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Chapter 1

Introduction to
continuous-time
calculus

1



Literature: Øksendal (2007), Chapters 1–6 contain most of the mathe-
matical foundations. Further topics (Feynman–Kac formula, Kolmogorov
equations, Girsanov theorem, etc.) are in Chapter 8. The Appendices in
Duffie (2001) provide a somewhat informal treatment of a subset of the
topics.

Karlin and Taylor (1981), Chapter 15 contains an excellent treatment
of boundary classification of diffusions.

Stokey (2008) provides a new treatment of boundary control problems
in macroeconomics, without detailed technicalities of stochastic calculus. It
builds on the previous well-known book by Dixit and Pindyck (1994).
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1.1 Mathematical preliminaries

Definition 1.1 Let Ω be a given set. Then a σ-algebra F on Ω is a
family F of subsets of Ω that satisfies:

1. ∅ ∈ F

2. F ∈ F =⇒ F C ∈ F (closure to complements)

3. A1, A2, . . . ∈ F =⇒ A = ∪∞
i=1

Ai ∈ F (closure to countable

unions)

The pair (Ω, F) is called a measurable space.
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Definition 1.2 A probability measure P on (Ω, F) is a function P :
F → [0, 1] such that

1. P (∅) = 0, P (Ω) = 1

2. If A1, A2, . . . ∈ F and {Ai}∞
i=1 is disjoint (Ai ∩ Aj = ∅ for i 6= j)

then P

∪∞

i=1
Ai


 = Σ

∞
i=1

P (Ai) .

The triple (Ω, F , P ) is called a probability space. It is called a
complete probability space if F contains all subsets G of Ω with P -
outer measure zero, i.e. with

P ∗ (G) := inf {P (F ) : F ∈ F , G ⊂ F} = 0.

Elements of Ω are called outcomes, elements of the σ-algebra are called
events.

Subsets F of Ω which belong to F will be called F-measurable.

Jaroslav Borovicka


Jaroslav Borovicka




Definition 1.3 Let U be a family of subsets of Ω. We say that U gen-
erates the σ-algebra FU if FU is the smallest σ-algebra containing U .,
i.e.

FU = ∩ {F : F is a σ-algebra on Ω and U ⊂ F} .

Example 1.4 Consider Ω = R
n (more generally, let Ω be a topological

space). Define U to be the collection of all open subsets of Ω. Then
B = FU is the Borel σ-algebra on Ω, and the elements B ∈ B are
Borel sets.

Remark 1.5 A typical application in our enviroment will be a σ-algebra
generated by observed paths of a Brownian motion.
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Definition 1.6 Let (Ω, F , P ) be a probability space. Then the function
Y : Ω → R

n is called F-measurable if for all open sets (or, equiva-
lently, Borel sets) U ⊂ R

n:

Y −1 (U) := {ω ∈ Ω : Y (ω) ∈ U} ∈ F .

If X : Ω → R
n is any function, then the σ-algebra FX generated by

X is the smallest σ-algebra on Ω containing all the sets

X−1 (U) : U ⊂ R
n is open.
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Random variables, expectations, change of measure

Definition 1.7 A random variable X is an F-measurable function
X : Ω → R

n.

Notice that every random variable induces a probability measure µX on
R

n, defined as
µX (B) = P


X−1 (B)


 .

The measure µX is called the distribution of X (under P ).

Definition 1.8 The number

E [X ] :=
∫

Ω
X (ω) dP (ω) =

∫
Rn xdµX (x) ,

if it exists, is called the expectation of X.
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Definition 1.9 Let X : Ω → R
n be a random variable and p ∈ [1, ∞).

The Lp-norm of X is defined as

‖X‖p = ‖X‖Lp(P ) =



∫
Ω

|X (ω)|p dP (ω)



1
p

with the sup norm for p = ∞:

‖X‖∞ = ‖X‖L∞(P ) = inf {N ∈ R : |X (ω)| ≤ N a.s.}

An Lp-space is the space of all random variables with a finite Lp-norm:

Lp (P ) =


X : Ω → Rn; ‖X‖p < ∞



 .
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The expectation above is computed under measure P . Frequently, we will
be going from one measure to another. In order to do so, we will be exploiting
the Radon–Nikodým theorem.

Definition 1.10 Two measures P and Q on (Ω, F) are said to be equiv-
alent if ∀F ∈ F , Q (F ) = 0 ⇐⇒ P (F ) = 0.

Q is said to be absolutely continuous with respect to P if ∀F ∈
F , P (F ) = 0 =⇒ Q (F ) = 0.

Theorem 1.11 (Radon–Nikodým) Let P and Q be two measures on
(Ω, F) such that Q is absolutely continuous with respect to P . Then
there exists a unique F-measurable function Y : Ω → R+ such that

Q (F ) =
∫

F
Y dP, ∀F ∈ F .

Proof. Omitted.
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We can symbolically denote Y = dQ
dP , which we will call the Radon–

Nikodým derivative. The reason is that, symbolically

Q (F ) =
∫

F

dQ

dP
dP =

∫
F

dQ.

Example 1.12 Assume that (Ω, F) = (Rn, B), i.e., we have a measur-
able space with Borel σ-algebra. Assume that the two measures P and
Q are absolutely continuous with strictly positive densities on R

n. Then
we have

Q (F ) =
∫

F
q (x) dx =

∫
F

q (x)

p (x)
p (x) dx

so that the Radon–Nikodým derivative is given by Y (x) = q (x) /p (x).
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The Radon–Nikodým theorem will also help us with the construction of
conditional expectations.

Definition 1.13 Let H ⊂ F be a σ-algebra. The conditional expec-
tation of X conditional on H is the function E [X | H] : Ω → R

n such
that

1. E [X | H] is H-measurable,

2.
∫

H
E [X | H] dP =

∫
H

XdP for all H ∈ H.

Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka




Characteristic function

Definition 1.14 The characteristic function of a random variable
X : Ω → R

n for X = (X1, . . . , Xn)′ is the function φX : Rn → C defined
as

φX (u) = E [exp (i (u · X))] = E [exp (i (u1X1 + . . . + unXn))]

where u ∈ R
n and i is the imaginary unit. In other words, φX is the

Fourier transform of X (more precisely, of the measure P (X ∈ dx)).

The characteristic function of X uniquely determines its distribution.
Also, for X : Ω → R

n with X ∼ N (µ, Ξ), you can verify that

φX (u) = exp

i (u · µ) − 1

2
u′Σu


 . (1.1)
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Filtrations and stochastic processes

Definition 1.15 A filtration {Ft : t ∈ T } on (Ω, F) is a family of σ-
algebras Ft ⊂ F such that for all s, t ∈ T ,

s < t =⇒ Fs ⊂ Ft.

