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1 Introduction

I will consider two types of filtering in continuous time. The first filter goes back to Wonham
(1964) and concerns the filtering of an unobserved state state driven by a finite-dimensional
Markov chain. The second filter is the continuous-time version of the Kalman filter, intro-
duced by Kalman and Bucy (1961).

The reason why we are studying these cases is that we want to understand the implica-
tions for pricing of risk by agents who face these filtering problems.

2 Wonham filter

Let z be an n-state Markov chain in continuous time, encoded by a coordinate vector. A
realized state zt is a zero-one coordinate vector in R

n. The transition matrix over an interval
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ε is exp (εA) where A is the intensity matrix and exp (·) is the matrix exponential given by
the Taylor series expansion. We have

exp (εA) 1n = 1n ∀ε

A1n = 0

Also, notice that for i 6= j we have for two coordinate vectors uj and ui

(uj)
′ exp (εA) ui ≥ 0 (1)

for each ε > 0 and
lim
ε→0

(uj)
′ exp (εA) ui = 0

so that it better be that the derivative w.r.t. ε of (1) at ε = 0 is nonnegative

(uj)
′Aui ≥ 0

so that the matrix A has nonnegative off-diagonal elements. The condition A1n = 0 then
implies that the diagonal elements are necessarily nonpositive.

Suppose that a scalar observable signal yt evolves according to

dyt = κztdt+ σdWt

where zt is a coordinate vector describing an unobservable state of the economy, represented
by an n-state Markov chain with transition probability matrix exp (τA) over an interval τ .
Wt is a (multivariate) Brownian motion and κ and σ are constant row vectors. dyt capture
the evolution of the signal, but the agent does not observe zt directly, he has to solve a
filtering problem.

The joint distribution of the Brownian motion W and the path of the Markov chain z

define a probability space (Ω,F , P ). We will distinguish two information structures.

1. Ft is the full information filtration, generated by the signal history (Ws, zs), 0 ≤ s ≤ t,
or, equivalently, by (ys, zs), 0 ≤ s ≤ t.

2. Ht is the information set generated by observations of {ys : 0 ≤ s ≤ t} only, and an
imperfect signal about state z0 which implies a distribution of z0 | H0 given by a
probability vector z̄0 = E [z0 | H0]. The initial distribution z̄0 can be viewed as a
prior about the true initial state of the system. Naturally, z̄0 ∈ R

n
+ with z̄′01n = 1.

Our task is to produce a our best forecast of the state zt at time t, given the information
from the signal:

z̄t = E [zt | Ht] .

We provide a heuristic derivation of the filter.
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2.1 A local regression

Let ε be a small time interval. Then the approximate evolution over the interval ε is given
by

yt+ε − yt ≈ κztε+ σ [Wt+ε −Wt] (2)

Notice that the variance over time interval ε is given by

E
[
(yt+ε − yt)

2 | zt

]
≈ ε2 (κzt) + ε |σ|2

lim
ε→0

E
[
(yt+ε − yt)

2 | zt

]

ε
= |σ|2

Observe that in this calculation, we did not have to remove the conditional trend, and that
in fact we also have

lim
ε→0

E
[
(yt+ε − yt − κztε)

2 | zt

]

ε
= |σ|2

Further, we obtain the same result even if we subtract the conditional trend calculated
under the information set generated by the observed signal

lim
ε→0

E
[
(yt+ε − yt − κz̄tε)

2 | zt

]

ε
= |σ|2 (3)

So the amount of risk exposure over the infinitesimal time period seems to be the same
regardless of which information set we use. The local variation is governed purely by the
stochastic term in the diffusion, while the trend is locally smooth.

