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RATIONAL LEARNING AND RATIONAL EXPECTATIONS

Margaret Bray* and David M. Kreps**

June 1981

A number of recent papers have addressed the question: Will economic

agents be able to “learn” the relationship between prices and states of the

world so as to achieve the sorts of rational expectations equilibria studied

by Grossman [19771 et. al.? This is a very complex question, because as agents

learn, they change their behavior, and thus they change the relationship be-

tween prices and states of the world. This learning problem is not one of

observing a stationary sequence, so standard results in statistical theory

(as applied by Kihlstrom and Mirman [1975], for example) do not apply.

Many of the recent studies have concerned “irrational learning.” By

this we mean: An agent who “understands” the economy in the sense that this

agent knows the functional relationship between states of nature and prices

(at the various dates) would not rationally learn in the fashion predicated by

the model. Papers in this vein include Blume and Easley [19801, Bray [1980],

and Radner [1980]. These papers show that with irrational learning, the evo-

lution of agents’ beliefs and behaviors can exhibit many different qualities:

There can be convergence to correct beliefs; there can be convergence to in-

correct beliefs; there can be divergence of beliefs; beliefs can “cycle”. In

contrast, there have been a few papers which deal with rational learning (often

under very strong assumptions or for very special examples); among these are

Arrow and Green [1973], Blume and Easley [1981], Feldman [1980], Frydman [1981],

Lewis [19811, and (especially) Townsend [1978]. In these papers, one invariably
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finds convergence of beliefs to correct beliefs. In this paper, we give a general

formulation of rational learning (following Townsend), :.we show that rational

learning must entail convergence of beliefs, and we argue (by example) that

convergence of beliefs to correct beliefs will follow if the model is sufficiently

regular.

The paper is organized as follows: In section 1, we give a genral

formulation of a model with rational learning. Then we develop a special case of

this formulation, for economies as in Grossman [1977] (among many others), where

there is a sequence of disconnnected, “i.i.d.” periods. In section 2, a simple

example in the style of Grossman is given. In this example, there is one informed

and one uninformed agent, with the added complication that the uninformed agent

is unsure (at the outset) how risk averse the informed agent is. We show how

an equilibrium with rational learning can be defined in this case (although we

do not obtain a closed form specification of the equilibrium). This should be

compared with the model of Bray [1980] in particular: Bray gives an “irrational”

learning model for precisely this economy. Section 3 contains the main result

of this paper: By simple application of the martingale convergence theorem, we

see that “convergence of beliefs” must take place in any model with rational

learning. We sharpen this result in section 4, by showing that, for the example

of section 2, this implies that the uninformed agent will (almost surely) learn

how risk averse the informed agent is, yielding (in the limit) the usual sta-

tionary rational expectations equilibrium for this economy. We also make some

informal remarks concerning the extent to which this sharpening can be expected

to extend to other particular models. In section 5, we compare our results with

the very interesting example of Blume and Easley [1980], wherein (with positive

probability) there can be convergence of beliefs to an incorrect model. We see
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how the “irrationality” present in the Blume and Easley model makes this possible,

and why this could never happen if there is rational learning. We close with

some general discussion: We argue that rational learning models have limited

value for economic analysis, as they presume much too much on the part of agents.

But they can teach us some useful things about the amount of “irrationality”

that one ought to permit in an irrational learning model.

1. Formulation.

We imagine an economy which meets at a sequence of dates t = 0,1,...

At each date t, certain markets (spot and/or future) open, in which agents

trade. Agents begin with some information about the economy, and they obtain

further information as the economy evolves. In particular, agents always

observe the equilibrium prices at which they trade, and they condition current

trades on the information contained in current equilibrium prices.

Formally, there is an underlying measure space (~,F). Agents are

indexed by n = l,...,N, and each agent begins with some prior probability

assessment P~ on (c7,F). At date t in state c~, a set of markets

opens up, and agents trade to equilibrium in this market, with the equilibrium

price in market m beging denoted p~(m,ü). We write Pt for the random

vector {p~(m,cu); o~ c ~, m c M~(c~)}; note that at this level of generality,

the number of components of Pt may be random.