Remark 1.16 Since ∀t ∈ T , Ft is a σ-algebra such that Ft ⊆ F , we can
define a conditional expectations operator on Ft using Definition 1.13.
When there is no confusion, we will use the notation

E [X | Ft] =̇Et [X ] .

Intuitively, we can view a stochastic process {Xt : t ∈ T } is a parame-
terized collection of random variables on (Ω, F , P ) with values in Rn. For
each t ∈ T , Xt is then a random variable that maps ω ∈ Ω into R

n. Also,
for every ω ∈ Ω, Xt (ω) is a function that maps t into R

n (also called a
path or a trajectory of the process). However, we would like to also achieve
certain consistency conditions across time. We therefore define the process
as a measurable function on the product σ-algebra on Ω × T .
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Definition 1.17 The product σ-algebra F ⊗ B (T ) on Ω × T is the
σ-algebra generated by the subsets of the form F × B where F ∈ F and
B ∈ B where B is the Borel σ-algebra on T .

Definition 1.18 A stochastic process is a function X : Ω × T →R
n

that is measurable with respect to the product σ-algebra F ⊗ B (T ) on
Ω × T .

The stochastic process is a function of two arguments now, Xt (ω). For a
given ω, the function X· (ω) is a sample path.

Definition 1.19 A stochastic process X is adapted to filtration {Ft}
if, ∀t ∈ T , the function Xt is Ft-measurable.

An adapted stochastic process is such that the realization of its path up
to time t depends on information revealed up to time t.
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Convergence theorems

Billingsley (1979), Section 16.

The following theorems will be useful in the proofs of many of our state-
ments. They describe the properties of limits for expectations of sequences
of measurable functions.

When we talk about integrability here, we have in mind Lebesgue in-
tegrability, i.e. f is integrable if both f+ and f− are integrable, because∫

fdµ =
∫

f+dµ −
∫

f−dµ.

Proposition 1.20 (Dominated convergence theorem) Let (Ω, F , µ)
be a measure space and let {fn} be a sequence of measurable functions
fn : Ω → R. If the sequence converges pointwise almost everywhere to
a function f (fn → f) and if there is an integrable function g such
that |fn (ω)| ≤ g (ω) almost everywhere for all n, then f and all fn are
integrable and

lim
n→∞

∫
fndµ =

∫
fdµ.

Proof. Omitted.



Proposition 1.21 (Monotone convergence theorem) Let (Ω, F , µ)
be a measure space and let {fn} be a non-decreasing sequence of non-
negative measurable functions fn : Ω → R. If the sequence converges
pointwise almost everywhere to a function f (i.e, 0 ≤ fn ր f), then f
is measurable and

lim
n→∞

∫
fndµ =

∫
fdµ.

Proof. Omitted.

Proposition 1.22 (Fatou’s lemma) For a sequence of nonnegative
measurable functions fn,

∫
lim inf

n
fndµ ≤ lim inf

n

∫
fndµ.

Proof. Omitted.



1.2 Martingales and stopping times

Definition 1.23 An n-dimensional process X = {Xt}t∈T on (Ω, F , P )
is a martingale with respect to the filtration {Ft} and the proba-
bility measure P if:

1. Xt is Ft-measurable (i.e., X is adapted),

2. E [|Xt|] < ∞ for all t ∈ T ,

3. E [Xs | Ft] = Xt for all s ≥ t.

A supermartingale is a process for which condition 3. is replaced
by E [Xs | Ft] ≤ Xt, and a submartingale is a process for which con-
dition 3. is replaced by E [Xs | Ft] ≥ Xt.

A martingale is always defined with respect to a particular filtration.
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Example 1.24 Consider a fair gamble process starting at X0 = 0, and
with a 0.5 chance of winning $1, and 0.5 chance of losing $1 in every
period, i.e.,

Xt+1 =





Xt + 1 with probability 0.5
Xt − 1 with probability 0.5

.

It is straightforward to show that X, representing accumulated winnings,
is a martingale.
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Definition 1.25 A stopping time is an F-measurable function τ :
Ω → T (a random variable) such that

{ω ∈ Ω : τ (ω) ≤ t} ∈ Ft. (1.2)

A stopping time is said to be bounded if there exists a constant
C < ∞ such that P (τ ≤ C) = 1, and is said to be finite (almost surely)
if P (τ < ∞) = 1.

A stopping time is a random variable – for outcomes ω ∈ Ω in different
F ∈ F , there is potentially a different value of τ (ω) — and at each time t,
it is known whether the stopping occurred or not.

An example of a stopping time is the time when a process hits a particular
boundary.
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Example 1.26 Consider a continuous-time univariate process X with
continuous sample paths and the filtration {Ft}t∈T generated by X. The
first passage time (or crossing time) of threshold k ∈ R is the time
of first crossing of the threshold:

τk (ω) = min {t : Xt (ω) = k} .

Notice that the first passage time is a stopping time, since the set in
(1.2) is the set of paths that crossed k before t, and this set is in Ft.

Example 1.27 On the other hand, the last passage time is in general
not a stopping time, because the set



ω ∈ Ω : τk (ω) ≤ t



 depends on the

trajectories of the stochastic process in the future (given information at
time t, we do not generally know if the process will cross k again in the
future), and thus is not in Ft.
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Optional stopping theorem in discrete time

In this section, we work in discrete time and want to prove the following
statement: Let τ be a stopping time and X a martingale with continuous
sample paths. Then the stopped process Xτ , defined as

Xτ
t = Xt∧τ = Xmin{t,τ}

is also a martingale.
Observe the construction of the stopped martingale. For a given ω ∈ Ω,

the path of X is the function Xt (ω) of time t. Also associated with this ω is
the realization of the stopping time τ (ω). The path of the stopped process
is therefore

Xτ
t (ω) =





Xt (ω) if t < τ (ω)
Xτ (ω) (ω) if t ≥ τ (ω)

.
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Definition 1.28 A σ-algebra Fτ co-generated by a stopping time
τ is the σ-algebra generated by all sets A ∈ F such that ∀t ∈ T , A ∩
{τ ≤ t} ∈ Ft.

In words, the σ-algebra Fτ contains all information that is revealed by
the stochastic process until the stopping time occurs. Hence, along paths on
which the stopping time τ (ω) occurs later, Fτ provide more information.
This concept gets rid of the notion of calendar time, and defines time (and
hence information revelation) relative to a particular event.
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Proposition 1.29 (Optional stopping theorem in discrete time)
Assume that time is discrete, T = {0, 1, 2, . . .}. If σ ≤ τ are two
bounded stopping times, then for any discrete-time submartingale Xn,
n = 0, 1, 2, . . .,

Xσ ≤ E [Xτ | Fσ] a.s. (1.3)

with equality if X is a martingale. Moreover, an adapted and integrable
process X is a martingale if and only if

E [Xσ] = E [Xτ ] (1.4)

for any such pair of stopping times.

Proof. See discussion in class.
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We can now finally prove the desired statement, which is the consequence
of the previous proposition.

