISCAL POLICY AND DEBT MANAGEMENT 619

thereby lower the cost of being away from a long-run target level of
government debt. By assuming two particular securities, a consol
and a short-term security, we derive prescriptions for optimal ma-
turity management. In this two-security case, the riskiness of the
return on the short-maturity asset relative to that on the consol
affects the average maturity of the total debt. In particular, if the
return on the long maturity bond is riskier than the return on the
short-maturity bill, then the optimal maturity of the planner’s
portfolio is inversely proportional to total public debt and most
adjustment to aggregate shocks is done with the bill. We extend
the analysis to incorporate risk aversion and more general shock
processes. We show that insights from the baseline model apply
provided that we use concepts of “effective returns” and “effective
shocks” — returns on the government debt portfolio and innova-
tions to the present discounted value of the primary government
deficit adjusted by marginal utilities of consumption, respectively.

In a quantitative section, we pursue two goals: (i) to verify
the accuracy of our quadratic approximations using global nu-
merical methods; and (ii) to study implications of the model for
realistic shock and return processes. To this end, we use U.S. data
to calibrate plausible shock and return processes. Our analytical
expressions are shown to be accurate in the calibrated model. We
find that asymptotically the optimal level of government debt is
close to zero and that the optimal policy for government debt dis-
plays slow mean reversion (a half-life of almost 250 years). These
results are driven by the fact that a significant amount of varia-
tion in returns to the U.S. portfolio is uncorrelated with output;
that implies that holding large quantities of debt or assets would
frustrate hedging objectives.

To focus on some important forces, our article obviously shuts
down forces emphasized in other theories of optimal levels of gov-
ernment debt. For example, by allowing a government each period
to choose whether to service its debt, the literature on sovereign
debt focuses attention on how the adverse consequences of default
endogenously generate incentives to repay debt obligations. The
government in our model has no default option and requires no
incentives to repay. This eliminates the design of incentives to
induce payment as determinants of the level of government debt
and its maturity composition and puts the hedging considerations
on which we focus front and center. Our model describes optimal
fiscal policy of a government that never contemplates dishonor-
ing its debts. (We like to think of the U.S. and some European
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governments as being in this situation.) Additionally, we focus on
real debt. Extending our approach to economies with possibilities
of default and monetary economies is straightforward but space-
consuming as it would require us to introduce several layers of
additional complications to our model. We leave that for future
work.

I.A. Relationships to Literatures

Our article builds on a large literature about a Ramsey plan-
ner who chooses a competitive equilibrium with distorting taxes
once and for all at time 0.2 Many of these papers assume either
complete markets as in Lucas and Stokey (1983), Buera and Nicol-
ini (2004), Angeletos (2002), or a one-period risk-free bond only
and quasilinear preferences as in Barro (1979) and Aiyagari et al.
(2002). In contrast, our analysis allows a more general incomplete
markets structure and risk aversion. In both complete market
economies and quasilinear settings with a risk-free bond only,
any level of debt is optimal in the sense that the Ramsey plan-
ner sets a time 0 conditional mathematical expectation of public
debt in all future periods equal to initial debt. We show that this
result is fragile: small departures from the assumptions in those
earlier papers imply that, driven by hedging considerations, start-
ing from any initial debt, government debt converges to a unique
risk-minimizing level.

In a related context, Barro (1999, 2003) studies tax smooth-
ing in an environment in which revenue needs are deterministic
but refinancing opportunities are stochastic. In Barro’s setting,
it is optimal for a government to issue a consol as a way to in-
sulate intertemporal tax smoothing motives from concerns about
rolling over short maturity debt at uncertain prices. In contrast,
our analysis allows both revenue needs and returns on the debt
to be stochastic. We estimate empirically relevant properties of
returns on debt and then find an optimal government portfolio
associated with those returns.

Technically, our article is closely related to Aiyagari et al.
(2002). Those authors include an analysis of an economy in which
a representative agent has quasilinear preferences. In addition
to a linear labor tax, they allow a uniform nonnegative lump-
sum transfer. They find that there is a continuum of invariant

2. For instance, see Lucas and Stokey (1983), Chari et al. (1994), Aiyagari
et al. (2002), Farhi (2010).
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FISCAL POLICY AND DEBT MANAGEMENT 621

distributions for debt, all of which feature a zero labor tax rate
and debt levels that are negative and sufficiently large in absolute
value to finance all government expenditures from the govern-
ment’s interest revenues, with nonnegative transfers absorbing
all aggregate fluctuations by adjusting one to one with the aggre-
gate shock.

In Section III.A, we depart from Aiyagari et al. (2002) and
model optimal transfers as arising from an explicit redistribution
motive by including agents who cannot afford to pay positive lump
sum taxes. We show that as long as the utility functions of those
agents are strictly concave and the planner cares about them, the
Ramsey plan ultimately targets a (generally unique) level of debt
that minimizes risk as in our representative agent settings. The
invariant distribution studied by Aiyagari et al. (2002) emerges
only in a limit as the risk aversion of all recipients of transfers
goes to zero.

The equilibrium approximation tools that we apply in this
article are complementary to ones used by Faraglia, Marcet, and
Scott (2012), Lustig, Sleet, and Yeltekin (2008), and Siu (2004),
who numerically study optimal Ramsey plans in specific incom-
plete markets settings. Our approximation method allows us to
derive closed-form expressions for the invariant distribution of
debt and taxes that illuminate underlying forces. Our work is also
related to Debortoli, Nunes, and Yared (2016) who numerically
characterize optimal debt management when a government can-
not commit to future taxes.

Our theory of government portfolio management shares fea-
tures of the single-investor optimal portfolio theory of Markowitz
(1952) and Merton (1969). Bohn (1990) and Lucas and Zeldes
(2009) use insights from the single-investor literature to study
portfolio choices of a government in partial equilibrium settings
after having specified a government loss function. We also build
on the work of Farhi (2010) who derives the CCAPM equations
in the incomplete market Ramsey settings similar to ours. We
show that the Ramsey planner chooses a portfolio to minimize a
measure of fiscal risk and derive closed-form expressions for the
optimal portfolio.

The remainder of this article is organized as follows. In Sec-
tion II, we analyze a streamlined setting in which only one risky
security can be traded and the representative agent has quasilin-
ear preferences. In Section III, we extend the analysis to include
multiple assets, persistent shocks, concerns for redistribution, and
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risk aversion. In Section IV, we study a quantitative example with
parameters calibrated to U.S. data.

II. QUASILINEAR PREFERENCES

We begin with a streamlined setting. Time is discrete and
infinite with periods denoted t = 0, 1, ... Each of a measure 1
of identical agents has preferences over consumption and labor
supply sequences {ct, lt}t that are ordered by

(1) E0

∞∑
t=0

βt
(

ct − 1
1 + γ

l1+γ
t

)
,

where Et is a mathematical expectations operator conditioned on
time t information and β ∈ (0, 1) is a time discount factor. One
unit of labor produces one unit of a nonstorable single good that
can be consumed by households or the government. Feasibility
requires

(2) ct + gt = lt, t ≥ 0,

where gt denotes government consumption.
The government imposes a flat tax at rate τ t on labor earnings

and buys or sells a single one-period security having an exogenous
state-contingent payoff pt. Consumers sell or buy that same secu-
rity, so it is in zero net supply each period. Let Bt be the number
of securities that the government sells in period t at price qt. Gov-
ernment budget constraints are

(3) gt + ptBt−1 = τtlt + qtBt, t ≥ 0.

A probability measure π (ds) over a compact set S governs an
exogenous i.i.d. shock st that determines both government pur-
chases and payoffs on the single security, positive random vari-
ables g, p with means ḡ, p̄.

We let st = (s0, ..., st) denote a history of shocks. We often
use xt to denote a random variable x with a time t conditional
distribution that is a function of history st−1. It is convenient to
define Bt ≡ qtBt and Rt+1 ≡ pt+1

qt
and to rewrite the government’s
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FISCAL POLICY AND DEBT MANAGEMENT 623

time t budget constraint (3) as

gt + Rt Bt−1 = τtlt + Bt.

A representative agent’s time t budget constraint is

(4) ct + bt = (1 − τt) lt + Rtbt−1,

where bt is his purchase of the single security. The period t market
clearing condition for the security is

(5) bt = Bt.

We exogenously confine government debt to a compact set

(6) Bt ∈
[
B, B

]
.

The assumption of compactness of the feasible debt simplifies the
analysis. We make the bounds sufficiently large that they do not
affect the properties of the joint invariant distributions of govern-
ment debt and the tax rate that we analyze below.

DEFINITION 1. A competitive equilibrium given an initial govern-
ment debt B−1 at t = 0 is a sequence {ct, lt, Bt, bt, Rt, τ t}t
such that (i) {ct, lt, bt}t maximize equation (1) subject to the
budget constraints (4); and (ii) constraints (2), (3), (5), and
(6) are satisfied. An optimal competitive equilibrium given
B−1 is a competitive equilibrium that has the highest value
of equation (1).

The single-security incomplete markets models of Barro
(1979) and Aiyagari et al. (2002) assume that the security’s payout
is risk-free, a special case of our setup in which p(s) is indepen-
dent of s. The payoff shocks aim to capture a general setting where
macroeconomic shocks such as expenditure or productivity affect
returns on the government’s portfolio either directly or indirectly
through the response of tax policies to these shocks. We disentan-
gle these concerns by first studying a quasilinear economy where
returns, modeled directly using p(s) on traded securities, are ar-
bitrarily correlated with macroeconomic shocks, each other and
across time. In the baseline outlined above we have correlated
shocks that drive expenditures and returns but are i.i.d. across
time. In Sections III.B and III.C we allow for multiple assets that
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624 QUARTERLY JOURNAL OF ECONOMICS

can be long-lived and in positive net supply (e.g., Lucas trees) and
also more general shocks that follow Markov processes. Further-
more, in Section III.D we show that an economy with risk-averse
agents who trade a riskless bond closely resembles our quasi-
linear setup where payoffs are risky and chosen to be positively
correlated with expenditure shocks.

The representative consumer’s first-order necessary condi-
tions for an optimum imply that

(7) 1 − τt = lγt , Et−1 Rt = 1
β

.