We want to produce an evolution equation for z̄t. Observe that

E [zt+ε | zt] = exp (εA)′ zt ≈ zt + εA′zt (4)

where we use a first-order Taylor series approximation of the transition matrix exp (εA).
Thus A′zt represents the ‘local trend’ of the underlying state. Using iterated expectations,
we further get

E [z̄t+ε | Ht] = E [E [zt+ε | Ht+ε] | Ht] = E [zt+ε | Ht] =

= E [E [zt+ε | Ft] | Ht] = E
[
exp (εA)′ zt | Ht

]
=

= exp (εA)′ z̄t ≈ z̄t + εA′z̄t

Thus z̄t is a sufficient statistics for zt+ε given Ht. In the limit we get

lim
ε→0

1

ε
(E [zt+ε | Ht]− z̄t) = lim

ε→0

1

ε
(E [z̄t+ε | Ht]− z̄t) = A′z̄t

where A′z̄t is the ‘local trend’ of the forecast of the underlying state, and we can write the
evolution under the filtration Ht as

dz̄t = A′z̄tdt+ . . . dWt

where . . . is a volatility matrix that needs to be determined.
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Observe that we can decompose the evolution of the signal as

yt+ε − yt − κz̄tε ≈ εκ (zt − z̄t) + σ (Wt+ε −Wt) (5)

where the left-hand side represents the newly arrived information through the signal at time
t+ ε, i.e. the difference between the observed signal yt+ε and theforecasted signal yt+κz̄tε.
The ‘suprise’ movement in the signal thus can be understood as being composed of the error
in the forecasted trend εκ (zt − z̄t) and the random evolution σ (Wt+ε −Wt).

Imagine the following least squares regression of zt+ε − (z̄t + εA′z̄t) on yt+ε − yt − κz̄tε.
This regression forecasts the change in the state zt relative to the predicted value

zt+ε −
(
z̄t + εA′z̄t

)

using new information from the signal,

yt+ε − yt − κz̄tε

under the information set Ht. This is just an information decomposition. Let us denote the
corresponding regression coefficient ∆ (z̄t) (which is an n× 1 vector)

zt+ε −
(
z̄t + εA′z̄t

)
= ∆(z̄t) (yt+ε − yt − κz̄tε) + ηt+ε

which, after post-multiplying by (yt+ε − yt − κz̄tε) and taking expectations conditional on
Ht, implies

E [zt+ε (yt+ε − yt − κz̄tε) | Ht] = ∆ (z̄t)E
[
(yt+ε − yt − κz̄tε)

2 | Ht

]

because E [(z̄t + εA′z̄t) (yt+ε − yt − κz̄tε) | Ht] = 0. The right-hand side expression is cal-
culated in (3), and thus we get

∆ (z̄t) =
(
|σ|2 ε

)
−1

E [zt+ε (yt+ε − yt − κz̄tε) | Ht] =

=
(
|σ|2 ε

)
−1

E [zt+ε (εκ (zt − z̄t) + σ (Wt+ε −Wt)) | Ht] =

=
(
|σ|2

)
−1

E
[
zt+ε

(
(zt − z̄t)

′
)
| Ht

]
κ′ =

=
(
|σ|2

)
−1

E
[
zt+εz

′

t − zt+εz̄
′

t | Ht

]
κ′

Observe that equation (4) implies

E
[
zt+εz

′

t | Ht

]
= E

[
E [zt+ε | zt] z

′

t | Ht

]
≈

≈ E
[(
zt + εA′zt

)
z′t | Ht

]
=

= E
[(
I + εA′

)
ztz

′

t | Ht

]
=

=
(
I + εA′

)
diag (z̄t)

and further

E
[
zt+εz̄

′

t | Ht

]
= E [zt+ε | Ht] z̄

′

t ≈

≈ E
[
zt + εA′zt | Ht

]
z̄′t =

=
(
I + εA′

)
z̄tz̄

′

t
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Thus, eliminating terms of order ε2, we get