Corollary 1.30 If X is a martingale with respect to {Ft} and τ a stop-
ping time, the stopped process Xτ is a martingale with respect to {Ft}.

Proof. See discussion in class.
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Exercise 1.31 Consider a sequence of three coin flips, occurring at time
t = 1, 2, 3 with realizations H (heads) or T (tails). Outcomes ω in this
probability space are therefore sequences of type HHH, HHT , etc. Let
τ denote the stopping time described as the first time H occurs.

Show directly from the definition of a σ-algebra co-generated by a
stopping time that Fτ is constructed from sets

{HHH, HHT, HTH, HTT}
{THT, THH} , {TTH} , {TTT}

and all their unions, intersections and complements. In particular, ex-
plain why the set {HHH, HTH} does not belong to that σ-algebra.

Hint: It may be useful to plot a tree of ω that branches out as coin
flips are realized, and depict τ (ω) and the sets measurable with respect
to Fτ on that tree.
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Example 1.32 Continuing with Example 1.24, devise now the following
strategy. Starting with X0 = 0, the agent decides to quit betting when
she earns one dollar. Formally, she chooses a stopping time τ defined
as

τ (ω) = min {t ≥ 0 : Xt (ω) = 1} .

Hence once the stopped process Xτ given by Xτ
t (ω) = Xτ (ω)∧t (ω) reaches

1, it stays constant.
Corollary 1.30 implies that this stopped process Xτ is a martingale,

hence X0 = E [Xτ
t ], and this strategy never wins on average.



Example 1.33 (A doubling strategy) A similar strategy is a so-called
doubling strategy. Consider an accumulated winings process X with
X0 = 0 and

Xt+1 =





Xt + 2t with probability 0.5
Xt − 2t with probability 0.5

.

This stopping time strategy starts with a bet of one dollar. If the player
wins, she terminates the game. If she loses, she doubles the bet. For-
mally, we are interested in the strategy

τ (ω) = min {t ≥ 0 : Xt (ω) = 1} ,

i.e., the first time the process hits 1.
Notice that in every period, the process is stopped with probability 1

2.
Therefore,

P (τ (ω) ≤ t) = 1 −


1

2




t

and asymptotically as t → ∞, the agent stops betting with probability
one, with one dollar in the pocket. This seems like a profitable strategy.
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However, the optional stopping theorem implies the stopped process
Xτ

t = Xmin{t,τ} = Xt∧τ is a martingale. Hence E [Xτ
t | F0] = Xτ

0 = 0,
and no finite-horizon strategy wins on average, despite the fact that the
limit limt→∞ Xτ

t = 1 a.s. (looking like a ‘safe win’, a.s.).
The issue is that despite the probability of winning one dollar con-

verges to one, the losses along the remaining paths grow exponentially,
so that the martingale property still holds. We will formalize this later
using the concept of local martingales.
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Optional stopping theorem in continuous time

The continuous-time version of the optional stopping theorem and related
results are conceptually the same, they only require additional technical con-
siderations. I state these results here for the sake of completeness but feel
free to skip them.

• A crucial simplification lies in restricting ourselves to processes with
continuous paths. Because we will be interested in Brownian motions
with continuous paths, this does not limit us significantly. See Revuz
and Yor (1999) and Karatzas and Shreve (1991) for more detail.

• Continuity of sample paths becomes important because we will be ap-
proximating stopping times. When we approximate a stopping time
with another one, continuous sample paths imply that we are also cor-
rectly approximating the path realizations at the stopping time.



In the previous section, we built the proof of the discrete-time version of
the optional stopping theorem on bounded stopping times. Bounded stopping
times in discrete time can take only finitely many values. The first result
shows that an arbitrary stopping time can be approximated by stopping
times that take finitely many values.

Proposition 1.34 Every stopping time is the decreasing limit of a se-
quence of stopping times taking only finitely many values.

Proof. For a stopping time τ construct a sequence


τk



 as follows:

τk = +∞ if τ ≥ k

τk = q2−k if (q − 1) 2−k ≤ τ < q2−k, q ≤ 2kk

Then every τk is a stopping time and the sequence


τk



 decreases to τ .
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Definition 1.35 A collection of random variables {Xt : t ∈ T } is uni-
formly integrable if

sup
t∈T

E

|Xt| 1{|Xt|>x}


 → 0 as x → ∞.

This definition is important because uniform integrability of X will assure
that the random variable Xσ where σ is a stopping time is also integrable.



Proposition 1.36 (Optional stopping theorem in continuous time)
If X is a martingale with continuous paths and σ ≤ τ are bounded stop-
ping times, then

Xσ = E [Xτ | Fσ] a.s.

Alternatively, if X is uniformly integrable, then the family {Xσ}
where σ runs through the set of all stopping times is uniformly inte-
grable. If, in addition, σ ≤ τ , then

Xσ = E [Xτ | Fσ] = E [X∞ | Fσ] a.s.

where X∞ = limt→∞ Xt.

Proof. See discussion in class.



Proposition 1.37 A continuous adapted process is a martingale if and
only if for every bounded stopping time τ , the random variable Xτ is in
L1 and

E [Xτ ] = E [X0] .

Proof. See discussion in class.

Corollary 1.38 If X is a continuous martingale with respect to {Ft}
and τ a stopping time, the stopped process Xτ is a martingale with
respect to {Ft}.

Proof. Consider the stopping time τ . The stopped process Xτ
t = Xτ∧t is

continuous. Consider a bounded stopping time σ, then τ ∧σ is also bounded.
Therefore

E [Xτ
σ ] = E [Xτ∧σ] = E [X0] = E [Xτ

0 ] .



Local martingales

Definition 1.39 An adapted stochastic process X : Ω × T → R
n is a

local martingale with respect to {Ft} if there exists a sequence of {Ft}
stopping times τk, k = 1, 2, . . . such that

1. the sequence τk is almost surely increasing, i.e. P (τk < τk+1) = 1,

2. the sequence τk almost surely diverging, i.e., P

τk

k→∞−→ ∞

 = 1

3. the stopped process Xk
t = Xt∧τk

= Xmin(t,τk) is a martingale for
every k.
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Observe that every martingale X is trivially a local martingale because
every stopped martingale in Condition 3. in the definition above is also a
martingale, by Corollary 1.30.

Why do we need the definition of a local martingale? It may be that the
process X is such that a small set of paths (a set of measure zero in the limit)
diverges to ±∞, which invalidates the conditional expectation property of a
martingale. An example of this was the limiting distribution in the doubling
strategy in Example 1.33. By constructing a sequence of stopping times
that ‘freezes’ these paths before they explode, we can make sure that these
diverging paths do not distort the computation of the conditional expectation,
and the martingale property on the stopped process is preserved.



Example 1.40 Consider again the process Xt from Example 1.24, and
construct a sequence of stopping times

τk = min {t ≥ 0 : Xt ≤ −k} .