The security price qt satisfies qt = β p̄, so the return on the security
Rt(st) = p(st)

β p̄ . Substitute equation (7) into the consumer’s budget
constraint to obtain

(8) ct = l1+γ
t + Rt Bt−1 − Bt.

Use equation (8) to eliminate ct from the feasibility condition (2)
to obtain the following implementability constraints:

(9) lt − l1+γ
t + Bt = Rt Bt−1 + gt.

LEMMA 1. If {ct, lt, Bt, bt, Rt, τ t}t is a competitive equilibrium
given B−1 then {lt, Bt−1}t satisfies (6) and (9) for all t ≥ 0. If
{lt, Bt−1}t satisfies (6) and (9) for given B−1 and all t ≥ 0 then
there exist {ct, bt, Rt, τ t}t such that {ct, lt, Bt, bt, Rt, τ t}t is a
competitive equilibrium given B−1.

Lemma 1 allows us to compute an optimal competitive equi-
librium allocation and a government debt process by solving

(10) max
{lt,Bt}t

E0

∞∑
t=0

βt
[
(Rt Bt−1 − Bt) + γ

1 + γ
l1+γ
t

]
,

where maximization is subject to constraints (6) and (9). The ob-
jective function in equation (10) is a version of equation (1) in
which we have used equation (8) to eliminate ct.

Online Appendix I.A shows that it is optimal to set the tax
rate to the left of the peak of the Laffer curve, which implies that
the optimal tax rate τ t and labor supply lt are described by one-
to-one mappings from total tax revenues Zt = τ tlt. Tax revenues
are bounded from above by the level Z associated with a tax rate
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FISCAL POLICY AND DEBT MANAGEMENT 625

at the peak of the Laffer curve.3 For a given level of tax revenues
Z, the corresponding tax rate τ (Z) and labor supply l(Z) satisfy

Z = τ (Z) (1 − τ (Z))
1
γ

= l(Z) − l(Z)1+γ ,(11)

which are well defined for all Z ≤ Z. Functions l(·), −τ (·) are de-
creasing. Let �(Z) ≡ 1

1+γ
l(Z)1+γ be the utility cost of supplying

labor required to raise tax revenues Z. � is strictly decreasing,
strictly concave, differentiable on (−∞, Z], and satisfies Inada
conditions limZ→−∞� ′(Z) = 0 and limZ→Z � ′(Z) = −∞.

An optimal value function V (B ) for problem (10) satisfies the
Bellman equation

(12)

V (B−)= max
Z(·),B(·)

∫ [
(R (s) B− − B(s)) + γ� (Z (s)) +βV (B(s))

]
π (ds) ,

where maximization is subject to Z(s) ≤ Z, B(s) ∈ [B, B], and

(13) Z (s) + B(s) = R (s) B + g (s) for all s.

Strict concavity and differentiability of � implies that V is also
strictly concave and differentiable. Policy functions B̃(s, B ) and
Z̃(s, B ) attain the right side of Bellman equation (12). Let τ̃ (s, B )
denote the associated optimal tax rate policy. Gross government
expenditures E(s, B ), an important endogenous variable, are

(14) E (s, B ) = R (s) B + g (s) ,

which equals government expenditures including interest and re-
payment of government debt. Aggregate shocks have effects on
E(s, B ) that depend partly on government debt B .

We begin our analysis by stating a lemma that summarizes
some key properties of optimal policy rules.

LEMMA 2. B̃, Z̃, and τ̃ are increasing in E in the sense
that E(s′′, B ′′) > E(s′, B ′) implies B̃(s′′, B ′′) ≥ B̃(s′, B ′),
Z̃(s′′, B ′′) ≥ Z̃(s′, B ′), and τ̃ (s′′, B ′′) ≥ τ̃ (s′, B ′) with strict in-
equalities if B̃(s′′, B ′′), B̃(s′, B ′) ∈ (B, B).

3. The expression for the maximum revenue is Z = γ
(

1
1+γ

)1+ 1
γ .
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626 QUARTERLY JOURNAL OF ECONOMICS

Let {B̃t, Z̃t}t be the optimum process generated by policy func-
tions B̃(s, B ) and Z̃(s, B ). First-order conditions associated with
the maximization problem (12) imply that if B̃t is interior, then
the marginal social value of assets V ′(B̃t) satisfies4

(15)
V ′(B̃t) = βEt Rt+1V ′(B̃t+1) = EtV ′(B̃t+1) + βcovt(Rt+1, V ′(B̃t+1)).

Monotonicity of the policy functions asserted in Lemma 2 together
with (15) allow us to prove:

PROPOSITION 1. The optimal process {B̃t, Z̃t}t has a unique invari-
ant distribution.

To enable us to characterize this invariant distribution, a key
concept will be the level of debt

(16) B∗ ≡ arg min
B

var
(
RB+ g

) = −cov (R, g)
var (R)

.

We assume that probability measure π is such that B∗ ∈ (B, B)
and that B is weakly below the natural debt limit. We call B∗ the
risk-minimizing level of debt. Let Z∗ ≡ ḡ + 1−β

β
B∗ be the constant

tax revenues that satisfy the government’s budget constraint on
average if Bt = B∗ for all t.

II.A. Perfectly Correlated Shocks: The Exact Characterization

We first consider a special case in which p and g are perfectly
correlated that illustrates key economic forces that determine the
long-run behavior of debt and taxes more generally.

PROPOSITION 2. Suppose that p and g are perfectly correlated. Then
B̃t → B∗, Z̃t → Z∗ a.s.

Proof. If p and g are perfectly correlated then cov(E(·, B),
R(·)) ≥ 0, if B ≥ B∗, cov(E(·, B), R(·)) ≤ 0 if B ≤ B∗, and E(s, B)
is independent of s if and only if B = B∗. The monotonicity of
policy functions established in Lemma 2 and concavity of V imply
that covt(Rt+1, V ′(B̃t+1)) ≤ 0 if B̃t ≥ B∗ and covt(Rt+1, V ′(B̃t+1)) ≥ 0
if B̃t ≤ B∗.

4. Online Appendix I.A provides an analysis of the situation in which B̃t is not
required to be interior. Farhi (2010) obtained a generalized version of this equation
in an economy with capital.
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From the first part of Lemma 2, B̃(·, B) is increasing in B and
consequently B0 > B∗ implies B̃t ≥ B∗ and V ′(B̃t) ≤ V ′(B∗) for all
t ≥ 0. From these and equation (15), we conclude that5

(17) V ′(B̃t) ≤ EV ′(B̃t+1).

Therefore, for B0 > B∗, V ′(B̃t) is a submartingale bounded above
by V ′(B∗) and the martingale convergence theorem implies that
V ′(B̃t) converges almost surely. By strict concavity of V, B̃t can
converge only to a level of debt B for which E(s, B) is indepen-
dent of s, which is possible only if B̃t → B∗ a.s. Since ERt = β−1,
equation (13) establishes that Z̃t → Z∗ a.s.6�

An insight of Proposition 2 is that the conditional covariance
in equation (15) induces a drift in the stochastic process B̃t toward
the risk-minimizing level of debt B∗. Here is some intuition. Fluc-
tuations in tax rates, and therefore tax revenues, have welfare
costs for reasons explained by Barro (1979). For this reason, on
the margin each period the planner wants to move closer to the
risk-minimizing level of debt that reduces his need to change the
tax rate in response to shocks to government purchases. When
p and g are perfectly correlated, fluctuations in returns on gov-
ernment debt R(s)B∗ perfectly offset fluctuations in government
expenditures g(s), thereby providing a perfect hedge. In this situ-
ation, the tax rate τ t is constant in the long run.

II.B. General Case: Approximations

When p and g are imperfectly correlated, perfect hedging is
impossible. To study this situation, we develop a class of second
order approximations that do a good job of approximating the
joint invariant distribution of government debt and tax revenues.
Under particular conditions, our approximating policies are linear
in shocks, a property that facilitates asymptotic analysis.

We start with the observation that random variables g and p
can be expressed as

g(s) = ḡ + σεg(s), p(s) = p + σεp(s),

5. Although (15) assumes that B̃t is in the interior, inequality (17) is still valid
when bounds on B̃t are binding.

6. When B0 < B∗, V ′(B̃t) is a supermartingale bounded below by V ′(B∗) and
the same type of argument applies.

D
ow

nloaded from
 https://academ

ic.oup.com
/qje/article-abstract/132/2/617/2724549 by Sim

on Fraser U
niversity user on 10 July 2019



628 QUARTERLY JOURNAL OF ECONOMICS

where εg and εp have mean zero but can be arbitrarily corre-
lated with each other. We will study the properties of a Ramsey
plan when shocks are small, that is, as σ approaches to 0. Let
B̃(s, B ; σ ) and Z̃(s, B ; σ ) be policy functions for a given σ . Opti-
mality conditions for problem (12) should hold for all realizations
of p(s), g(s) and for all values of σ . Therefore first-, second-, and
higher-order derivatives of those optimality conditions with re-
spect to εg, εp, σ , assuming they exist, must all be equal to 0.7

That insight allows us to calculate the Taylor expansion of pol-
icy rules around a current level of debt since B̃(s, B ; 0) = B . In
Online Appendix I.A, we show that

B̃(s, B ) = B + β
[
g(s) − ḡ

] + [
βR(s) − 1

]
B(18)

−β2var(R)B − β2cov(R, g) + O(σ 3, (1 − β)σ 2).

Here O(σ 3, (1 − β)σ 2) denote all terms that appear as O(σ 3) or
(1 − β)O(σ 2).8 The second-order expansion is linear in g and R up
to terms that appear in O(·). Since standard macroeconomic cali-
brations set the discount factor close to 1, we drop the O(·) terms
and proceed to study an optimal debt and tax policy implied by
that approximation.9 The linearity of the policy rules allows us to
obtain a simple and transparent characterization. We show later
in this section and in Section IV that this procedure provides good
approximations to other more accurate approximations computed
using global numerical algorithms and has the virtue of shed-
ding light on economic principles underlying optimal debt and tax
policies.