Each agent n, at each date t, formulates his demand based on infor-

mation that this agent possesses. There are two types of information. Agent

ñ comes endowed with certain prive information; we let G’~ denote the

ci—field generated by n’s private information at date t (which we assume is

nondecreasing). We assume that Mt is G~ measurable for all t and n;
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each agent knows which markets are open. (In the spirit of Radner [1968], we

could forbid certain agents to trade in markets where they lack the information

necessary to verify or consummate the trades, but it is easier notationally to

assume that markets are open only for opportunities in which all agents can

participate.) In addition, agent n observes certain random variables generated

by his own and other agents’ behavior. To keep matters simple, we will assume

here that each agent learns equilibrium prices and only those (in addition to

the information in G~); we shall write H~(p) for the a—field generated by

and O’~l’~”~t~

An equilibrium (of plans, prices and price expectations) is an array

(p,x) = Cpt(m,w), x~(m,U); t = 0,1,... , E ~, m ~ M~(U), n = 1,...,N}

where each p~(m,w) c [O,°°), each x’~(m,U) ~ R, any requisite measurability

conditions are met (for example, p~ must be \/ G~— measurable),

N
(1) ~ x~(m,~) = 0 for each t, m and ~,

n 1

and ~x~(m,aJ); t = 0,1,... , c ~, m ~ M~(c~i)~ is an optimal net trade for

agent n among all feasible net trades for this agent, given that prices follow

p, and given that the agent possesses information H’~(p) at date t.

We shall not attempt to be more precise about this at such a high level

of generality. Instead, we will develop a much more concrete example, in the

spirit of Grossman [1977]. Imagine that this economy consists of a sequence of

economically disjoint periods. That is, at each date t, agents start afresh,

with no wealth or preference carryover from previous periods. There is some

uncertainty at each date t, given by a random element from some space

—— we assume that forms an i,i.d. sequence. We can imagine 4~

representing such things as agents’ endowments, performance of securities,
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size of harvests, etc. A fixed set of spot markets opens in each period.

Agent n has a von Neumann—Morgenstern utility function for each period

t, ~ where xt is the agent’s net trade in the period t spot

markets. Agent n receives some private information about ~ . ,~)

between the dates t — 1 and t (before date t trading takes place),

which we represent by a function I~ defined on the space ~t+1 That

is, agent n learns the realization of ~ prior to date t

trading.

So far we have precisely the very stationary and disconnected sequence

economy of Grossman [1977]. To this we add some further uncertainty about the

“parameters” of the economy. Formally, there is a random variable U that is

independent of the and that enters agents’ utility functions; the utility

functions have the form u~’(x~,~~e). Think of U as a specification of agents’

coefficients of risk aversion or of their endowments. Or, with minor modifica-

tions in our notation, one can think of U as determining the number of agents

in the economy. We assume that agent n is endowned at the outset with

information J’1(O) about 8, and that he obtains no further information except

what he can glean from equilibrium prices. (This is easily relaxed.)

In terms of our general formulation, in this example ~2= 0 x ~?°°, and

is the a—field generated by ~ For simplicity, we assume

that agents share prior assessment P over ~.

An equilibrium in this context is a sequence of prices p0(~0,O),

p1(c~0,~1,U), ... and net trades (x~(~0,O))N1, (x~(40,41,U))N1,... such that

N

(2) ~ x~ = 0 P—a.s. for each t = 0,1,...,
n= 1

n n nn n
(3) ~ ~ arg max E(u (x,4~U) J

x:p~x<O
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(4) x~ is ~ — measurable, and

n n n N
~ Pt iS ~3 ‘1~’~’~’~o’ ~ — measurable.

In (3), the ~ max should be over x that are feasible net trades for

agent i, and E(1) denotes conditional expectation with respect to P.

(For (3) to make sense, some attention should be paid to fixing a regular

version of conditional probability for each t; cf. Kreps [1977].)

In both this example and in our general formulation, the reader will

see that what we have in mind is simply a grand rational expectations equili-

brium as in Radner [1972], except that we allow differential information, and

agents learn from equilibrium prices. This seems the natural extension of the

static rational expectations equilibrium definition to sequence economies;

see, for example, Futia [1979] or Townsend [1978].