The intepretation of the stopping time τk is for the agent to stop when
cummulative losses reach −k.

Observe that the sequence of these stopping times {τk}∞
k=1 satisfies

conditions 1. and 2. in Definition 1.39. It is increasing, because the
wealth process has to first cross −k before it crosses − (k + 1). It also
diverges to infinity because the time to reach the boundary is made arbi-
trarily long as k → ∞. Condition 3. is satisfied trivially, because X is
a martingale and every stopped martingale Xτ is also a martingale, by
Corollary 1.30.

While a martingale is a local martingale, the converse is generally not
true. To see this, consider again the doubling strategy.



Example 1.41 (A doubling strategy again) Let us revisit Exam-
ple 1.33. In that example, the stopped winnings process for the stopping
time

τ (ω) = min {t ≥ 0 : Xt (ω) = 1}
converges to limt→∞ Xτ

t = 1 almost surely, but at the same time there
is a set of paths that has a vanishing probability and accumulates larger
and larger losses. Hence, for every finite t, the process still satisfies the
martingale property E [Xτ

t ] = X0 = 0, ∀t ∈ N.
Let us now redefine the time axis. Instead of betting at times t =

1, 2, . . ., we construct these bets at times 1 − 2−t, t = 1, 2, . . .. The first
bet is at time 1

2, then 3
4, 7

8, etc. Hence bets occur at an increasing rate,
all before t = 1.
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Formally, the new betting process is constructed through a time change
of the original winnings process.

˜
Xt =





Xτ
n for t = 1 − 2−n, n ∈ N

1 for t = 1 (i.e., n = ∞), 2, 3, . . .

Observe that the second line is an extension of the original process Xτ

using the limiting point. This process is not a martingale on [0, 1]. While
it is still true that E

[
˜
Xt

]

= X0 = 0 for t < 1 (where t is of the form
t = 1 − 2−n), for t ≥ 1 we have E

[
˜
X1

]

= 1.
The time change can be understood as follows: Because waiting for

Xt to hit 1 could take a very long (infinite) time, I will progressively
speed time so that the whole history of X is played out in

˜
X during

t ∈ [0, 1). Then, because we know that the process has hit 1 until time
t = 1 with probability one, we can a.s. continuously extend the definition
of

˜
Xt as

˜
X1 = 1.
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While this looks like a safe construction, it violates the martingale
property. The process is still a local martingale, though. Consider
a localizing sequence of stopping times

τk = min
{

t ≥ 0 :
˜
Xt ≤ −k

}

as the first time the process crosses −k. This sequence is increasing,
almost surely diverging (because less and less paths ever hit the threshold
−k as −k → −∞), and the stopped process

˜
X

τk
t =

˜
Xt∧τk

is a martingale
on t ∈ [0, 1] for every k.



To see the latter, notice that the martingale property holds for t < 1
as a stopped martingale is a martingale. So it remains to check t = 1,
for which we can apply the dominated (bounded) convergence theorem.

Observe that for a given k, the stopped process
˜
X

τk
t , can be viewed

as a sequence of random variables
{
˜
X

τk
t

}

, t = 1 − 2−n. Each of the
random variables is bounded (from above by 1, from below by −k), and
the sequence converges to

˜
X1 = 1 pointwise.

By the dominated concergence theorem, the expectation of the
limit must be equal to the limit of the expectations, i.e.,

E
[
˜
X

τk
1

]

= lim
n→∞ E


 ˜
X

τk
1−2−n


 = 0.

Hence,
˜
X

τk
t is a martingale. Consequently, conditions of Definition 1.39

are satisfied and the process
˜
Xt is a local martingale.



When is a local martingale a martingale

The discussion in Example 1.41 shows that we must impose some additional
restrictions on a local martingale to make it a martingale.

Proposition 1.42 A nonnegative local martingale X with continuous
paths on a given filtration {Ft} (or, more generally, a local martingale
bounded from below) is a supermartingale.
Proof. See discussion in class.

Proposition 1.43 A bounded local martingale X on a given filtration
{Ft} with continuous paths is a martingale.

Proof. See discussion in class.
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Example 1.44 (A doubling strategy yet again) We observed that
the time-changed doubling strategy in Example 1.41 that constructs the
bets at accelerating times t = 1−2−n and in addition defines the process
˜
Xt at t = 1 as

˜
X1 = 1 is a local martingale but not a martingale.

Proposition 1.42 also implies that if
˜
Xt was a local martingale bounded

from below, it would be a supermartingale, and since
˜
Xt is already bounded

from above (stopping when winnings are equal to 1), it would in fact be
a martingale.

Economically, imposing a bound from below corresponds to imposing
a limit on losses (regardless how generous this limit is). When impos-
ing this limit, not even the time-changed doubling strategies can win on
average.

This is a plausible economic assumption that avoids the “0 ·∞” prob-
lem with diverging paths of decaying probability. Notice that we do not
need to specify what the bound exactly is — it is enough to assume that
there is one.



1.3 Brownian motion

Definition 1.45 A k-dimensional Brownian motion is a stochas-
tic process W on R

k such that

1. W0 (ω) = 0 for all ω,

2. ∀s, t ∈ T for which s ≤ t, the difference Wt−Ws ∼ N (0, (t − s) Ik),

3. for all t0 < t1 < t2 < . . . tn ∈ T , the random variables Wtj −Wtj−1,

j ∈ {1, . . . , n} are independent.

Said simply, the Brownian motion is a process with independent, normally
distributed increments.

Remark 1.46 Technically, this definition of the Brownian motion does
not yield a unique process. However, we can pin the process down
uniquely (almost surely) if we choose a modification of the process with
continuous sample paths. From now on, we will exclusively work with
such a continuous-path modification.
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Observe that the Brownian motion (as any other process) naturally
generates a σ-algebra that includes the realizations of all infinite-horizon
paths, and a filtration based on paths up to time t.

In particular, consider the σ-algebra generated by all the sets of the type


ω ∈ Ω : Ws (ω) ∈ B, B ∈ B on R

k




for all s ≤ t, and denote it as F∗
t . Further, extend this algebra by adding all

subsets of zero probability sets in F∗
t (in order to complete the probability

space), and construct a σ-algebra over this union, denoted Ft. Then {Ft} is
the Brownian filtration generated by the Brownian motion W .



Further observe that the Brownian motion has the Markov property:
∀t, s ≥ 0 and for every Borel set H ∈ B on R

k

P (Wt+s ∈ H | Ft) = P (Wt+s ∈ H | Wt) .

Example 1.47 A Brownian motion is a martingale with respect to its
natural filtration. Observe that for s < t

E [Wt | Fs] = E [Wt − Ws | Fs] + Ws = Ws

and
(E [|Wt|])2 ≤ E


|Wt|2


 = nt.
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Definition 1.48 The set of points P = {t0, . . . , tn} with 0 = t0 < t1 <
. . . < tn = t is a partition of the interval [0, t]. Define

l (P) = max
∣∣∣∣∣tj − tj−1

∣∣∣∣∣ .

to be the norm of the partition.