We focus on three moments: means, variances, and speeds of
mean reversion to the invariant distribution of debt and taxes.
We obtain these by regrouping terms in equation (18) and inte-
grating with respect to the ergodic measure. For example, by tak-
ing unconditional expectations on both sides of equation (18), we

7. This approach is originally developed by Fleming (1971) and was applied in
economics by Schmitt-Grohé and Uribe (2004). Like them, we assume that policies
and value functions are sufficiently smooth that all relevant derivatives exist.

8. The term O(σ 3, (1 − β)σ 2) is equivalently O(σ 3) when β = 1 − σ is subject
to a smoothness condition on the policy rules. Formally, setting β = β̄ − σ , we need
that the third derivative of B̃(s, B ) with respect to σ is finite as β̄ → 1.

9. This approximation should work well as long as average interest rates are
of similar or smaller order of magnitude than the standard deviation of shocks that
affect the government’s budget constraint. This condition holds in our calibration
to the post-World War II U.S. data in Section IV.
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FISCAL POLICY AND DEBT MANAGEMENT 629

deduce that the unconditional mean and variance of debt can be
estimated up to O(σ, (1 − β)) terms.10

PROPOSITION 3. The invariant distribution of {B̃t, Z̃t}t satisfies

(i) Means

E
(
B̃t

) = B∗ + O(σ, 1 − β), E
(
Z̃t

) = Z∗ + O(σ, 1 − β);

(ii) Speeds of reversion to means

Et
(
B̃t+1 − B∗)
B̃t − B∗ = E0

(
Z̃t+1 − Z∗)

E0
(
Z̃t − Z∗)

= 1
1 + β2var (R)

+ O(σ 3, (1 − β)σ 2);

(iii) Variances

var
(
B̃t

) = var (RB∗ + g)
var (R)

+ O(σ, 1 − β),

var
(
Z̃t

) =
(

1 − β

β

)2

var
(
B̃t

) + O(σ 3, (1 − β)σ 2).

The first part of Proposition 3 shows that the risk-minimizing debt
B∗ is the mean of the invariant distribution, and the mean level
of tax revenues is Z∗. To understand the finding that the mean
of the invariant distribution of B̃t is B∗, it is useful to connect
the martingale (15) to the static variance minimization problem
(16). By strict concavity of the value function V, there is a one-
to-one relationship between debt Bt and its marginal value to
the planner, V′(Bt). Inspection of the martingale equation (15)
shows that the covariance term covt(V′(Bt+1), Rt+1) is important
in determining the drift of the dynamics of debt in the long run.
For a given Bt, the debt next period Bt+1 depends only on Et+1 and
consequently

(19) covt(V ′(Bt+1), Rt+1) ∝ covt(Et+1, Rt+1) + O(σ 3, (1 − β)σ 2).

10. Observe that while var(R), var(g), cov(R, g) are all of order O(σ 2), functions
cov(R,g)
var(R) and var(RB∗+g)

var(R) are of order O(1).
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It is possible to verify that covt(Et+1, Rt+1) = 1
2

∂var(Rt+1 Bt+gt+1)
∂ Bt

. Thus,
ignoring O(σ 3, (1 − β)σ 2) terms, the covariance term in the mar-
tingale equation (15) is proportional to the slope of the variance
of Et with respect to government debt Bt. Since B∗ minimizes
variation in E(s, B ), the slope is 0 at B∗. The change in signs
of the slope implies that, to second order, V′(Bt) is a submartin-
gale when Bt > B∗ and supermartingale when Bt < B∗. Then ar-
guments used in the proof of Proposition 2 explain why B̃t drifts
toward B∗.

Proposition 3 also shows that the speed of mean reversion
is determined by the variance of returns: a lower variance of re-
turns decreases the speed of the reversion. When Bt �= B∗ the
fluctuations in the rate of return put additional risk into E(s, Bt)
that is increasing in the volatility of R and the magnitude of Bt. A
more volatile R implies that it is optimal to increase the speeds at
which the government should repay debt when Bt > B∗ and should
accumulate debt when Bt < B∗. Dynamics of debt and taxes both
approximate random walks when the security is nearly a risk-free
bond, confirming an insight of Barro (1979).

The last part of Proposition 3 characterizes second moments
of the invariant distribution of debt and tax rates. It shows sev-
eral insights. First, the dispersion of the invariant distribution of
government debt is increasing in unhedgable risk as measured
by var(RB∗+g)

var(R) . Note that this term does not depend on σ (i.e., it
is O(1)) and is 0 only when g and p are perfectly correlated. As
long as g and p are imperfectly correlated, the variance of the in-
variant distribution of debt does not vanish even when σ becomes
small. This outcome reflects two offsetting forces: smaller shocks
imply that debt reacts less to the arrival of a shock but also that
it takes longer for debt to revert to its mean. The variance of tax
revenues Z̃t is determined by two considerations. Tax revenues
must respond enough to changes in the level of government debt
to satisfy the budget constraint, which is captured by the term(

1 − β

β

)2
var(B̃t). Tax revenues also change in response directly to

an expenditure shock. Since the planner wants to smooth tax
rates over time, only a fraction 1 − β of an innovation to govern-
ment expenditures is financed by contemporaneous changes in tax
revenues. Therefore, the variance induced by a contemporaneous
response to aggregate shocks is of order O(σ 3, (1 − β)σ 2).

Figure I illustrates the accuracy of the quadratic approxima-
tion. As a baseline we set β = 0.98 and γ = 2 and choose the joint
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FIGURE I

Policy Rules for Debt and Ergodic Distributions

Using the quadratic approximation (solid line) and a numerical solution (dashed
line), the top, middle, and bottom panels plot smoothed kernel densities (left side)
and decision rules (right side) associated with baseline parameters in Table I,
high discount factor (β = 0.90), and large shocks (σ = 4) settings. The right panel
displays policies B̃(s, B ) − B for two values of s that correspond to the smallest
and the largest pairs of (g(s), p(s)).
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TABLE I
PARAMETERS AND MOMENTS USED FOR COMPARING THE ACCURACY OF THE QUADRATIC

APPROXIMATIONS IN THE QUASILINEAR ECONOMY

Parameter Value Moments Values

ḡ 0.26 Mean government expenditure relative to output 26%
std. dev. εg 0.01 Std. dev. of log government expenditures 2.6%
std. dev. ε p̂ 0.05 Std. dev. of returns of debt portfolio 5.1%
χ 0.67 Correlation of returns and log government

expenditures
0.08

stochastic processes for ( g, p) to match the standard deviation of
government expenditures, returns on the government’s debt port-
folio and the correlation between these returns and government
net-of-interest expenditures. The upper bound B is chosen to be
equal to the natural debt limit that we can compute explicitly for
the quasilinear setup and the lower bound is set so that the debt-
to-output ratio is approximately −300%. For all the exercises we
report below, we verify that B∗ ∈ [B, B].11 The g, p processes are
modeled as

g(s) = ḡ + σεg(s),

p(s) = 1 + χσεg(s) + σε p̂(s),

where σ = 1 and the shocks ε p̂, εg are finite state approximations
to mean 0 normal random variables.12 The moments we target in
addition to the parameter values that achieve those targets are
reported in Table I.

Given these primitives, we compute the optimal policies from
first-order conditions for problem (12), and iterating on the plan-
ner’s Euler equation using cubic splines as basis functions for
approximating policies.13 We then compare the outcomes of our
global solution to the quadratic approximations. We plot the

11. In Section IV we do a comprehensive calibration where we match several
moments of returns, output, and debt to U.S. postwar data for a richer model
that allows for persistence, risk aversion, and productivity shocks. Here we use a
subset of those moments to get a reasonable baseline which we modify in several
directions to test the accuracy of our approximations. The details of the sample
and data series used to construct these moments are in Section IV.

12. The finite state approximation ensures that g(s) > 0 and p(s) > 0 for all s.
13. Since the problem is concave, such a fixed point corresponds to the optimal

policies.
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invariant distribution of debt and policy rules obtained from the
global solution method (dashed lines) and the quadratic approx-
imations (solid lines) in Figure I. For parsimony, we plot policies
B̃(s, B ) − B for two values of s that correspond to the smallest and
the largest pairs of (g(s), p(s)). The top panels of Figure I reveal
that the ergodic distribution of debt and policy functions obtained
using our quadratic approximations closely resemble those ob-
tained using the global numerical method. Our approximations
differ from the global solution only at debt levels close to the
natural debt limit; however, in our parameterization the ergodic
distribution puts almost no mass on that region.

Proposition 3 states that our approximation errors increase
with 1 − β and σ . To check how quickly these approximation errors
become significant, we reduce β to 0.90 and increase σ to 4 in the
middle and bottom rows of Figure I, respectively. For most of the
state space, we find that the quadratic approximation continues
to do well. As a consequence of the fact that our quadratic approxi-
mations assume interiority, the policies reported in the right panel
display approximation errors only when debt approaches the debt
limits. When 1 − β or σ is high, the quadratic approximations
imply slightly higher debt than does the solution computed with
numerical policy function iteration. Almost all of these differences
emerge because the quadratic expansion puts positive probability
on the region where debt is higher than B̄.

III. EXTENSIONS

Forces isolated within the Section II economy prevail under
alternative assumptions about motives for taxation, persistence in
g and p and also fluctuations in productivity, rich sets of securities,
and preferences that express aversion to consumption risk. We
discuss these now.

III.A. Transfers and Redistribution

Optimal debt management in our Section II model differs sig-
nificantly from that in other incomplete markets models studied
by Aiyagari et al. (2002) and Farhi (2010). A key difference is that
we prohibit lump-sum taxes or transfers, while Aiyagari et al.
(2002) and Farhi (2010) allow positive but not negative lump-sum
transfers. In our model, the invariant joint distribution of debt
and taxes is unique. In the long run, debt and tax rates minimize
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fluctuations in gross government expenditures, including debt ser-
vice requirements, E(s, B). By way of contrast, optimal plans in
Aiyagari et al. (2002) and Farhi (2010) have a continuum of in-
variant distributions of debt levels. In all of them, tax rates are
0 and debt levels are negative and big enough in absolute value
to finance all net-of-interest government expenditures from earn-
ings on the government’s portfolio, and fluctuations in transfers
fully absorb shocks to net-of-interest government expenditures.
Here we extend our analysis to an economy with lump-sum trans-
fers by explicitly modeling the utility enjoyed by recipients of
these transfers. We show that our Section II results carry over
essentially unchanged as long as the utility function of a subset of
recipients of transfers who are entirely dependent on transfers is
strictly concave. In that case, uncertainty about transfers is costly,
prompting the government to use government debt to minimize
fluctuations in both tax rates and transfers. We then discuss what
drives the long-run tax rate to 0 in Aiyagari et al. (2002) and
explain how to reconcile their results with ours.