∆ (z̄t) =
(
|σ|2

)
−1

E
[
zt+εz

′

t − zt+εz̄
′

t | Ht

]
κ′ ≈

≈
(
|σ|2

)
−1 (

diag (z̄t)− z̄tz̄
′

t

)
κ′

Notice that equation (2) implies that under the Ht+ε information set, we can write

yt+ε − yt ≈ κz̄tε+ σ
[
W̄t+ε − W̄t

]

where W̄t+ε− W̄t is orthogonal to Ht. Thus yt+ε− yt−κz̄tε is orthogonal to Ht, and can be
indeed interpreted as new information for the forecasting of z̄t+ε not contained in z̄t. Thus
we can write the evolution of z̄t as consisting of two components

z̄t+ε = E [z̄t+ε | Ht] + ∆ (z̄t) (yt+ε − yt − κz̄tε) ≈

≈ z̄t + εA′z̄t +∆(z̄t) (yt+ε − yt − κz̄tε)

Sending ε → dt finally gives us

dz̄t = A′z̄tdt+∆(z̄t) (dyt − κz̄tdt)

where the first term on the right-hand side represent the contribution of the information
about the evolution contained in Ht (local time trend), and the second term represents the
impact of newly arrived information in Ht+dt (locally stochastic term).

Equation (5) gives us

dyt − κz̄tdt = κ (zt − z̄t) dt+ σdWt

2.2 Innovations representation

There also exists an innovations representation under Ht. We have argued above that
dyt − κz̄tdt is unpredictable under Ht information and has variance |σ|2 dt, and thus

dyt − κz̄tdt

|σ|
=

κ (zt − z̄t)

|σ|
dt+

σ

|σ|
dWt = dW̄t

where W̄ is a standard univariate Brownian motion adapted to {Ht : t ≥ 0}. The reason is
that, as we have also argued above, the first term on the right-hand side is locally smooth
(its variance is of order (dt)2). We can easily verify that

E
[(
W̄t − W̄t−u

)
W̄t−u | Ht−u

]
= 0

E
[
W̄ 2

t | H0

]
= t

so that indeed W̄ is a standard univariate Brownian motion adapted to {Ht : t ≥ 0}.
Observe that our partial information model was

dyt = κztdt+ σdWt (6)

zt . . . Markov state with intensity matrix A
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where zt was unobserved (thus partial information model). We transformed this model into
a full information model

dyt = κz̄tdt+ |σ| dW̄t (7)

dz̄t = A′z̄tdt+ |σ|∆(z̄t) dW̄t

where we have full information about the evolution of (yt, z̄t). In doing this, we transformed
the multivariate Brownian motion Wt into W̄t which is a univariate Brownian motion under
{Ht : t ≥ 0}.

Looking at evolution (7), we only need to add an initial distribution for z̄0. This amounts
to specifying a prior distribution. Then, from the observations of dyt and the knowledge of
z̄t, I can perfectly infer dW̄t and thus also dz̄t.

From the point of view of asset pricing models, we want to think about whether we price
shocks to W̄ , or shocks to W and z. These are different environments—continuous process
z̄ vs. process z with jumps.

2.3 Filtering with more signals

This section repeats the previous scalar case, with algebra and notation adapted to the case
with multiple signals. With more signals, there will be as many dimensions of W̄ as signals.
The interesting cases are those where W is at least the same dimension as y, i.e., y has
non-degenerate local stochastic dynamics.

Suppose that an observable signal yt evolves according to

dyt = κztdt+ σdWt

where yt is a vector in R
m, κ is an m×n matrix, z represents an n-state Markov chain, σ is

an m× k matrix and B is a k-dimensional Brownian motion. We will assume that m ≤ k,
otherwise two signals are perfectly correlated and then we would be able to learn the state
immediately.

Let Ht be the information set at time t generated by the signal history {yu : 0 ≤ u ≤ t},
and we are given an initial distribution z̄0 of z.