Definition 1.49 Let X : Ω×T → R be a continuous stochastic process.
Then for p > 0 define the p-th variation process of Xt as

〈X, X〉p
t (ω) = lim

l(P)→0Σ
n−1

j=0

∣∣∣∣∣∣Xtj+1 (ω) − Xtj (ω)
∣∣∣∣∣∣

p

where the limit is in probability.
For p = 1, this is the total variation process, and for p = 2, this

is the quadratic variation process.
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Exercise 1.50 It turns out that for the univariate Brownian motion W ,

〈W, W 〉2
t (ω) = t a.s..

Remark 1.51 Notice that this formula also leads to the conclusion that
over a short period of time (dWt)

2 = dt, a result pervasively used in the
calculus of diffusions.

Since the quadratic variation is finite, it can be shown that the total
variation of a Brownian motion is infinite. The latter also implies that the
paths of a Brownian motion are nowhere differentiable.

Exercise 1.52 Show that

∀t > 0 : 〈X, X〉1
t (ω) = +∞

and that the paths of a Brownian motion are nowhere differentiable.
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Example 1.53 (Doubling strategies with a Brownian motion) Her
we provide another example showing that a martingale is a local martin-
gale but the converse is not true. This is a direct counterpart of Example
1.44.

Consider now a Brownian motion W and τ = min {t ≥ 0 : Wt = 1}
the first time the process hits 1. Think about this as a stopping rule that
says ‘Gamble until I earn one dollar, then stop.’ Since the Brownian
motion will hit Wt = 1 at some time t ≥ 0 with probability 1, this seems
like a profitable strategy.

Observe that the stopped process Wmin{t,τ} = Wt∧τ is a martingale,

with zero expectation E [Wt∧τ | F0] = 0, but the limit limt→∞ Wt∧τ = 1
a.s. (like a ‘safe win’, a.s.). Now define a process constructed through a
time change of the stopped Brownian motion:

Xt =





W t
1−t∧τ for 0 ≤ t < 1

1 for 1 ≤ t < ∞
The process is continuous a.s., but not a martingale.



1.4 Stochastic integration

Riemann (Stieltjes) integral: Construct a partition P and then show
that

lim
l(P)→0Σ

n

j=1
f

(

τj
) (

tj − tj−1
)

→
∫ t

0
f (s) ds

where τj ∈
[

tj−1, tj
]

. It does not matter for the construction which τj’s we
choose.

Stochastic (Itô) integral: In what follows, we want to motive the
familiar construction

Xt = X0 +
∫ t

0
µsds +

∫ t

0
σsdWs.

Now the choice of τj’s will matter.
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Example 1.54 As a motivation, consider the economically interesting
example. Let the share price evolve as a Brownian motion and θ be the
number of shares bought, which can be traded only at a finite number of
times tj. Then the evolution of wealth Jt is given by

JT = J0 + Σ
n−1

j=0
θtj


Wtj+1 − Wtj




where θtj is the number of shares purchases at time tj.

Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka




Definition 1.55 An elementary (also called simple) process φ is a
process for which there exists a partition P of [0, T ] such that φt = φtj
for t ∈ [tj, tj+1).

Example 1.56 Consider a partition P of [0, T ] and define

φ1
t (ω) = Σ

n(t)−1

j=0
Wtj (ω) 1[tj,tj+1]

(t)

φ2
t (ω) = Σ

n(t)−1

j=0
Wtj+1 (ω) 1[tj,tj+1]

(t)

where n (t) is such that t ∈ [tn(t), tn(t)+1). Notice that in order to define

the Riemann integral in the deterministic case, we can use both φ1 and
φ2.
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However, in the stochastic case, this will not work. Observe that

E



∫ T

0
φ1

tdWt | F0


 = E


Σ

n−1

j=0
Wtj


Wtj+1 − Wtj


 | F0


 = 0

E



∫ T

0
φ2

tdWt | F0


 = E


Σ

n−1

j=0
Wtj+1


Wtj+1 − Wtj


 | F0


 = T.

So despite the fact that both seem to be reasonable approximations of the
integral, they give very different answers.

As we will see, the issue why the two expectations above have different
limits as l (P) → 0 is closely related to the fact that W is a process of infinite
total variation.



Definition 1.57 For the class of elementary processes, define the Itô
integral as follows:

∫ t

0
φsdWs := Σ

n(t)−1

j=0
φtj


Wtj+1 − Wtj


 + φtn(t)


Wt − Wtn(t)


 (1.5)

where the last term reflects the interrupted last subinterval of the parti-
tion and n (t) is such that t ∈ [tn(t), tn(t)+1).

Remark 1.58 From the perspective of asset pricing, this is a desirable
definition. Observe that φ1 is adapted while φ2 is not. From the per-
spective of asset pricing, we can think about (a general) φ1 as a portfolio
strategy. At time tj, we choose a portfolio φ1

tj based on information

available at time tj, and then hold it to tj+1, rebalancing the portfolio at
tj+1 again. This is called a dynamic strategy and by refining the partition
P, we construct such a strategy for infinitesimal rebalancing.
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Sketch of the construction of an Ito integral

Let L be the set of all processes adapted to the filtration generated by the
Brownian motion. Then define:

L1 =



f ∈ L :

∫ T

0
|ft| dt < ∞ a.s.





(1.6)

L2 =



f ∈ L :

∫ T

0
(ft)

2 dt < ∞ a.s.




(1.7)

H2 =



f ∈ L2 : E




∫ T

0
(ft)

2 dt

 < ∞





(1.8)

Clearly H2 ⊂ L2. We start with H2 and then move to L2. The latter will
be somewhat complicated.



The main idea is to argue that for a function f ∈ H2, there exists an
approximating sequence φn of elementary functions such that

lim
n→∞ E




∫ T

0
(φn

t − ft)
2 dt


 = 0

We can then show that the stochastic integral (1.5) for the sequence of el-
ementary functions φn converges to a limit in L2, and it is independent of
the particular choice of a sequence. Then we associate this limit with the
stochastic integral ∫ T

0
ftdWt (1.9)

for f ∈ H2. Øksendal (2007), Chapter 3.1, has all the details. This allows
the following formal definition.



Definition 1.59 Let f ∈ H2. Then the Itô integral of f is defined by

∫ T

0
ft (ω) dWt (ω) = lim

n→∞
∫ T

0
φn

t (ω) dWt (ω) (1.10)

where the limit is in L2 (P ) sense (set of all random variables with finite
second moments), and {φn} is a sequence of elementary functions such
that

E



∫ T

0
(ft (ω) − φn

t (ω))2 dt

 → ∞ as n → ∞.