The key to this formulation is that we directiy model agents’ uncertainty

about what is the “true economy” by expanding the state space. This is in

the spirit of Harsanyi’s [1967—8] models of games with incomplete information:

There is some shared underlying state space —— where agents differ initially

is in their initial information about the state space and (perhaps) in thier

prior assessments over that space. And an equilibrium must give equilibrium

prices and trades for all the states, just as in Harsanyi’s “Bayesian Nash

equilibria.” This approach to rational learning, therefore, has antecedents

both in the literature on rational expectations equilibria (see Townsend [1978])

and in the literature of game theory.

The apparent “flaw” in this formulation of the problem is that it really

avoids the main question: How do agents “learn” the relationship between prices

and states of the world? Instead, it takes that problem for relatively simple
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economies (such as those of Grossman) and “resolves” it by positing that agents

know the rational expectations equilibrium for a far more complex economy.

The point of view is that if agents do not “know” the equilibrium, it is

because they are uncertain about some parameters of the economy, such as the

information possessed by or the risk tolerance of their fellows. However,

given a realization of those parameters, the agents know what equilibrium

prices will prevail. In effect, we imagine agents who are possessed of quite

substantial computational power —— the power to “figure out” how the economy

will evolve in any of its possible manifestations. (Compare this with the

context of economies with a sequence of markets but with no differential

information. In this context, the rational expectations notion is that of

Radner [1972], where agents are presumed to “work out” what future prices and

net trades will be.)

Is so much rationality necessary? For example, must agents agree on

the underlying state space .S~? This question is motivated in part by the ob-

servation that agents will never see !‘disproved” their hypotheses for what will

happen for states o ~ ~ that do not in fact pertain. We can perhaps get

by with something less than the above: We could imagine that each agent n

has a personal model of what will ensue (given by a personal state space

(~~t~,Ffl,Ptl), and price and net trade mappings {p~} and ~x~} on this space).

To maintain the “rationality” of these diverse models, we would assume that they

“intersect” for the true state of the world —— what does in fact happen is

consistent with each agent’s private model. (This weaker form of “rationality”

is sometimes called “fulfilled expectations” in the literature.) We shall not

pursue this sort of model further; the reader will see that while our later

results do not apply to it directly (as they consist of a.s. statements, and
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thus have no particular validity for any single point o), some salvaging

may be possible.

A final comment: We use a model where the equilibrium concept is

nothing more than the usual rational expectations equilibrium. Therefore,

besides the question of how agents “figure out” this equilibrium, we must face

the problems of existence of equilibrium and implementation of equilibrium.

We have nothing to add to these questions —— we simply assume that equilibria

exist (or, rather, prove statements about them when they do exist), and we

assume that they can be implemented without further “informational leakage”

to agents.

2. An example.

We now consider a particular example of the special case of section 1.

This is an~infinitely repeated version of the model of Grossman and Stiglitz

[1980]; Bray [1980] uses this model to study an irrational learning process

based on ordinary least squares estimation.

In this model there are two types of agents —— informed and uninformed.

Each agent is endowed at date t with one unit of a one period risky asset

yielding a random gross return rt at date t + 1/2. There is also a safe

asset, whose price and gross return are normalized to unity. Agent n has

a utility function for period t

exp(_(x~r~ + y~)/U”),

where x~ and y~ are his holdings (between dates. t and t + 1/2) of the

risky and safe assets, and U~ is a parameter measuring risk tolerence. (That

is, l/U~’ is the agent’s coefficient of absolute risk aversion.)

Both types of agents observe last period’s return on the risky asset

prior to date t trading. In addition, the informed agents observe
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an unbiased predictor Pt of rt. We assume that {p~} is an i.i.d. sequence

of Normal random variables, and that r~ = p~+ Ei, where {E~} i~ also a

sequence of i.i.d. Normal random variables and where the full collection of

random variables ~ ~ t = 0,1,.. .} is independent. The error terms

2 .have zero means and variances a . In the notation of section 1, the underlying

uncertainty at date t concerns = ce).