The variance over a small time interval ε is given by

σσ′ = |σ|2 = lim
ε→0

E
[
(yt+ε − yt)

2 | zt

]

ε
=

= lim
ε→0

E
[
(yt+ε − yt − κztε)

2 | zt

]

ε
=

= lim
ε→0

E
[
(yt+ε − yt − κz̄tε)

2 | zt

]

ε

We want to produce an evolution equation for z̄t. Observe that

E [zt+ε | zt] ≈ zt + εA′zt (8)
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where we use a first order approximation of the transition matrix exp (εA). Thus A′zt
represents the ‘local trend’ of the underlying state. Further

E [zt+ε | Ht] ≈ z̄t + εA′z̄t

and thus

lim
ε→0

E [zt+ε | Ht]− z̄t

ε
= A′z̄t

where A′z̄t is the ‘local trend’ of the forecast of the underlying state. Observe that we can
write

yt+ε − yt − κz̄tε ≈ εκ (zt − z̄t) + σ (Wt+ε −Wt) (9)

where the left-hand side represents the newly arrived information.
We can run the following regression

zt+ε = ∆(z̄t) (yt+ε − yt − κz̄tε) + ηt+ε

to find the matrix (n×m) coefficient ∆ (z̄t). We have

E
[
zt+ε (yt+ε − yt − κz̄tε)

′ | Ht

]
= ∆(z̄t)E

[
(yt+ε − yt − κz̄tε) (yt+ε − yt − κz̄tε)

′ | Ht

]
=

= ∆(z̄t)E
[
(σ (Wt+ε −Wt)) (σ (Wt+ε −Wt))

′ | Ht

]
=

= ∆(z̄t)σσ
′
1

ε

where we used equation (9). Thus

∆ (z̄t) = E
[
zt+ε (yt+ε − yt − κz̄tε)

′ | Ht

] (
σσ′

)
−1 1

ε
=

= E
[
zt+ε (κ (zt − z̄t))

′ | Ht

] (
σσ′

)
−1

=

= E
[
zt+ε (zt − z̄t)

′ | Ht

]
κ′

(
σσ′

)
−1

=

=
(
diag (z̄t)− z̄tz̄

′

t

)
κ′

(
σσ′

)
−1

where the last line uses results from the unidimensional case. Thus

dz̄t = A′z̄tdt+∆(z̄t) (dyt − κz̄tdt)

and equation (9) implies, as ε → 0,

dyt − κz̄tdt = κ (zt − z̄t) dt+ σdWt

where the LHS is unpredictable, so that

σ̄dB̄t = κ (zt − z̄t) dt+ σdW̄t

To calculate σ̄, take variances of both sides to get

σ̄σ̄′ = σσ′
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Any σ̄ that satisfies this equation is fine. Notice that σ̄ is m×m, while σ is m× k, where
in general m ≤ k.

Thus our system evolves as

dyt = κz̄tdt+ σ̄dW̄t (10)

dz̄t = A′z̄tdt+∆(z̄t) σ̄dW̄t

where y is in R
m, κ is m×n, z̄ is an n-dimensional vector with entries in [0, 1] , σ̄ is m×m,

W̄ is an m-dimensional Brownian motion, A is an n× n intensity matrix, and ∆ (z̄t) is an
n×m matrix.

3 Kalman–Bucy filter

This is the second type of a filtering problem, where both signals and hidden state are
conditionally normally distributed. We will do the continuous-time version of the Kalman
(1960) filter which is due to Kalman and Bucy (1961):

dxt = Axtdt+BdWt

dyt = Dxtdt+GdWt

where the first equation is the state evolution, the second is the signal evolution, and W is
a vector Brownian motion.

In Wonham filtering, all we had to do is keep track of the mean. Here, it is also simple,
since everything is nice and normal. All we have to keep track is the mean

x̄t = E [xt | Ht]

and the conditional covariance matrix for xt given yt

Σt = E
[
(xt − x̄t) (xt − x̄t)

′ | Ht

]
(11)

Σt may be singular, thus accounting for some states being observable.
The derivation of the filter is postponed to a problem set. The resulting innovations

representation takes the form

dyt = Dx̄t + ḠdW̄t (12)

dx̄t = Ax̄tdt+Kt (dyt −Dx̄tdt) = Ax̄tdt+KtḠdW̄t.

where ḠḠ′ = GG′ with Ḡ nonsingular, and W̄ is a Brownian motion under Ht, which
satisfies

GdWt +D (xt − x̄t) dt = ḠdW̄t.