Remark 1.60 The stochastic integral (1.10) is a martingale.



For L2 the Itô integral can be defined in an analogous way, using argu-
ments about convergence of step functions φn ∈ L2 to f ∈ L2 such that∫ T

0
|φn

t − ft|2 dt → 0 in probability. We can then define the integral as

∫ T

0
ft (ω) dWt (ω) = lim

n→∞
∫ T

0
φn

t (ω) dWt (ω) (limit in probability).

However, the resulting integral is only a local martingale. This is a much
weaker property.



It is also possible to extend Definition 1.59 to multivariate Brownian mo-

tions. The integral
∫ T

0
vtdWt where W is an k-dimensional Brownian motion

and v is an n × k dimensional process adapted to the filtration generated by
W can be then defined by the componentwise summation

∫ T

0
vt (ω) dWt (ω) = Σ

k

j=1
[vt (ω)]·j dW

j
t (ω)

and the individual summands are defined as before.

Example 1.61 We want to show that when W0 = 0, we have

∫ T

0
WtdWt =

1

2
W 2

t − 1

2
t,

using limits with elementary processes.



Properties of the Itô integral

Proposition 1.62 (Itô isometry) For all f ∈ H2, we have

E







∫ T

0
ftdWt




2
| F0


 = E




∫ T

0
(ft)

2 dt | F0


 . (1.11)

Proof. See discussion in class.
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1.5 Itô processes and Itô’s lemma

Definition 1.63 An n-dimensional Itô process is a process S : Ω ×
T →R

n such that

Xt = X0 +
∫ t

0
µsds +

∫ t

0
σsdWs (1.12)

where µ ∈
(

L1
)n

, σ ∈
(

L2
)n×k

and W is a k-dimensional Brownian
motion. We assume that µ and σ are Ft-adapted where {Ft} is some
filtration with respect to which W is a martingale.

An Itô diffusion is an Itô process for which the coefficients satisfy
µs = µ (Xs) and σs = σ (Xs) for all s ∈ T .

Remark 1.64 The process µ is called drift, and σ is called the volatility
of the Itô process.
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Remark 1.65 Sometimes, the Itô process is defined with additional Lip-
schitz continuity conditions on the parameters. These conditions assure
the existence of a unique strong solution for the equation (1.12). We
will introduce these conditions in Section 1.8 when we discuss stochatic
differential equations explicitly.

Often, the Itô process is written in the ‘differential’ form

dXt = µtdt + σtdWt.

If the processes µ, σ ∈ H2, then

d

dτ
Et [Xτ ]

∣∣∣∣∣∣∣∣∣τ=t
= µt a.s.

d

dτ
V art [Xτ ]

∣∣∣∣∣∣∣∣∣τ=t
= σtσ

′
t a.s.

where Et [·] = E [· | Ft]. Informally, we will write

Et [dXt] = µtdt

V art [dXt] = σtσ
′
tdt
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Definition 1.66 For an n-dimensional Itô process X, we define

L (X) =



θ ∈ Ln : θ′µ ∈ L1, θ′σ ∈


L2



k




(1.13)

H2 (X) =




θ ∈ L (X) : E







∫ T

0
θ′
tµ

′
tdt




2

 < ∞, θ′σ ∈


H2



k




(1.14)

Definition 1.66 can be interpreted as follows. Let θ be a dynamic portfolio

strategy and X the associated price process for the assets. Then
∫ T

0
θ′
tdXt

is the price process for the value of the portfolio gains. Classes L (X) and
H2 (X) are therefore classes of portfolio value processes with desirable prop-
erties.

Observe that if θ ∈ H2 (X), then the stochastic integral
∫ T

0
θ′
tdXt has

finite variance.



Theorem 1.67 (Itô’s lemma) Let X be a univariate Itô process

dXt = µtdt + σtdWt

where W is a univariate Brownian motion. Let f : R2 → R with f ∈
C2 (T × R) (twice continuously differentiable). Then Yt = g (t, Xt) is an
Itô process and

dYt = ft (t, Xt) dt + fx (t, Xt) µtdt +
1

2
fxx (t, Xt) σ2

t dt + fx (t, Xt) σtdWt.

Proof. The heuristic proof goes as follows. First consider a ‘second-order’
Taylor approximation

dYt = ftdt + fxdXt +
1

2
ftt (dt)2 + ftxdtdXt +

1

2
fxx (dXt)

2

Now observe

dtdXt = dt (µtdt + σtdWt) = µt (dt)2 + σtdtdWt

(dXt)
2 = µ2

t (dt)2 + 2µtσtdtdWt + σ2
t (dWt)

2
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We already argued that (dWt)
2 = dt (a first-order term in t). However,

the remaining terms are higher than first order. Since dWt can be argued
to have mean zero and variance dt, the term dtdWt will be mean zero and
variance (dt)2. which is a higher-order stochastic term than dWt. Therefore,
the only term left in the two expressions above is σ2

t (dWt)
2 = σ2

t dt.

The formula can be extended to multivariate Brownian motions when
we note that for two independent Brownian motions W j and W k, we have

dW

j
t




dW k

t


 = 0.

Theorem 1.68 (Multivariate Itô’s lemma) Let W be a k-dimensional
Brownian motion, X an n-dimensional Itô process

dXt = µtdt + σtdWt

and f : T × R
n → R

m be from C2. Then for Yt = f (Xt), we have for
the k-th component Y k

t

dY k
t = fk

t dt + fk
xµtdt +

1

2
tr


σtσ

′
tf

k
xx


 dt + fk

xσtdWt.
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Theorem 1.69 (Integration by parts) Suppose the process ft (ω) is
continuous and of bounded variation with respect to t ∈ [0, T ] for almost
all ω. Then ∫ T

0
ftdWt = fT WT −

∫ T

0
Wtdft.

The assumption of bounded variation of f is crucial, the formula will, for
instance, not work for ft = Wt (see Example 1.61 where we showed that∫ T

0
WtdWt = 1

2W 2
t − 1

2t).



Example 1.70 Observe that we can get the result in Example 1.61 very
simply now using Itô’s lemma. Compute

d


1

2
W 2

t


 = WtdWt +

1

2
dt

and integrating up, we get the result right away.

Example 1.71 We want to compute
∫ T

0
tdWt. It is reasonable to as-

sume that a term like tWt should show up. Therefore take

d (tWt) = Wtdt + tdWt

and integrating up, we get

∫ T

0
tdWt = TWT −

∫ T

0
Wtdt.



In many applications, we will want to study processes which are sums of
an Itô process and a process A of bounded variation. Assume that we can
write

dXt = µtdt + σtdWt + dAt

where A is a continuous process of bounded variation. Then

dYt = df (t, Xt) =

ft + fxµt +

1

2
fxxσ2

t


 dt + fxσtdWt + fxdAt.