A standard justification for ruling out lump-sum taxes in rep-
resentative agent models is implicitly to appeal to the presence
of unmodeled “poor” agents who cannot afford to pay a lump-sum
tax. In this section, we study optimal anonymous transfers in an
economy with such poor agents. We extend the Section II econ-
omy to have just enough heterogeneity across agents to make the
analysis meaningful. In particular, we assume that in addition
to a measure 1 of agents of type 1 with quasilinear preferences
U (c, l) = c − l1+γ

1+γ
, there is a measure n > 0 of type 2 agents who

cannot work or trade securities and who enjoy utility

E0

∞∑
t=0

βtU
(
c2,t

)
,

where c2,t is consumption of a type 2 agent in period t; U is strictly
concave and differentiable on R+ and satisfies the Inada condition
limc→0U′(c) = ∞.

The government and type 1 agent trade the Section II security.
The government imposes a linear tax rate τ t on labor income and
awards lump-sum transfers Tt that do not depend on the type of
agent. Negative transfers are not feasible because a type 2 agent
has no income other than transfers. Each agent receives a per
capita transfer Tt

1+n. Since agent 2 lives hand to mouth, his budget
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constraint is

c2,t = Tt

1 + n
.

The planner ranks allocations according to

E0

∞∑
t=0

βt
[(

ct − 1
1 + γ

l1+γ
t

)
+ ωU

(
c2,t

)]
,

for some ω > 0.
The time t government budget constraint is now

gt + Tt + Rt Bt−1 = τtlt + Bt.

With only minimal modifications, the budget constraint of a type 1
agent, Definition 1 of a competitive equilibrium, and the Section II
recursive formulation of the optimal policy problem all extend to
this environment. The planner’s optimal value function satisfies
the Bellman equation

(20) V (B ) = max
Z(·),B(·),T (·)

∫ [(
R (s) B − B(s) + T (s)

1 + n

)
+ γ� (Z (s))

+ ωU
(

T (s)
1 + n

)
+ βV (B(s))

]
π (ds) ,

subject to Z(s) ≤ Z, B(s) ∈ [B, B], and

(21) Z (s) − T (s) + B(s) = R (s) B + g (s) for all s.

Denoting by {B̃t, Z̃t, T̃t}t the outcomes associated with policies
that attain V (B ) and following the same steps as in the proofs of
Section II, we obtain

PROPOSITION 4. The invariant distribution of {B̃t, Z̃t, T̃t}t is unique.
The invariant distribution of B̃t satisfies properties stated in
Proposition 3. The invariant distribution of Z̃t − T̃t has the
same properties as the invariant distribution of Z̃t in Propo-
sition 3. Let F(T̃ ; ω) be the cumulative distribution function
of the ergodic distribution of T̃t. If ω > ω′ then F(T̃ ; ω) first-
order stochastically dominates F(T̃ ; ω′).
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Insights from Section II about optimal debt manage-
ment carry over to this heterogeneous economy. Fluctuations
in the tax rate and (non–agent specific) lump-sum transfers
now are both costly, so an optimal policy smooths both. Ad-
justing the tax rate in response to government expenditure
shocks is costly because the deadweight loss of taxation is
convex in tax rates, as stressed by Barro (1979). Adjusting
transfers is also costly because that induces fluctuations in
inequality.

In Aiyagari et al. (2002) and Farhi (2010) the government
eventually sets tax rates to 0 and thereafter adjusts transfers
one to one with government expenditures. They do not model
heterogeneity explicitly but appeal to it only implicitly when
they impose Tt ≥ 0. That restriction puts a kink in the cost
of using transfers: the marginal cost of an increase in trans-
fers is 0, whereas the marginal cost of a decrease in transfers
is infinite at Tt = 0. A high marginal cost of negative trans-
fers creates an incentive for the governments in Aiyagari et al.
(2002) and Farhi (2010) to accumulate enough assets to make
the constraint Tt ≥ 0 eventually become slack. Since fluctu-
ations in positive transfers are costless, in the long run the
government uses those transfers to offset all fluctuations in
expenditures gt.

By way of contrast, in our economy, the welfare cost of using
transfers is endogenous and smooth, so that marginal costs from
increasing and decreasing transfers around an optimal level T̃t are
the same, ω

1+nU ′(T̃t); welfare costs of departing from the optimal
inequality level are strictly convex. This difference accounts for
the very different long-run dynamics than those discovered by
Aiyagari et al. (2002).14

The restriction that transfers Tt are common across all types
of agents is not essential for Proposition 4. Consider a slightly
modified taxation scheme where the government uses a linear tax
rate, meaning one with a zero intercept, for the productive type
of agent and a lump-sum transfer for the unproductive types.
The budget constraint of type 2 is c2,t = Tt

n and the Bellman

14. Bhandari et al. (2017b) show that this insight carries over to richer
economies with much more heterogeneity and in which no agent is excluded from
the financial markets.
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equation (20) is altered to

V (B ) = max
Z(·),B(·),T (·)

∫ [
(R (s) B − B(s)) + γ� (Z (s))

+ ωU
(

T (s)
n

)
+ βV (B(s))

]
π (ds) .

We show in Online Appendix I.B that Proposition 4 continues to
hold. While the assumption that only unproductive agents receive
transfers changes the average level of optimal tax revenues and
the tax rate, it leaves unaffected the moments of the Ramsey policy
characterized in Proposition 4.

III.B. More General Asset Structure

In this section, we study optimal management of a govern-
ment’s portfolio of securities by modifying the baseline Section II
setup to allow K ≥ 1 securities. Let pk(s) be the payoff of security k
in state s. Each security is available in fixed net supply Qk, which
can be nonzero. Our setup thus allows for trade in financial assets
like government debt and claims to Lucas trees. When Lucas trees
are available, the feasibility constraint reads

ct + gt = lt +
K∑

k=1

pk
t Qk.

To simplify, we assume that available securities consist of one
period lived securities and infinitely lived consols, and that s is an
i.i.d. process.15 Let Bk

t be the government’s holdings of security k at
the end of period t, qk

t its market price, and ιk an indicator variable
that is equal to 1 if security k is a consol. The government’s time
t budget constraint is

gt +
K∑

k=1

(
pk

t + ιkqk
t

)
Bk

t−1 = τtlt +
K∑

k=1

qk
t Bk

t .

Let Rk
t = pk

t +ιkqk
t

qk
t−1

be the gross return on security k, and let Bk
t = qk

t Bk
t

be the market value of holdings of security k so that we can write

15. The extension of our results to arbitrary finite period securities is straight-
forward but requires additional notation. Extensions to richer shock processes
follow along the lines of Section III.C.
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this budget constraint as

gt +
K∑

k=1

Rk
t Bk

t−1 = τtlt +
K∑

k=1

Bk
t .

Let Bt ≡ ∑K
k=1 Bk

t be the market value of the government’s port-
folio. We restrict holdings Bt to be in a compact set [B, B]. We
assume that these bounds are sufficiently large so that the risk-
minimizing portfolio B∗ to be defined below is feasible. Without
loss of generality, we assume that no security is redundant in the
sense that the vectors {Rk}K

k=1 are linearly independent. We use
R(s) to denote returns (R1(s), ..., RK(s)), B and 1 to denote a K
dimensional (column) vector of security holdings and of ones, re-
spectively. Let C[R, R] and C[R, g] be a matrix of the covariances
of returns and a vector of covariances of returns with government
purchases g, respectively. When the matrix C[R, R] is nonsingu-
lar, we define

(22) B∗ ≡ −1ᵀ
C[R, R]−1

C[R, g],

which, as we show below, is the risk-minimizing level of govern-
ment debt that generalizes equation (16) to the case of multiple as-
sets. Whenever B∗ is well defined, we also define Z∗ ≡ 1−β

β
B∗ + ḡ.

Temporarily suppose that government portfolio weights are
fixed, meaning that there exist constants ψ1, ..., ψK such that

Bk
t∑

k Bk
t

= ψk for all t. Define R(s) ≡ ∑K
k=1 ψkRk(s). Then the optimal

policy problem is equivalent to the one in Section II. Thus, if the
government arbitrarily fixes its portfolio weights then, subject to
that arbitrary choice, all Section II insights about optimal debt
management and fiscal policy still apply.

Now suppose that the Ramsey planner optimally chooses gov-
ernment portfolio weights each period. The Ramsey problem in
this case can be written recursively with the end of period market
value of the government’s portfolio the only state variable in the
planner’s value function:

V (B ) = max
Z(·),B(·),B

∫ [(
R (s)ᵀ B − B(s)

) + γ� (Z (s))(23)

+βV (B(s))
]
π (ds) ,
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where maximization is subject to Z(s) ≤ Z, B(s) ∈ [B, B], 1ᵀB = B ,
and

(24) B(s) + Z(s) = R (s)ᵀ B + g (s) for all s.

We first establish that:

LEMMA 3. Problem (23) has a unique solution. If C[R, R] is non-
singular or if g is not in the span of R, then the invariant dis-
tribution generated by policies that attain V (B ) is unique; if
C[R, R] is singular and g is in the span of R, then optimal poli-
cies satisfy B̃(s, B ) = B for all s and Z(s, B ) is independent
of s.

Lemma 3 extends Proposition 1 and Proposition 3 for K > 1
assets. An additional insight of Lemma 3 is that if C[R, R] is
singular and g is in the span of R, then the complete market
Ramsey allocation can be attained by the planner.

We turn to quadratic approximations to characterize the mo-
ments of the invariant distribution of total debt and tax rates.
As in the Section II baseline model, we scale the volatility of all
shocks by σ and take a second-order Taylor expansion of the poli-
cies Z̃(s, B ; σ ), B̃(s, B ; σ ), and B̃(B ; σ ) around σ = 0.16 At σ = 0
the portfolio problem is indeterminate, but the next lemma shows
that there is a unique limiting portfolio as σ → 0 that solves a
variance minimization problem.