If all the agents knew p~ at t, they would have no reason to attempt

to draw inferences about p~ from the price. If the price were p, agent n

would demand (O”/c~2)(p~ — p), and if there were N agents and so a total

2r n

endowment of N, the equilibrium price would be p = p~— ~ 0 ).

Following Radner [1979], we term this the full communication equilibrium

2 n

price. If (Na /~ 0 ) is known, then p~ can be inferred from p~. Thus

even if initially some of the agents were uninformed of p~, but these agents

knew (Na2/~ 0”), the full communication equilibrium would be a rational

expectations equilibrium in which the price p is completely informative.

Suppose however that there is uncertainty about the On.. To keep

matters as simple as possible, we assume that it is common knowledge that

there are only two agents, one informed, the other uninformed. The values

of a2 (the variance of the error term) and the uninformed agent’s coef-

ficient of risk tolerence O~ are also common knowledge. The uninformed

agent is however initially uncertain about 01. (The informed agent of

course knows the value of 01.) We suppose that at the outset, the unin—

formed agent has a prior assessment concerning 0~ that is given by a dis-

tribution function on some interval [a,b] C (O,~) and that has a density.

Imagine that at some date t, after observing ~tl’ the uninformed

agent’s posterior assessment of 01 is given by a distribution with density
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function f on the interval [a,b]. The demand by the informed agent, as

a function of the price p, the information and 01, is

I I I 2
(6) X ) = 0 (p~ —

In equilibrium, X’ + X~= 2, so the uninformed agent can infer X’ from

his own equilibrium holding X1~. Equation (6) can be used to compute

as a function of and the other known variables (a2, X’ and p):

~ Pt = (a2X1/8’) + p.

The uninformed agent’s current assessment of e~, together with his prior

~ thus yields a posterior on r~ (which will not be Normal in general).

We now show how this yields a demand function for the uninformed agent which

is downward sloping and depends only on p.

Fix some p in (7) for the moment, and let X’ vary. As increases,

the uninformed agent’s assessment over p~ and thus over r~ shifts (sto—

chastically) upward. At any price p, this increases the desirability of

the risky good for the uninformed agent: We can compute the uninformed

agent’s demand given the equilibrium data X’ and p, obtaining a schedule

xU(p,xI) (which depends, implicitly, on the density f) —— an equilibrium

condition is that X’ + xU(p,XI) = 2, and since x~ increases with

for each p there is a unique X’ satisfying this equation. Calling this

value x’(p), we have that the demand of the uninformed agent, as a function

of p alone; is XU(p) = 2 — x1(p). Differentiating x’(p) + xIJ(p,xI(p)) yields

I U U
= — ~ /(1 + -~-~) > 0.

p p

And since dx1/dp = —dXT~/dp, X~~(p) is downward sloping. Recalling that

I I . . . . .
X ~ ) is a decreasing function of p. this implies that there is a
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unique and well—defined equilibrium price Pt solving

I I U
(8) X (p,p~,O ) + X (p) = 2.

I

This price Pt depends upon O~. p , and the density function f. In

order to specify the entire equilibrium, we must finally specify how this

density f evolves through time. Suppose that the agent, after learning

at time t, has an assessment given by f, and then acts as above.

At time t + 1 he has three new pieces of data: Pt —— the equilibrium price

last period; X~—— his allocation; and rt. As X~= 2 — X~, he can infer

X~. From (7), the likelihood of observing p~, X~ and r~ given 61 is

the likelihood that p~= (a2(2 — X~)/e’) + ~ given r~, which as r~ =

+ and is Normal, is the Normal density function g(.Jr~)

of ~ given r~. Thus using Bayes’ rule, the revised posterior assessment

for ~I is:

fz f(0)g((a2(2_XU)/e) + ~ ir ) dO
(9) P(0 < zip , X , r ) =

— t ~ ~ 1a f(0)g~~ (2_X~)/O) + p~trt) dO

Note that as the uninformed agent begins with a prior over 01 that has a

density function on the interval [a,b], (9) ensures that the posterior will

also be of this form. As we assume that agents begin with such a prior, all

subsequent posterior densities will have this form.