Other generalizations include A with infrequent jumps, such as the Pois-
son arrival process, including Poisson arrival with a random jump.



Proposition 1.72 Let W be a Brownian motion with natural filtration
{Ft} and f ∈ H2 be a process adapted to {Ft}. Then

Xt (ω) =
∫ t

0
fs (ω) dWs

is a martingale w.r.t. {Ft} and, for λ, T > 0,

P


 sup
0≤t≤T

|Xt| ≥ λ


 ≤ 1

λ2E



∫ T

0
|fs (ω)|2 ds


 .

Proof. See discussion in class.

Remark 1.73 If f ∈ L2, then X is only a local martingale.



1.6 Martingale representation theorem

Theorem 1.74 (Itô representation theorem) (Øksendal (2007), The-
orem 4.3.3) Let {Ft} be a filtration generated by an k-dimensional Brow-
nian motion and F ∈ L2 (FT , P ) (a square-integrable (under P ) random
variable measurable w.r.t. FT ). Then there exists a unique stochastic
process f ∈ H2 such that

F (ω) = E [F ] +
∫ T

0
ft (ω) dWt.

Proof. The proof amounts to showing that the class of processes
∫ t

0
fs (ω) dWs (

is dense in L2 (Ft, P ).
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Theorem 1.75 (Martingale representation theorem) (Øksendal
(2007), Theorem 4.3.4) Let W be a k-dimensional Brownian motion and
X a martingale with respect to the natural filtration Ft of the Brownian
motion. Also assume Xt ∈ L2 (P ) for all t ≥ 0 (square integrability).

Then there exists a unique process g ∈
(

H2
)k

such that

Xt (ω) = X0 (ω) +
∫ t

0
gs (ω) dWs (ω) a.s., for all t ≥ 0. (1.15)

Proof. See discussion in class. Notice that we cannot just apply Theo-
rem 1.74 to each Xt because the functions f are in general t-specific. But we
will show that this is not the case here.

Remark 1.76 If X is only a local martingale, then there exists a process

g ∈
(

L2
)k

such that the above equation holds.
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Remark 1.77 Since an Itô can be constructed to have continuous paths,
it implies that all martingales adapted to a Brownian filtration have con-
tinuous sample paths. This implies that pure randomness (of the mar-
tingale type) cannot generate jumps — the Brownian model is a model
of continuous information flow. Discontinuous, lumpy information ar-
rivals like earnings announcements at particular dates would have to be
modeled using processes other than diffusions.

Also, we can interpret result (1.15) as stating that the Brownian mo-
tion, appropriately scaled over time, spans all martingales. Given the
iid nature of Brownian increments, we can interpret gs at time s as a
time scale over the next instant.



1.7 Girsanov’s theorem

The martingale representation theorem tells us that (local) martingales can
be constructed by integrating up Brownian motions. We would now like to use
positive integrals of such Brownian motions to construct changes of measure,
in the sense of the Radon–Nikodým derivative. Exponential martingales are
just the right thing to use.

Definition 1.78 A process η ∈
(

L2
)k

is said to satisfy the Novikov
condition if

E

exp



1

2

∫ T

0
η2

t dt




 < ∞.



Theorem 1.79 If the process η ∈
(

L2
)k

satisfies the Novikov condition,
then the process ξη defined by

ξ
η
t = exp


−
∫ t

0
η′

sdWs − 1

2

∫ t

0
|ηs|2 ds




is a martingale.

Proof. Using Itô’s lemma, we have

dξ
η
t = −ξ

η
t η′

tdWt

which implies that ξ
η
t is a local martingale (this is because η ∈

(

L2
)k

, and a
stochastic integral of such a η is only a local martingale in general, see the
construction of Itô’s integral). However, the Novikov condition assures that
the local martingale is also a martingale.



This implies that processes from L2 that satisfy the Novikov condition can
be used to construct changes of measure. We have E

[

ξ
η
t

]

= 1 and ξ
η
0 = 1,

so that, for every finite t, we can construct the Radon–Nikodým derivative
according to Theorem 1.11:

∀F ∈ Ft : Qη (F ) =
∫

F
ξ

η
t dP

Given ξ
η
t is strictly positive, the two measures are equivalent.



Theorem 1.80 (Girsanov’s theorem) Consider a process η ∈
(

L2
)k

such that ξη is a martingale. Then the process

W
η
t = Wt +

∫ t

0
ηsds

is a Brownian motion under Qη.
Moreover, W η has a martingale representation property under Qη:

for any local Qη-martingale Xt adapted to the filtration generated by W ,

there exists a process φ ∈
(

L2
)k

such that

Xt = X0 +
∫ t

0
φsdW η

s .

Remark 1.81 Thus the drift term η from the exponential martingale ξη

serves as a drift adjustment in the change of measure. Notice that η does
not need to satisfy the Novikov condition — that one is only sufficient
for ξη to be a martingale.
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Corollary 1.82 Consider an Itô process X on R
n

Xt = X0 +
∫ t

0
µsds +

∫ t

0
σsdWs

where µ ∈
(

L1
)n

and σ ∈
(

L2
)n×k

such that

σtηt = µt − νt.

If the process ξη is a martingale, then X is an Itô process under Qη, and

Xt = X0 +
∫ t

0
νsds +

∫ t

0
σsdW η

s .

We can therefore go from P to Qη through changes only in drifts not only
in the case of diffusions but also in the case of more general Itô processes.

Moreover, the converse is also true. Under any equivalent probability
measure w.r.t. which S is a martingale, the diffusion part stays the same,
and only the drift changes.



Theorem 1.83 (Diffusion invariance principle) Consider an Itô pro-
cess X on R

n

Xt = X0 +
∫ t

0
µsds +

∫ t

0
σsdWs.

If X is a martingale under an equivalent probability measure Q, then
there exists a Brownian motion W Q under Q such that

Xt = X0 +
∫ t

0
σsdW Q

s .

We can also always find ηt so that the density of dQ
dP is given by ξ

η
t .

Of course, we do not need to expect that such a ηt will satisfy the Novikov
condition, which is only sufficient but not necessary for ξ

η
t to be a martingale.



A remark on infinite horizon models

The construction of Girsanov’s theorem in infinite horizon requires special
care, see Duffie (2001), Section 6.N, Huang and Pagès (1992) and Revuz and
Yor (1999), Section VIII.1. The problem is that although over finite horizons,
P and Qη are equivalent, this will no longer be true over infinite horizons.
However, one can construct a representation as above,

W
η
t = Wt +

∫ t

0
ηsds

when we restrict the infinite horizon Brownian motions onto any measurable
space (Ω, Ft) for a given t. At the same time, under Qη, W η still has the
martingale representation property, i.e. for any local martingale Xt there

exists an adapted process φ such that
∫ t

0
|φs|2 ds < ∞ almost surely and

such that
Xt = X0 +

∫ t

0
φsdW η

s .