LEMMA 4. limσ→0 B̃(B ; σ ) = B∗(B ) where B∗(B ) solves

(25) min
B

var

(∑
k

BkRk + g

)
subject to 1ᵀB = B .

We can relate B∗ in equation (22) to B∗(·) defined in
Lemma 4. Suppose that the matrix C[R, R] is nonsingular. Then
the constraint 1ᵀB = B in equation (25) binds, making the risk-
minimizing variance depend on the level of debt B . This vari-
ance is minimized at B = B∗, making B∗ the risk-minimizing debt
level, which satisfies B∗ = 1ᵀB∗(B∗).17

16. We continue to assume that policies are sufficiently differentiable.
17. If C[R, R] is singular, then the constraint 1ᵀB = B does not bind, and any

debt level is risk-minimizing.
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As in Section II, we show that the B∗ is the long-run mean
of the second-order approximation to the optimal policy for the
market value of the government debt portfolio. When C[R, R] is
nonsingular, the Taylor expansion around B∗(B ) yields

B̃(s, B ) = B + β
[
g(s) − ḡ

] + [
βR(s) − 1

]ᵀ B∗ (B )

− β2 B
1ᵀC[R, R]−11

− β21ᵀ
C[R, R]−1

C[R, g]
1ᵀC[R, R]−11

+ O(σ 3, (1 − β)σ 2).

When C[R, R] is singular,

B̃(s, B ) = B + β
[
g(s) − ḡ

] + β
[
R(s) − 1

]ᵀ B∗ (B )(26)

+ O(σ 3, (1 − β)σ 2).

PROPOSITION 5. Suppose that C[R, R] is nonsingular. The invariant
distribution of {B̃t, Z̃t}t has

(i) Means

E
(
B̃t

) = B∗ + O(σ, 1 − β), E
(
Z̃t

) = Z∗ + O(σ, 1 − β);

(ii) Speeds of mean reversions

Et
(
B̃t+1 − B∗)
B̃t − B∗ = E0

(
Z̃t+1 − Z∗)

E0
(
Z̃t − Z∗)

= β−21ᵀ
C[R, R]−11

1 + β−21ᵀC[R, R]−11
+O(σ 3, (1 − β)σ 2);

(iii) Variances

var
(
B̃t

)=
(
1ᵀ

C[R, R]−11
)

var
(
−C[R, g]ᵀC[R, R]−1R+g

)
+ O(σ, 1 − β),

var
(
Z̃t

) =
(

1 − β

β

)2

var
(
B̃t

) + O(σ 3, (1 − β)σ 2).
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Government holdings of individual securities satisfy

B̃t = B∗ (
B̃t

) + O(σ 2, (1 − β)σ )(27)

= −C[R, R]−1
C[R, g] + C[R, R]−11

1ᵀC[R, R]−11

×
(

B̃t + 1ᵀ
C[R, R]−1

C[R, g]
)

+ O(σ 2, (1 − β)σ ).

Some examples illustrate these findings.

EXAMPLE 1. Suppose that there are two securities with var(Rk) > 0
for k = 1, 2 and that the return on security 1 is perfectly cor-
related with g while the return on security 2 is orthogonal
to the return on security 1. Then Proposition 5 implies that
the ergodic mean of the value of the government’s debt port-
folio is B∗ = − cov(R1,g)

var(R1) , that the speed of convergence to B∗ is

(1 + β2 var(R2)
var(R1)+var(R2) var(R1))−1, and that its ergodic variance is

0. From equation (27), the optimal portfolio along transition
paths satisfies

B̃1(B̃t) = var
(
R2

)
var

(
R1

) + var
(
R2

) B̃t + var
(
R1

)
var

(
R1

) + var
(
R2

) B∗

B̃2(B̃t) = var
(
R1

)
var

(
R1

) + var
(
R2

) B̃t − var
(
R1

)
var

(
R1

) + var
(
R2

) B∗,

with B̃2(B̃t) → 0 a.s.

Complete hedging can be achieved with the government hold-
ing security 1 only, just as in Proposition 2, so that holding any
security 2 is suboptimal asymptotically. If the market value of the
initial government debt does not equal B∗, it is optimal to invest
in security 2 along the transition path because doing this reduces
risk for the government until the steady state is reached. As a
result, noting that var(R2)

var(R1)+var(R2) < 1, the speed of convergence to
the long-run portfolio is slower than when only security 1 can be
traded.

D
ow

nloaded from
 https://academ

ic.oup.com
/qje/article-abstract/132/2/617/2724549 by Sim

on Fraser U
niversity user on 10 July 2019



642 QUARTERLY JOURNAL OF ECONOMICS

EXAMPLE 2. Consider a setting with two securities whose payoffs
are perfectly correlated with g and 0 ≤ var(R1) < var(R2).18

There exist unique constants ψ1, ψ2, ξ1, and ξ2 such that

ψ1 R1(s) + ψ2 R2(s) = g(s)

and

ξ1 R1(s) + ξ2 R2(s) = 1
β

.

Note that ψ1 + ψ2 = β ḡ and ξ1 + ξ2 = 1. Now the covari-
ance matrix C[R, R] is singular. The risk-minimizing portfolio
satisfies B∗,k(B ) = (B + β ḡ)ξk − ψk. Holding it allows the
government to attain complete markets allocations for any
B ; the value of government debt equal its initial value for all
t ≥ 0.

It is instructive to study how an optimal portfolio changes
as R2 approaches R1. For simplicity, suppose that R1(s) = 1

β
and

R2(s) = 1
β

− ε(g(s) − ḡ). For a given B , optimal asset positions are
B∗,2 = 1

ε
and B∗,1 = B − B∗,2, both of which become arbitrarily

large as ε → 0. This outcome explains why Buera and Nicolini
(2004) and Farhi (2010) found that the government should take
extremely large asset positions to hedge its risk. Those papers
allowed a planner to trade a risk-free one-period security plus
other securities (long bonds in Buera and Nicolini 2004, capital in
Farhi 2010). The returns on those securities had low volatilities
and high correlations with government expenditures. Consistent
with our example, those authors found that an optimal portfolio
has huge positions in these securities.

EXAMPLE 3. Suppose that cov(Rk, Rl) = 0 for all k �= l. Now C[R, R]
is a diagonal matrix and ∂ B̃k(B )

∂ B ∝ 1
var(Rk) from equation (27). As

the value of the outstanding government debt increases, its
optimal composition shifts toward securities that have lower
variances of returns. In the limit, as the variance of returns of
one security approaches 0, all of the adjustments to changes
in B use that security.

18. Note that risk-free returns are in the closure of the set of returns that are
perfectly correlated with g. We follow a convention of calling a risk-free security
to be perfectly correlated with g.
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We can use this example to construct a simple model of an
optimal maturity structure of government debt. Suppose that the
government can issue a one-period risk-free bond and a consol
with a stochastic coupon. Then the optimal issue of the consol
is B̃2

t = − cov(R2,g)
var(R2) , which is independent of B̃t, while the optimal

issue of the riskless security is B̃1
t = B̃t − B̃2

t . Hence, the optimal

effective maturity B̃2
t

B̃1
t

of government debt is decreasing in the value

of outstanding debt B̃t.

III.C. More General Shock Processes

In this section, we modify the Section II baseline model setup
to include richer shock processes. In addition to expenditure and
payoff shocks, we introduce fluctuations in productivity θ and al-
low g, p, θ to be correlated across time and with each other.19

We follow the set up of Section II but assume that state s = (p,
g, θ ) follows a first-order Markov process. The conditional proba-
bility density of st is described by a Markov kernel π (·|s ), where
s is the realization of the shock in period t − 1. We assume that π

has a unique invariant measure λ. The feasibility constraint now
takes the form

(28) ct + gt = θtlt,

and the return in state s is R(s, s ) = p(s)
β

∫
p(s′)π(ds′ |s ) .

Let � ≡ θ
1+γ

γ and Z ≡ τ (1 − τ )
1
γ . As in Section II, there is a

one-to-one correspondence between Z and τ for Z ≤ Z̄. The tax
revenues with productivity shocks are equal to �Z. Let ḡ and �̄

denote ergodic means of g and �. Let �(Z, s) ≡ l1+γ (Z,s)
1+γ

, where the
function l1+γ (Z, s) is now defined by

�(s)Z = �(s)
γ

1+γ l(Z, s) − l1+γ (Z, s).

19. In Online Appendix II we show that discount factor shocks as in Albu-
querque et al. (2016) are isomorphic to an economy with redefined g, p, θ shocks
and no discount factor shocks.
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Following Section II arguments, the Ramsey planner’s value func-
tion satisfies the Bellman equation

V (B , s ) = max
Z(·),B(·)

∫ [(
R(s, s )B − B(s)

) + γ�
(
Z(s), s

)
(29)

+ βV (B(s) , s)
]
π (ds|s ) ,

where maximization is subject to Z(s) ≤ Z, B(s) ∈ [B, B] and

(30) B(s) = R(s, s )B + g (s) − �(s)Z(s) for all s.

In the interior, optimal debt satisfies

(31) V
(
B̃t, st

) = EtV
(
B̃t+1, st+1

) + βcovt(Rt+1, V ′(B̃t+1, st+1)),

which extends the martingale equation (15) to persistent shocks.
As a counterpart to expression (16), we now define the risk-

minimizing government debt B∗ for the general case being studied
here. As before, the Ramsey planner chooses government debt to
minimize risk and fluctuations in the tax rate. The shocks here
introduce additional considerations not present in the Section II
baseline model. First, fluctuations in productivity imply that tax
revenues are stochastic even when the tax rate is constant. Fix
the tax rate at level τ and observe that primary deficit Xτ , defined
as the difference between expenditures and tax revenues, is

(32) Xτ (s) = g(s) − �(s)(1 − τ )
1
γ τ.

Fluctuations in the primary government deficit are driven by
shocks to both government expenditures and productivity. Fur-
thermore, when these processes are persistent, the current state
st conveys information about future primary deficits. Now govern-
ment debt will play an important role in hedging fluctuations in
the expected present value of primary deficits.