It is worth noting that while we have not computed the equilibrium

prices, we could, in principle, do so. (All that would be needed is a large

computer budget and, almost certainly, a good graduate student.) The major

difficulty is in computing xU(p,XI) —— since the uninformed agent’s posterior

assessment for r~ is not Normal, finding his optimal net trade is quite hard.
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If this can be done efficiently, then solving numerically x~(p) + xU(p,xI(p)) = 2

to get xU(p), and then (8) and (9) will not be difficult. But closed form

solutions are out of the question.

This example would be no more difficult if the informed agent were

uncertain about O~—— the informed agent doesn’t care at all about

in forming his demand. But things would be much more complex is, say,

we had two agents, each of whom got a different noisy signal about r~,

neither of which was strictly superior information, and if neither knew

the other’s coefficient of risk tolerence. As long as each side can learn

something of value to it from the equilibrium price, finding non—trivial

equilibria seems impossible.

It is, on the other hand, quite easy to construct trivial examples of

“fully revealing” equilibria. Following Radner [1979], if 0 and ~ are

both finite sets, then “generically” p0 will be one—to—one and will reveal

J instantly; and thereafter each Pt will reveal It completely. Similar

results, following the analysis of Allen [1979], where 0 and ~ have low

dimension when compared with the number of coordinates in price vectors, are

also possible. And if one is content with “almost equilibria,” then Jordan’s

[198 ] results apply to give full revelation. The point is that we have

here nothing more than a “complicated” rational expectations equilibrium

problem, and the literature that concerns these equilibria applies directly.

3. Convergence of Posterior Assessments.

It is trivial to prove that posterior assessments “converge” almost

surely. First consider any agent’s posterior assessments of a fixed

measurable set A c ~2. At date t, the agent’s assessment that A obtains

is given by E”~1AjH’~(p)], where En~.] denotes expectation taken with
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respect to P

Proposition 1. For arbitrary measurable A C ~, and for each agent n,

lim E”~lAlH’~(p)] = E”~lAJI~”(p)] P~—a.s.,

where H~(p) V~1H~(p).

The proof is a trivial consequence of the fact that E”~lAIH’(p)] forms a

boundedmartingale —— see Chung [1974, Theorem 9.4.8]. It is worthwhile to

note something this result does not say: It does not say that posteriors

converge for all agents “almost surely,” where “almost surely” refers to

some objective probability measure. If, for example, p1’ and P” are

mutually singular assessments for some agents n and n’~, then it is possible

that there is no point in ~ for which convergence holds for both n and n’

simultaneously. But, of course, in cases where the pn all have identical

null sets, we get simultaneous convergence of posteriors (except possible on

one of these null sets).

Now we wish to sharpen this convergence result, by considering how

agent’s “entire posterior” evolve. To do this requires some topological

assumptions on the “probability space of interest,” so to illustrate matters

we will use the concrete example of section 1, where ~ 0 x ~°, and we will

focus on agents’ marginal posteriors on the space 0. (This restriction

of attention is natural in the “disconnected periods” models of Grossman.)

Thinking of 0 as recording agents’ risk tolerences and other

similar parameters, it is natural to suppose that 9 has “nice” topological

structure. We shall assume that 0 is a complete separable metric space

and that, with the a—field on 9 generated by its open sets, it is a Borel

space. (So, for example, 0 is some subset of Rk for finite or even
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countably infinite k.) Thus we can fix a regular versiqn of conditional

probability P’ on 0 that represents agent n’s posterior at date t

over 0; that is, for A a measurable subset of 0,

P’~(A) is a version of E”~lAIH~(p)], and

is a probability measure on 0, P~1~a.s.

Similarly, we can fix regular versions P~ of E”{l{.}lH~(P)1.

Pr~position 2. Under the conditions above (0 is a complete and separable

metric space, and it forms a Borel space), for fixed regular versions of

conditional’ probability P~ and PT1, we have that P~ converges weakly

n n
to P, P —a.s.