1.8 Stochastic differential equations

In many cases, we will consider models where economic variables of interest
are not general Itô processes but solutions to stochastic differential equations.
In the one-dimensional case, we can formulate the following definition.

Definition 1.84 The Itô process Xt satisfies a stochastic differential
equation (SDE)

dXt = µ (t, Xt) dt + σ (t, Xt) dWt

with an initial condition X0 if it satisfies

Xt = X0 +
∫ t

0
µ (s, Xs) ds +

∫ t

0
σ (s, Xs) dWs.

Observe that we have imposed a strong structure. The coefficients µ and
σ are not just arbitrary adapted processes (in L1 and L2, respectively) but
we explicitly model a feedback structure.



Finding explicit solutions to these SDEs requires luck or experience —
only very few solutions are actually known. However, we can think about
schemes for numerical solutions. However, in order to do so, we would like to
know something about existence and uniqueness of the solutions. Many such
theorems exist. The following is from Øksendal (2007).

Theorem 1.85 (Øksendal (2007), Theorem 5.2.1) Let there be
constants C, D > 0 such that

|µ (t, x)| + |σ (t, x)| ≤ X (1 + |x|)

and
|µ (t, x) − µ (t, y)| + |σ (t, x) − σ (t, y)| ≤ D |x − y|

for any x, y (Lipschitz property). Then, the SDE

dXt = µ (t, Xt) dt + σ (t, Xt) dWt, X0 = x0

has a unique continuous solution Xt, which is adapted to the filtration
generated by the Brownian motion, and the solution X ∈ H2.



Remark 1.86 The solution constructed on the given filtration gener-
ated by the Brownian motion is called a strong solution. A weak
solution, on the other hand consists of a probability space (potentially
different from the one above), and a process X that solves the SDE on
the given probability space.

Example 1.87 The solution of the SDE

dXt = µdt + σdWt

is

Xt = X0 + µt + σWt

which is the arithmetic Brownian motion.

Example 1.88 Consider

dXt = µXtdt + σXtdWt
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which has the solution

Xt = exp



µ − σ2/2


 t + σWt




which is a process called the geometric Brownian motion.

Example 1.89 Consider the process on [0, 1]

ξt = exp

−1

2

∫ t

0
(1 − s)−3 ds −

∫ t

0
(1 − s)−3/2 dWs


 , 0 ≤ t < 1, ξ0 = 0.

Applying the Itô lemma, we get

ξt = 1 +
∫ t

0
− (1 − s)−3/2 ξsdWs

which can be shown to converge to zero almost surely as ξt. Then, defin-
ing ξ1 = 0 almost surely, we have a continuous process that is a local
martingale (because it is expressed as a stochastic integral) but not a
martingale.



For many economic applications, Theorem 1.85 is too stringent. This
is for instance the case for recursive utility models with Duffie and Epstein
(1992a,b) where existence has to be proven using other, rather ad-hoc, meth-
ods.

1.9 Feynman-Kac formula

The Feynman-Kac formula establishes a link between a class of partial differ-
ential equations and stochastic processes driven by Brownian motions. This
allows to solve PDEs using simulations of stochastic processes, or, vice versa,
solve stochastic differential equations using PDEs.

Consider the PDE

h (x, t)−g (x, t) r (x, t)+gx (x, t) µ (x, t)+
1

2
gxx (x, t) σ (x, t)2+gt (x, t) = 0

with terminal condition g (x, T ) = G (x). The Feynman-Kac formula states
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that the solution g (x, t) can be written as a conditional expectation

g (x, t) = Ex,t




∫ T

t
φ (t, s) h (Xs, s) ds + φ (t, T ) G (XT )




where

φ (t, s) = exp

−
∫ s

t
r (Xτ , τ ) dτ




for a stochastic process X that satisfies, under the probability measure under
which the expectation is taken,

dXt = µ (Xt, t) dt + σ (Xt, t) dWt

and Xt = x is the initial condition.

Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka


Jaroslav Borovicka




1.10 Conditional distributions and
moments

1.11 Stationary densities

Let us assume we have a Markov Itô process given by

dXt = µ (Xt) dt + σ (Xt) dWt.

We will also assume that the process satisfies certain regularity conditions,
see Karlin and Taylor (1981) for more details. We are interested in computing
the stationary density for X .

Start by computing the infinitesimal generator for X . The generator A



applied to a twice continuously differentiable function f is defined as

Af (Xt) = lim
ε→0

Et [f (Xt+ε)] − f (Xt)

ε
= Et




df (Xt)

dt


 =

=
1

dt



Et




∂f

∂x
(Xt) dXt +

1

2

∂2f

∂x∂x′ (dX)2





=

= µ (Xt) f ′ (Xt) +
1

2
σ2 (Xt) f ′′ (Xt)

Under stationary distribution with a continuous density q (x) dx = dQ (x),
we have must have

∫
Af (x) dQ (x) =

∫ 
µ (x) f ′ (x) +

1

2
σ2 (x) f ′′ (x)


 q (x) dx =

=
∫

µ (x) f ′ (x) q (x) dx +
∫ 1

2
σ2 (x) f ′′ (x) q (x) dx =

=
∫

µ (x) f ′ (x) q (x) dx +

f ′ (x)

1

2
σ2 (x) q (x)




xsup

xinf

−

−
∫ 1

2


σ2 (x) q (x)



′
f ′ (x) dx



Since this holds for any f (·), take such an f for which

f ′ (xsup
)

= f ′ (xinf) = 0

and thus we get

∫
µ (x) f ′ (x) q (x) dx −

∫ 1

2


σ2 (x) q (x)



′
f ′ (x) dx = 0

Since again, this holds for any f (·), the equality must be pointwise (w.p. 1)
and thus

µ (x) q (x) − 1

2


σ2 (x) q (x)



′

= 0

2µ (x) − σ2′ (x)

σ2 (x)
=

q′ (x)

q (x)

Integrating this ordinary differential equation, we obtain the stationary den-
sity q (x).



Example 1.90 Consider the process

dXt = (a + bXt) dt +
√

eXtdWt = µ (Xt) dt + σ (Xt) dWt

Using

µ (x) = a + bx

σ2 (x) = ex2

we get

q′ (x)

q (x)
=

2a

e

1

x2 +
2 (b − e)

e

1

x

and thus

log q (x) = log c0 − 2a

e

1

x
+

2 (b − e)

e
log x

q (x) = c0x
2(b−e)

e exp

−2a

e

1

x






where we recognize the density for the inverse gamma distribution

q (x; α, β) =
βα

Γ (α)
x−α−1 exp


−

β

x




with

α =
e − 2b

e

β =
2a

e

The conditions are

α, β > 0

which translates (together with taking into account
√

e) to

a > 0

e > 0

e > 2b



1.12 Boundary classification

A more refined analysis, see Karlin and Taylor (1981).
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