For a random variable x(s) that is a function of the current
state only, a discounted present value of x conditional on s is
PV (x; s) ≡ E[

∑∞
t=0 βtxt|s0 = s]. Since the planner keeps the tax

rate approximately constant, the mean of the invariant distri-
bution for debt and the level of tax rate are linked through the
government budget constraint by

(33)
(

1 − β

β

)
B = ḡ − �̄(1 − τ )

1
γ τ,
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which defines an implicit function τ (B). We define B∗ as the level
of debt that best hedges fluctuations in PV(Xτ (B); s):

(34) B∗ ≡ arg min
B

var
[
RB+ PV (Xτ (B))

]
.

We define Z∗ as Z∗ ≡ 1
�̄

[ḡ + 1−β

β
B∗].

We again use a second-order approximation of policies to show
that B∗ is the long-run target level of government debt. To state
things compactly, it helps to define two mappings. For a pair of
random variables x(s, s ), y(s, s ), the covariance conditional on
s is

Cx,y (s−) ≡
∫

x(s, s )y(s, s )π (ds|s−) −
(∫

x(s, s )π (ds|s−)
)

×
(∫

y(s, s )π (ds|s−)
)

and the conditional mean of x(s) is

E(x; s ) ≡
∫

x(s, s )π (ds|s−) .

Note that both Cx,y(·) and E(x; ·) are random variables on S. Taking
a Taylor expansion of optimal policies that attain the optimal
value function V (B , s ) that satisfies Bellman equation (29) along
lines taken in Section II we get20

(35)

B̃(s, B , s ) = B + [
g(s) − (1 − β) PV (g; s)

]
− �̄(B )

[
�(s) − (1 − β) PV (�; s)

] + B
[
βR(s, s ) − 1

]
− (1 − β)β2

[
B PV

(
CR,R; s

)
+ PV

(
CR,PV (g); s

)
− �̄(B )PV

(
CR,PV (�); s

)]
+ O(σ 3, (1 − β)σ 2),

where �̄(B ) = 1
�̄

[( 1−β

β
)B + ḡ].

The first line on the right side of equation (35) collects first-
order expansion terms that capture direct effects of shocks to g, p,
θ on the asset positions. Government debt increases if the current

20. A detailed derivation of equation (35) appears in Online Appendix I.D.
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realization of g is greater than annuitized expected future expen-
ditures, (1 − β)PV(g; s); if current realization of productivity is
less than annuitized expected future productivity (1 − β)PV(�; s);
or if the interest payments on debt are unexpectedly high. These
terms express how optimal policy uses debt to smooth aggregate
shocks and embody principles conveyed by Barro (1979). The sec-
ond line on the right side of equation (35) collects second-order
terms that consist of conditional variances and covariances of the
return with expenditure and productivity shocks, which capture
the hedging motives of the government.

It is convenient to rewrite equation (35) in terms of
ergodic moments of (g, p, θ ). For a random variable x(s, s ),
let Ex = ∫ ∫

x(s, s )π (ds|s )λ(ds ) be its ergodic mean. Similarly,
let var (x) and cov (x, y) denote ergodic variances and covariances
of random variables x and y, respectively. In Online Appendix I.D,
we show that under our assumption about π , we can write
equation (35) as

(36)

B̃(s, B , s ) = B + [
g(s) − (1 − β) PV (g; s)

]
− �̄(B )

[
�(s) − (1 − β) PV (�; s)

] + B
[
βR(s, s ) − 1

]
−β2 [

B var(R) + cov(R, PV (g))

− �̄(B )cov(R, PV (�))
] + O(σ 3, (1 − β)σ 2).

For a random variable x(s, s ), let x̂(s, s ) ≡ x(s, s ) − E(x; s ). We
can use equation (36) to obtain

PROPOSITION 6. The invariant distribution of {B̃t, Z̃t}t has

(i) Means

E
(
B̃t

) = B∗ + O(σ, 1 − β), E
(
Z̃t

) = Z∗ + O(σ, 1 − β);

(ii) Speeds of reversion to means

Et
(
B̃t+1 − B∗)
B̃t − B∗ = E0

(
Z̃t+1 − Z∗)

E0
(
Z̃t − Z∗)

= 1
1 + β2var (R)

+ O(σ 3, (1 − β)σ 2);
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(iii) Variances Define B(s) ≡ B∗ − β[E(PV (g − ḡ; s′); s) −
�̄(B∗)E(PV (� − �̄; s′); s)]. Then

var
(
B̃t − Bt

) =
var

(
ˆPV (g) − �̄(B∗) ˆPV (�) + BR̂

)
var (R)

+ O(σ, 1 − β),

var
(
Z̃t

) =
(

1 − β

β

)2

var
(
B̃t − Bt

) + O(σ 3, (1 − β)σ 2).

Proposition 6 shows that just as in Section II, the Ramsey
planner chooses government debt to minimize risk and keep the
tax rate approximately constant. One can extend our approxima-
tions (19) to show that the Euler equation (31) induces reversion of
government debt to a risk-minimizing level. Productivity shocks
now induce fluctuations in tax revenues even when the tax rate is
constant.

The risk-minimizing debt level B∗ can be computed from for-
mula (34) and further simplified after we observe that ∂

∂ Bτ (B) =
O(1 − β). Given this, we have

B∗ = −cov
(
R, PV (Xτ (B))

)
var(R)

+ O(σ, 1 − β) for any B

= −cov
(
R, PV (g)

) − ḡ
�̄

cov
(
R, PV (�)

)
var(R)

+ O(σ, 1 − β).(37)

The simple formula (37) for the approximate risk-minimizing
debt level presents a further insight that we shall exploit in Sec-
tions III.D and IV. It shows that the endogenous covariances that
appear in this formula are not very sensitive to values of τ (B) at
which they are evaluated. That suggests that if we were to observe
data generated under a suboptimal tax rate policy τ (B), observa-
tions of the primary deficit Xτ (B) would still allow us to compute
the optimal level of debt B∗ accurately by using equation (37).

We end this section by applying our formulas when g, �, and
p obey the AR(1) processes

gt = (1 − ρg)ḡ + ρggt−1 + εg,t,

�t = (1 − ρ�)�̄ + ρ��t−1 + ε�,t
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pt = p̄ + εp,t,

where εg, t, εp,t, ε�,t are i.i.d. over time with zero means. Now
cov(R, PV (g)) = cov(R,g)

1−ρgβ
and cov(R, PV (�)) = cov(R,�)

1−ρ�β
. Therefore

B∗ = −
(

1
1 − ρgβ

)
cov(R, g)
var(R)

+ ḡ
�̄

(
1

1 − ρ�β

)
cov(R,�)

var(R)
,

= −
(

β

1 − ρgβ

)
cov(εp, εg)

var(εp)
+ ḡ

�̄

(
β

1 − ρ�β

)
cov(εp, ε�)

var(εp)
.(38)

Equation (38) shows how autocorrelations affect the target level
of government debt. For instance, keeping ρ� fixed, higher per-
sistence of the expenditure shocks as measured by ρg implies a
higher absolute value of government debt asymptotically. The sign
of the covariance between returns and the primary government
deficit determines the sign of the mean level of government debt.

III.D. Risk Aversion and Endogenous Returns

We extend our analysis to a setting in which the representa-
tive agent has preferences that display risk aversion. We retain
other assumptions of Section III.C but now allow curvature in the
utility of consumption by assuming that preferences are described
by

(39) U (c, l) = c1−α − 1
1 − α

− l1+γ

1 + γ
.

We let Ux,t or Uxy, t denote first and second derivatives of U with
respect to x, y ∈ {c, l}. We assume that natural debt limits re-
strict the consumer, which ensures that first-order conditions are
satisfied off corners.

An allocation {ct, lt, Bt}t is a competitive equilibrium if
and only if it satisfies the feasibility constraint (28) and imple-
mentability conditions

(40)

Uc,tBt + Uc,t

[
θtlt + Ul,t

Uc,t
lt − gt

]
= ptUc,t

βEt−1 ptUc,t
Uc,t−1Bt−1 t ≥ 1,

(41) c0 + b0 = −Ul,0

Uc,0
l0 + p0β

−1B−1.
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An optimal allocation maximizes E0
∑

t βtU (ct, lt) subject to con-
straints (28), (40), and (41).

It is helpful to redefine variables. Let Bt ≡ Uc,tBt, Rt ≡
Uc,t pt

βEt−1Uc,t pt
, and Xt ≡ Uc,t[gt − τtθtlt] be marginal utility adjusted

debt, return, and primary deficit. Using the household’s first-order
necessary conditions and the resource constraint, at any state s
for a given tax rate τ , a household’s consumption cτ (s) satisfies

(42) (1 − τ ) θ (s)cτ (s)−α +
(

cτ (s) + g(s)
θ (s)

)γ

= 0.

Along any history (st−1, st) effective returns and effective deficits
can be expressed in terms of exogenous states st and a period t tax
rate τ as

Rτ

(
st, st−1

)
= cτ (st) (st)−α p (st)

β
∫

cτ (s′) (s′)−α p (s′) π (ds′|st−1)
,

Xτ

(
st, st−1

)
=

(
cτ (st) + g (st)

θ (st)

)1+γ

− cτ (st)1−α .

These transformations allow us to assert that the Ramsey plan-
ner’s optimal value function for t ≥ 1 satisfies the Bellman equa-
tion:

V (B , s ) = max
τ (·),B(·)

∫ [
U

(
cτ (s)(s),

cτ (s)(s) + g(s)
θ (s)

)

+βV
(B(s), s

)]
π (ds|s ) ,(43)

where maximization is subject to

(44) B(s) = Rτ (s, s )B + Xτ (s) (s) for all s.

Problem (43) closely resembles problem (29) except that all vari-
ables have been transformed into their effective counterparts.21

21. The planner’s problem at t = 0 at initial debt B−1 and state s−1 is

max
τ (·),B(·)

∫ [
U

(
cτ (s)(s),

cτ (s)(s) + g(s)
θ (s)

)
+ βV

(B(s), s
)]

π (ds|s−1) .

subject to

B(s0) = Xτ (s) + Uc
(
cτ (s)(s)

)
p(s)β−1B−1 ∀s.
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The planner now uses effective debt to smooth risk, and the evo-
lution of the optimal effective government debt level satisfies

V ′ (B̃t, st
) = EtV ′ (B̃t+1, st+1

) + βcovt(Rt+1, V ′(B̃t+1, st+1)),

an analogue of equation (31). The economic intuition for this equa-
tion is that the planner still uses the covariance of returns with
the shadow cost of debt to hedge risk, but adjusts all the variables
for the shadow costs of raising revenues.