Proof. Since 0 is a complete and separable metric space, we can find for

each integer k a countable collection {Ak ; m = 1,2,.. .} of disjoint

measurablesubsets of 9, such that each Ak is contained within a 1/Ic -ball

and A1~
= 0. By proposition 1, lim~ P~~(Ak) = Pt~(Ak) for every k and

m, except possibly on a P”~null set. (Since there are countably many k and

m, this is true for all k and in simultaneously.) Fix some u Q not

from that null set.

We prove the weak convergence of P’~ to P2, (at the point w) using

criterion (ii) of the portmanteau theorem of Billingsley [1968, page 12]. Let

f be a bounded, uniformly continuous, real valued function on 0. Let Z

denote the bound on f (Z> if(~)i for all U c 0) and let cS(e) denote

the modulus of continuity of . f. Fix some ~° > 0 and let 5° =

Let L° be an integer larger than l/S°. Pick K° large enough so

K° ii L°
that ~k=l ~ ~k ~ > 1 — E°/Z. Pick T° large enough so that for all t >
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and for all k = l,...,K°, lP~(A~) - P~(A~)I < c°/(K°Z). This implies that

n

k=K°+l Pt(Ak ) < 2~°/Z for all t > T°. And therefore, for all t > T°,

If dP” — ff dP”lt Co —

k=l ~ f dP~ - f(a~)P~(A~)i + f(a~)(P~(A~) - P2,(A~))~

+ L° ~ dP — f(a~)P(4)i] +Ak

~~L° fdP”I + if fdP2,j] <k=K°+l Ak A~ —

L°
where ak is an arbitrarily selected point from A~.

4. Sharpening the ConvergenceResult.

We return to the example of section 2. Let Ft denote the uninformed

agent’s posterior distribution function for oI at date t after learning

I
r~1, ~t—l’ and x~1. (Of course, Ft is a random element depending

upon the uninformed agent’s initial prior on 01, the actual 01, and the

values of and for s < t.) Applying proposition 2 (or, more precisely,

a small variation on proposition 2), we know that with probability one,

Ft converges weakly to some F,,. What is FCo? In this example we can show

that F will be a point mass at 01. The argument that leads to this con-

clusion has three parts:

lu

(A) The price at date t, ~ ,0 ,p0,. . . ~ ~ will almost surely

approach some random price functional PCo~~t~as t goes to infinity.

To see this, note that all that is germane in (0I,ØU,~0,~•• ‘~t’~0’ ,E~i)

for computing Pt are the values of ~I, 0U and p~, and the distribution

function Ft. Now 01 and O~ are the same for all t, and the effect on
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xU(p) of Ft is continuous in the weak topology on Ft. So as F~ approaches

FCo weakly, X~ will approach the demand the uninformed agent would make if

he had posterior F,,,. This, in turn, implies that equilibrium prices approach

what they would be if the uninformed agent had this posterior. (We leave

details of this argument to the reader.) To show the dependence of this

limiting relation on FCo, O~, and 0U we shall write

(B) The distribution of pCo(8~FCo,01,8’~)is H~(p) — measurable. To see this,

note that as Pt forms an i.i.d. sequence, if the uninformed agent simply

keeps a frequency distribution of the observed equilibrium prices, part (A)

implies that this will (almost surely) approach the distribution function of

As the frequency distribution functions are all H~(p) —

measurable, their limit must also be so. (Again we leave the precise details

to the reader.)

(C) Knowledge of the distribution function of p~(p~F~,OI,eU) and of

and F,,,, is sufficient to compute the true value of 81. One more we leave

details to the reader, but the key is that p,,,, is stochastically decreasing

in 81 for fixed 3U and F,,,. This together with (B) implies that 8~ i.~

HU(p) — measurable. Thus for any subinterval [c,d] of [a,b],

U I U U
c [c,d]}) = E [l~eI~~ d]}IH (n)] =

To what extent does this result generalize? Knowing that posteriors

converge is something, but can we say anything in general about to what they

converge? The answer to these questions is mixed. The arguments above can be

generalized to some extent, in contexts where ~ = ® ~ (For models with

less structure, we do not even know how to pose precisely a meaningful sharpening
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of proposition 1.) But such generalizations can be difficult:

Generalizing step (A) can be quite hard. In our very simple model, it

is easy to show that equilibrium prices “settle down” to some stationary

relationship if posteriors converge. But in general, this sort of argument

depends on a lot of smoothness, especially since small changes in a price

functional can lead to enormous changes in the information that those prices

communicate.