Further, the Kalman gain and the conditional variance matrix satisfy

dΣt

dt
= AΣt +ΣtA

′ +BB′ −KtGG′K ′

t. (13)

Kt =
[
BG′ +ΣtD

′
] (

GG′
)
−1
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4 Learning about an unknown model

Let us assume the following pair of models

dxt (i) = A (i) xt (i) dt+B (i) dWt (i)

dyt = D (i) xt (i) dt+G (i) dWt (i)

where i = 0, 1 is not observed and xt is also not observed. Also, we assume

G (i)G (i)′ = ḠḠ′

where Ḡ is nonsingular, so that the variance matrices for dyt are the same for both models.
This makes the learning problem nontrivial in continuous time (otherwise we could learn
about the variances from sampling infinitely fast). Observe that if W has more components
than y, this effectively selects a subvector of the components of the Brownian motion.

Notice that if x was observable, then we could employ standard inference techniques
from statistics to infer the parameters.

We will work in steps.

4.1 Dynamics conditional on a model

Assume that the model is known. Then we produced the Kalman–Bucy filter formulas for

E [xt (i) | Ht] = x̄t (i)

E
[
(xt (i)− x̄t (i)) (xt (i)− x̄t (i))

′ | Ht

]
= Σt (i)

where Σt (i) depends only on the elapsed time (usual property of the Kalman filter).
Define

Kt (Σt (i)) =
[
B (i)G′ (i) + Σt (i)D

′ (i)
] [

G (i)G (i)′
]
−1

Then the evolution is

dx̄t (i) = A (i) x̄t (i) dt+Kt (Σt (i)) [dyt −D (i) x̄t (i) dt]

and

dΣt (i)

dt
= A (i) Σt (i) + Σt (i)A (i)′ + (B (i)−Kt (Σt (i))G (i)) (B (i)−Kt (Σt (i))G (i))′

This can be done for an arbitrary number of models i.

4.2 Log-likelihood ratios in continuous time

Consider a static model
y ∼ N (µi,Λ)

against a baseline model
y ∼ N (0,Λ)
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The log-likelihood ratio of the two models

−
1

2
(y − µi)

′ Λ−1 (y − µi) +
1

2
y′Λ−1y = µ′

iΛ
−1y −

1

2
µ′

iΛ
−1µi (14)

We want to produce continuous-time log-likelihoods for our continuous-time models
introduced in Section 4.1.

The continuous-time log-likelihood of model i against a model with zero drift is, based
on the intuition from formula (14),

lt (i) =

∫ t

0

[D (i) x̄u (i)]
′
(
ḠḠ′

)
−1

dyu −
1

2

∫ t

0

[D (i) x̄u (i)]
′
(
ḠḠ′

)
−1

[D (i) x̄u (i)] du

In particular, we want to look at an infinitesimal increment

dlt (i) = [D (i) x̄t (i)]
′
(
ḠḠ′

)
−1

dyt −
1

2
[D (i) x̄t (i)]

′
(
ḠḠ′

)
−1

[D (i) x̄t (i)] dt (15)

This can again be constructed for any number of models indexed by i. The interpretation
of these formulas is the same as in discrete time. Our data are samples are dyt, with
conditionally normal distribution under Ht given by (12).

Here I construct the log-likelihood ratio against a model with the same variance, under
the models dynamics implied by the Kalman filter, with the state variables x̄ (i) and Σt (i)
specified above. Notice that once we have the evolution for x̄ (i), we can construct the
evolution of the log-likelihood (everything conditional on a model).