We can use insights from Section III.C to define a risk-
minimizing level of effective debt as

(45) B∗ ≡ arg min
B

var
[RB + PV (Xτ (B))

]
,

where τ (B) satisfies the following ergodic version of the govern-
ment budget constraint

(46)
(

1 − β

β

)
B = EXτ (·) .

We extend Proposition 6 to accommodate risk-averse preferences.

PROPOSITION 7. The ergodic mean and the speed of mean reversion
of effective debt {B̃t}t are

EB̃t = B∗ + O(σ, 1 − β),

Et
(B̃t+1 − B∗)
B̃t − B∗ = 1

1 + β2var(Rτ (B∗))
+ O(σ 3, (1 − β)σ 2).

Furthermore, B∗ satisfies

(47) B∗ = −cov
(Rτ (B), PV

(Xτ (B)
))

var
(Rτ (B)

) + O(1 − β) for any B.

Proposition 7 confirms our theme that a target level of govern-
ment debt under the optimal plan solves a variance-minimization
problem. It also extends a finding from equation (37) that although
second moments of returns and the primary government deficit
depend on government policy, effects on the tax rate are small, so
omitting them lead to errors of order only O(1 − β).

Equation (47) has implications about an optimal level of risk-
free debt that relate to findings of Aiyagari et al. (2002). The return
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on risk-free debt is known one period in advance, but the effective
return is not. In particular, the effective return is high in states
in which consumption is low, namely, states in which the primary
government deficit is high, either because government expendi-
tures are high or productivity is low, making cov(Rτ , PV (Xτ )) > 0.
Therefore, equation (47) implies that an optimal long-run level of
risk-free debt is negative, that is, the planner accumulates assets.
Furthermore, since aggregate consumption growth is not volatile,
at least in U.S. data, var(Rτ ) would be low in most U.S. calibra-
tions, implying that the long-run asset level should be quite high
(see also Example 2 in Section III.B). This provides intuition for
some of the numerical findings in Aiyagari et al. (2002) and some
subsequent contributions.

We can apply insights from Section III.B to situations in
which the planner manages a portfolio of K securities. A version
of the planner’s Bellman equation (43), modified to have effec-
tive total assets to be the state variable, extends along the lines
in equation (23). In the interior, a martingale equation restricts
every security, namely,

V ′ (B̃t, st
) = EtRk

t+1V ′ (B̃t+1, st+1
) = EtV ′ (B̃t+1, st+1

) + βcovt(Rk
t+1,

V ′(B̃t+1, st+1)),(48)

where Rk
t+1 is the effective return on security k. Equation (48)

implies equation (34) of Farhi (2010) that describes CCAPM Euler
equations. Now let Rk

τ be the effective returns on asset k evaluated
at tax rate τ , and let Rτ = [R1

τ ...RK
τ ] be a matrix of these returns.

Combining the insights from this section and Lemma 4, it follows
that the risk-minimizing portfolio can be approximated, up to the
order O(σ, 1 − β), by

(49) −C[Rτ (0),Rτ (0)]−1
C[Rτ (0), PV (Xτ (0))].

IV. A QUANTITATIVE EXAMPLE

We now study an economy with a risk-averse representative
consumer together with g, p, θ processes calibrated to match styl-
ized U.S. business cycle facts during the post-World War II pe-
riod. We use this calibrated economy to verify the accuracy of
our approximations for the ergodic behavior of government debt,
the tax rate, and tax collections under an optimal plan. Specifi-
cally, we compare the means, variances, and convergence speeds
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using the expressions in Proposition 7, equation (49) governing
the risk-minimizing portfolio, and related extensions of expres-
sions for other moments reported in Proposition 6.

We set utility function parameters α, γ , β equal to 1, 2, 0.98.
We begin by assuming that households and the government trade
a single one-period security and parameterize a stochastic process
for (θ t, pt, gt) in terms of the following AR(1) specifications:

ln θt = ρθ ln θt−1 + σθεθ,t

ln gt = ln ḡ + χgεθ,t + σgεg,t

ln pt = χpεθ,t + σpεp,t,

where εθ ,t, εg,t, and εp,t are i.i.d. standard normal random
variables.

Our parameterizations of productivity and government ex-
penditures are standard, but our calibration of asset payoffs is
less common. The literature typically assumes that the real pay-
off on government debt is risk-free and calculates returns on that
asset from a marginal utility of a representative consumer within
a neoclassical growth model. This approach unfortunately implies
asset returns that are not consistent with observed returns on gov-
ernment debt. That deficiency matters for us because our formulas
assert that the variance and covariance of returns on government
debt are important determinants of optimal debt management.
We set parameters of the stochastic process of payoffs pt to assure
that the return on the government’s portfolio matches the return
on the security held or issued by the government in our model.22

Table II documents our calibration targets for parameters
(ḡ, ρθ , χg, χp, σθ , σg, σp) in terms of moments of output, government
expenditures, and bond returns. We use time series for these vari-
ables for 1947–2014 at annual frequencies. Except for returns,
we took logarithms of all variables and then Hodrick-Prescott
prefiltered them, using a smoothing parameter equal to 6.25. For

22. The finance literature argues for a stochastic discount factor that is suf-
ficiently volatile and has a predictable component to account for premia and
volatility of returns. In Online Appendix II we show that that our model with
payoff shocks is essentially equivalent to a model with discount factor shocks.
The stochastic process for discount factor shocks can be reverse engineered such
that one can replicate the desired asset pricing moments. However, in line with
the payoff shock framework used throughout the article, we chose to calibrate pt
directly.
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TABLE II
PARAMETERS AND TARGETED MOMENTS IN THE COMPETITIVE EQUILIBRIUM WITH

FITTED U.S. TAX POLICIES

Parameter Value Moment Model Data

Log output
σ θ 0.02 Std. dev. 1.7% 1.6%
ρθ 0.35 Auto corr 0.23 0.23

Returns
σ p 0.05 Std. dev. 5.2% 5.1%
χp 0.25 Corr with log yt −0.008 −0.004

Log expenditures
ḡ 0.26 Mean gt

yt
26% 26%

σ g 0.02 Std. dev. 2.6% 2.6%
χg −0.2 Corr with log yt −0.14 −0.15

output yt and government expenditures gt, we use Bureau of Eco-
nomic Analysis data for aggregate real labor earnings and federal
government consumption expenditures plus transfer payments.23

We measure Bt as the real market value of gross federal debt
series published by the Federal Reserve Bank of Dallas.24

We propose two measures of returns on government debt. As a
baseline, we impute real returns Rt using data on the real federal
primary deficit25 Xt and market value of government debt Bt. The
observed duration of government debt has been approximately
constant, allowing us to write the government budget constraint
as

(50) (pt + qt)Bt−1 = qtBt − Xt.

Multiply and divide the first term by qt−1 and use the fact that the
holding period return for long-term debt is Rt = qt+pt

qt−1
to rewrite

23. Since in our model we abstract from capital, our measure of output y is
aggregate labor earnings. Results remain essentially unchanged if we use GDP
per capita instead.

24. Calculation of this series takes into account outstanding marketable and
nonmarketable debt of different maturities issued by the Treasury and uses cur-
rent market prices to convert par value to market value.

25. We measure this as government expenditure, that is, federal consumption
and transfer payments, minus total federal tax receipts, both from the Bureau of
Economic Analysis.
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TABLE III
OLS ESTIMATES FOR TAX RULE

Parameter Value

τ̄ 0.25 (0.021)
ρτ− 0.19 (0.14)
ρy, ρy− 0.09 (0.08), 0.21 (0.08)
ρg, ρg− 0.11 (0.06), 0.11 (0.06)
ρR, ρR− 0.04 (0.03), −0.02 (0.03)
ρB− 0.02, (0.05)

Note. The numbers in brackets are standard errors.

equation (50) as

(51) Rt = Bt − Xt

Bt−1
,

where Bt = qtBt is the observed market value of government debt.
The average annual return in our sample is about 5% and its stan-
dard deviation is 5%. As an alternative measure, we also calibrate
payoffs to match the moments of the real one year U.S. Treasury
yield, obtained from release H.15 of the Board of Governors of
the Federal Reserve System. The average return in our sample
is 2.0% with a standard deviation of 2.6%. The main difference
between the two return measures comes from the fact that capital
gains from revaluations of long-term debt are captured in imputed
returns but not in one-year Treasury yields.

Returns in our model are endogenous and depend both on
parameters and on government policy {τ t, Bt}t. We assume that
the tax rate conformed to the rule

τt = (1 − ρτ )τ̄ + ρτ τt−1 + ρY log yt + ρY log yt−1 + ρggt + ρg gt−1

+ ρRRt + ρR Rt−1 + ρB log Bt−1,(52)

whose coefficients we estimated with an OLS regression using
our series on output, expenditure, returns, debt, and an average
marginal income tax rate τ t obtained from Barro and Redlick
(2011). Our specification (52) is flexible enough to capture how
tax rates are persistent and how they adjust to movements in
government expenditures, returns, and the level of government
debt. We report estimated coefficients of equation (52) in Table III
and the in-sample fit in Figure II. Given our estimated tax rule,
we set debt {Bt}t to satisfy the government’s budget constraint.
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FIGURE II

Fitted Debt versus (H.P. Filtered) Average Marginal Tax Rates

Online Appendix III provides details about how we compute
a competitive equilibrium given government policy {τ t, Bt}t.
Table II summarizes parameter values and the fit of a compet-
itive equilibrium outcomes to U.S. data.