To infer the posterior, I need to specify a prior distribution for each model, given by
initial conditions x̄0 (i) and Σ0 (i).

4.3 Posterior model probability

We now specify the problem for two models. Denote

ı̄t = E [i | Ht]

the probability of model one conditional on Ht. Then by Bayes rule

ı̄t =
exp (lt (1)) ı̄0

exp (lt (1)) ı̄0 + exp (lt (0)) (1− ı̄0)

where ı̄0 is the prior probability of model 1 at time 0.
Our life if easy when we recognize that ı̄t is a martingale under Ht. Simply by law of

iterated expectations,

E [̄ıt+τ | Ht] = E [E [i | Ht+τ ] | Ht] = E [i | Ht] = ı̄t

Notice that we take into account that the agent (naturally) believes in the prior that he
imposed.
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4.4 New information

The ‘new information’ arriving in time interval dt is

dyt − [̄ıtD (1) x̄t (1) dt+ (1− ı̄t)D (0) x̄t (0) dt]

We now want to compute the local evolution of the belief ῑt. Notice first that we can
consider the function

f (r0, r1) = log ı̄+ r1 − log [̄ı exp (r1) + (1− ı̄) exp (r0)]

and we have

∂f (r0, r1)

∂r1
= 1−

ı̄ exp (r1)

ı̄ exp (r1) + (1− ı̄) exp (r0)
= 1− exp (f (r0, r1))

∂f (r0, r1)

∂r0
= −

(1− ı̄) exp (r0)

ı̄ exp (r1) + (1− ı̄) exp (r0)
= exp (f (r0, r1))− 1 = −

∂f (r0, r1)

∂r1

Therefore, the application of Itô’s lemma to log ῑt yields

d log ı̄t = dlt (1)−
exp (lt (1)) ı̄0dlt (1) + exp (lt (0)) (1− ı̄0) dlt (0)

exp (lt (1)) ı̄0 + exp (lt (0)) (1− ı̄0)
+ terms in dt =

= (1− ı̄t) (dlt (1)− dlt (0)) + terms in dt

Substituting in for dlt (i) from (15), we obtain

d log ı̄t = (1− ı̄t)
{
(D (1) x̄t (1))

′
(
ḠḠ′

)
−1

− (D (0) x̄t (0))
′
(
ḠḠ′

)
−1

}
·

· {dyt − [̄ıtD (1) x̄t (1) dt+ (1− ı̄t)D (0) x̄t (0) dt]}+

+different terms in dt

where the ‘different terms in dt’ also contain dt terms that have been added to the middle
line. In particular, we removed the model specific drifts in dlt (i) defined in (15) and replaced
them with one average drift so that the term

dyt − [̄ıtD (1) x̄t (1) dt+ (1− ı̄t)D (0) x̄t (0) dt]

does not have a drift under the information of the agent who does not observe the two
models separately. I can do this since these are all dt operations.

Notice that log-probabilities are not martingales but probabilities are, so that we can
infer that probabilities in levels evolve as

dı̄t = ı̄t (1− ı̄t)
[
(D (1) x̄t (1)−D (0) x̄t (0))

′
(
ḠḠ′

)
−1

]
·

· {dyt − [̄ıtD (1) x̄t (1) dt+ (1− ı̄t)D (0) x̄t (0) dt]}

It is essential to understand this formula. Think of a single signal (y is a scalar). Think
about a situation where we obtained a higher signal than expected (the second line in the
previous formula is positive). Then if model 1 has a larger mean than model 0, then the
probability ı̄ of model 1 goes up. In usual situations, ı̄ will converge either to zero or one
as we learn the model.

We can now define

dW̃t = Ḡ−1 (dyt − ı̄tD (1) x̄t (1) dt− (1− ı̄t)D (0) x̄t (0) dt)

W̃ is a Brownian motion relative to H.
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5 Applications to risk prices: Breeden model

See problem set.
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