Using this calibration, we compute a global approximation
to the Ramsey allocation using time iteration on the Euler
equations of the planning problem.26 Online Appendix III reports
details about the numerical procedure. In Table IV, we compare
predictions of our quadratic approximations about the behavior
of government debt and tax revenues to those obtained by using
a more accurate global numerical procedure. Given our assump-
tion of logarithmic utility, effective debt and returns are simply
Bt = Bt

ct
and Rt = Rtct

ct−1
. Following Proposition 7, we use equation

(47) evaluated at τ (0) to calculate the risk-minimizing level of
debt and var(Rτ (0)) to compute the speed of mean reversion. We
similarly use equations in Proposition 6, now written in terms of

26. In our case the optimal policies for effective debt and taxes can be cast
as functions of the derivative of the value function of the planner. An accurate
approximation of the Euler equation provides much more precise information of
the slope of the value function than would an accurate approximation of its level.
See McGrattan (1996) and Judd (1998) for more details on Euler equation-based
projection methods and value function iteration methods.
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effective units, to compute the ergodic variance of effective debt
and moments of tax rates Zt = τt(1 − τt)

1
γ .

We computed the ergodic distribution by simulating policies
computed using the global approximation method. The first two
columns in Table IV show that for the baseline calibration, our
expressions for the ergodic distribution of debt and tax revenues
approximate well those obtained from the simulations. As an
illustration of how the approximations do away from the ergodic
distribution, we plot E0Bt using

(53) E0[Bt − B∗] ≈ (Bt − B∗)
(

1
1 + β2var(Rτ (0))

)t

,

and compare it to the mean path of length 15,000 periods
constructed using 10,000 simulations under policies computed
using the more accurate global methods. Figure III indicates that
equation (53) gives a very accurate approximation for the entire
path and not just its long-run target level of effective debt.

An insight of Proposition 7 is that covariances and vari-
ances are not very sensitive to the policies under which they
are evaluated. Therefore, one should expect that the calculation
of these variances in the data, generated by the actual rather
than an optimal policy, produce reliable estimates of the optimal
long-run debt level. We verify this as follows. Consider a simple
first-order VAR[ Xt

log yt

]
= A

[ Xt−1
log yt−1

]
+ �

[
εX ,t
εy,t

]
.

Let [aX ay] be the first row of the matrix [I − βA]−1. Then the
expected present value of the primary government surplus condi-
tional on (Xt, log yt) is

PV (X ; (Xt, log yt)) = [
aX ay

] [ Xt
log yt

]
,

and an appropriate estimate of the target level of debt is

B∗ = −ay
cov(Rt, log yt)

var(Rt)
− aX

cov(Rt,Xt)
var(Rt)

.

We use our time series for returns, consumption, output, and the
primary government deficit to construct time series of Rt and Xt.
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FIGURE III

Conditional Mean Paths of Effective Debt

The solid line is the conditional mean path for effective debt, E0Bt after av-
eraging across 10,000 simulated paths. The dashed line is computed using the
equation (53).

TABLE V
VAR ESTIMATES

Parameter Value

αy −0.83

αχ 0.50
cov(R,log y)

var(R) 0.063
cov(R,χ )
var(R) −0.006

var(R) 0.003

Table V presents the estimated coefficients and moments that we
then use to estimate both the target level of effective debt and the
speed of the mean reversion reported in the column titled VAR in
Table IV.

The findings in Table IV convey that at our baseline cali-
bration the long-run effective debt is close to 0, that the conver-
gence is slow (half-life of 237 years), that government debt has
large fluctuations (the standard deviation is 18%), while there are
small movements in the tax rate represented by Zt (the standard
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deviation is 0.2%). A key empirical fact that drives these results is
that a substantial component of fluctuations in returns is uncor-
related with fundamentals. That makes holding large positions
frustrate the hedging motive and drives the optimal plan toward
low assets.

In our baseline, we chose the payoff process to match im-
puted returns on the total debt portfolio traded by the government.
To check robustness of our results we show that our approxima-
tion procedure continues to work when we instead measure the
returns using the one-year U.S. Treasury yield or assume that
the real debt traded by the government is risk-free. In Table IV,
the columns “1 yr. yield” and “Risk-free debt” report moments
of the ergodic distribution for our calibrated economy in which we
set χp = −0.10, σ p = 0.02 to match the standard deviation of one-
year U.S. Treasury yields and the correlation of those yields with
output, which are 2.6% and −0.20 in our sample, respectively,
and then, alternatively, χp = σ p = 0 to obtain the risk-free pay-
off. These alternative assumptions about returns progressively
weaken the orthogonal component. Consistent with our discus-
sion of equation (47), the government holds a larger asset position
(i.e., a negative debt) to exploit the stronger positive correlation
of returns and deficits. Because the speed of mean reversion is
inversely related to the volatility of returns, the half-life of debt
increases from 237 years in the baseline calibration to 655 years
for the calibration with one-year yields and increases further to
1,244 years for the risk-free debt. In all of these settings, our sim-
ple formulas capture the comparative outcomes extremely well.

We now extend our analysis to allow the government to trade
multiple assets. We pursue two aims with this extension. First,
we want to evaluate the accuracy of approximations provided by
equation (49). Second, we want to highlight additional insights
about optimal government portfolio management and to reexam-
ine an argument of Lucas and Zeldes (2009) that it is optimal for
a government to take a positive position in a risky security that
pays a risk premium. Although our problem has some features in
common with the problem solved by Merton (1969), there are two
critical differences: our problem is posed within a general equi-
librium in which a Ramsey planner takes into account how its
government actions affect asset returns, and the Ramsey planner
is benevolent.

We fix parameters as described above except that now we as-
sume that the government trades two securities. One is a riskless
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TABLE VI
ERGODIC PORTFOLIO USING GLOBAL SOLUTION AND FORMULA (49)

Global Quadratic
Portfolio holdings solution approx.

Risk-free bond −42.40% −43.00%
Risky asset −0.05% 0.06%

real bond; the logarithm of the payoff on the other security is de-
scribed by ln pt = χpεθ ,t + σ pεp,t, where χp, σ p are now calibrated
to match the correlation of dividends on the S&P500 with output
and the standard deviation of these dividends, which for our sam-
ple take the values 0.30 and 4.5%. Making the payoffs positively
comove with total factor productivity (TFP) results in higher ex-
pected holding period returns relative to the risk-free rate.27 We
set the initial debt at 130% of output.

From Table VI we see that the formula in equation (49) accu-
rately describes the long-run portfolio in addition to the speed of
mean reversion and standard deviation of total assets. In the long
run, the optimal plan has negative debt invested almost solely
in the risk-free asset. Initially, when it is indebted, the govern-
ment shorts the stock market. Although the initial short position
in the stock market exposes the government to the orthogonal
component εp,t in the payoff, temporarily it provides a good hedge
by delivering higher returns in times of low TFP. Eventually, the
government uses only the risk free bond to hedge. The dynamics
of portfolio rebalancing are consistent with Example 3 from Sec-
tion III.B. The two subplots in Figure IV show the marginal utility
adjusted government positions in the risk-free security (top) and
in the risky security (bottom). The figure plots the mean path of
the portfolio positions computed using the global approximation
described above (solid lines) and using extensions of our formulas
from Proposition 5 to risk aversion28 (dashed lines). As with the

27. Given our assumption of isoelastic preferences, we cannot match the risk
premium quantitatively, but we conjecture that our approach extends to Epstein-
Zin preferences and richer environments with more realistic implications for asset
pricing behavior such as one considered by Albuquerque et al. (2016). We leave
this extension to future work.

28. Extending the formulas amount to replacing R with Rτ (0) returns and g
with PV (Xτ (0)).

D
ow

nloaded from
 https://academ

ic.oup.com
/qje/article-abstract/132/2/617/2724549 by Sim

on Fraser U
niversity user on 10 July 2019



FISCAL POLICY AND DEBT MANAGEMENT 661

FIGURE IV

Conditional Mean Paths of Portfolio Holdings

Marginal utility weighted holdings of the risk-free bond (top) and “stock market”
security (bottom). Solid lines represent paths computed using the global methods,
and dashed line represent our approximations. Positive values imply that the
government is shorting the security; thus, the government is initially in debt
holding negative positions in both securities.

single asset case, our approximations capture the convergence to
as well as the level of the ergodic mean.

Our quantitative analysis confirms the optimality of a port-
folio management rule based on the variance-minimization prin-
ciple outlined in Section III.B and cautions against following rec-
ommendations that a government should on the margin invest in
assets that pay a risk premium. In our economy, the Ramsey plan-
ner shares households’ aversion to consumption risk, an aversion
that in general equilibrium requires a return premium to com-
pensate for bearing risk. The Ramsey planner finds it optimal to
invest in such assets only in so far as doing so helps reduce the
total riskiness of gross government expenditures.

V. CONCLUDING REMARKS

This article characterizes optimal debt management and flat
rate taxation in a fairly general incomplete markets model. We
express dynamic hedging motives in a terms of a fiscal risk min-
imization problem. We present simple formulas for the mean,
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variance, and speed of convergence to an ergodic distribution of
government debt. We analyze some extensions of our basic envi-
ronment, an endeavor we pursue in Bhandari et al. (2017b), where
we study economies in which persistent differences in skills un-
leash social motives for redistribution and social insurance. The
analysis here sets the stage for such extensions—partly by pro-
viding appropriate tools for approximating equilibria well and
for formulating Ramsey problems in mathematically convenient
ways, and partly by isolating transcendent forces that ultimately
determine transient and long-run dynamics of government debt
and taxes in richer settings. For example, appropriately adjusted
fiscal risk minimization problems continue to shape the mean of
an ergodic distribution of government debt, while the hedging
costs of being away from that fiscal risk-minimizing debt level
shape speeds of convergence. Another extension, Bhandari et al.
(2017a), uses the empirical properties of returns across maturities
to compute an optimal maturity structure of government debt.
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An Online Appendix for this article can be found at The Quar-
terly Journal of Economics online.
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Schmitt-Grohé, Stephanie, and Martin Uribe, “Solving Dynamic General Equilib-
rium Models Using a Second-Order Approximation to the Policy Function,”
Journal of Economic Dynamics and Control, 28 (2004), 755–775.

Siu, Henry E, “Optimal Fiscal and Monetary Policy with Sticky Prices,” Journal
of Monetary Economics, 51 (2004), 575–607.

D
ow

nloaded from
 https://academ

ic.oup.com
/qje/article-abstract/132/2/617/2724549 by Sim

on Fraser U
niversity user on 10 July 2019