One step (A) is surmounted, step (B) is easy —— only some sort of

ergodicity of is needed.

As for (C), this definitely exploits the special structure of our model.

In general, the long—run distribution of prices and other observables (for the

limit posteriors) as a function of 8 will not be one—to—one. For example,

suppose that in the example of section 2 there were to informed agents with

coefficients of risk aversion oil and e12, both unknown by the uninformed

agent. Then in the resulting equilibrium, the uninformed agent would learn

Ii 12 Ii
the value of 0 + 0 , but he could never disentangle 8 any further

than that. (On the other hand, once the uninformed agent knows o11
+ 012,

there would be no value to him in knowing ~ in addition.)

5. An Example of Blume and Easley.

It is interesting to compare the results of section 4 with those of

Blume and Easley [1980], in which convergence to an “irrational expectations”

equilibrium is possible. In what follows we present a somewhat simplified

version of Blume and Easley’s model, translated into language consistent with

our own. The reader should consult their paper for a better picture of what

0 1
they are doing. There are two possible values of 8, 8 and 8 , and
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there are two agents. Agent n observes a signal I~ prior to date t

trading. After date t trading, agent n learns the entire signal 1~=

(I~,I~). The signal I~ can take on only a finite number of different

values. If 80 obtains and both agents know this, then there is a rational

expectations equilibrium price function p°(I~) for date t. If obtains

and this is known, then equilibrium prices are given by p (In).

Each agent n entertains two models and about how their

world might be structured, corresponding to their initial uncertainty about

whether e0 or ~l obtains. A model is a function i~J(I~I”,p) which gives

the probability of It = I given that agent n observes I” and the equilibrium

price p. The models are consistent with the rational expectations

equilibrium which prevails when 80 obtains, in the sense that for any p

observed in the rational expectations equilibrium p°. tp~(III”,p) gives

the objective equilibrium distribution for I given 1n and p. However each

0. .
i~ is also defined for values of p which are not observed in equilibrium.

Similar remarks apply to the

Each agent starts with a prior probability assessment over which model

obtains, which yields a probability distribution over I~ given I~ and Pt.

After observing I~ and each agent updates his assessment over his

two models in a manner that attributes increased posterior probability to

whichever model gave greater likelihood to the observed Blume and

Easley show that in this world, it is possible that expectations converge

to a non—rational expectations equilibrium with positive probability.

This happens as follows. If 80 obtains and agents believe that

model 1 is correct, prices are given by p*(I~) which is equal to neither

p°(I~) or to p1(I~). Moreover, prices “close” to p~ are much more “likely”
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under model 1 than under model 0: ~j?(IiI,p*(I)) > i~°(III,p*(I)) for all

possible I, and similarly for all p close to p~. Thus is agents start

by believing that model 1 is much more likely to apply than model 0, and if

00 does indeed obtain, then they are likely to come to assess probability

approaching one to the “incorrect” model 1. This may happen even if model 1

is a very poor description of the actual situation. To give a concrete example,

suppose that I can take on only two values, I’ and I”, and that p*(I’) =

10 and p*(I”) = 20, each with probability one., Suppose that agent 1 has

no private information, and that his models are t!4(10i10) = .01, lP~(2OI20) =

.01, ip~(lOil0) = .001, and i~~(2Oj2O) = .001. In the equilibrium to which

the learning process converges, agent 1 observes repeatedly that p = 10 whenever

I = I’ and p = 20 whenever I = I”. But he continues to believe that if

I = I’, p = 10 with probability .01, and p = 20 with probability .01 if

I = I”. This is because the only other model that this agent entertains

assesses even lower likelihood to the observed events. Like any good detective,

this agent rejects the probable impossibility for the improbable possibility,

because although improbable, this possibility is the most probable possibility.

In this example, our step (A) from section 4 is satisfied —— prices do

settle down into a stable relation. But step (B) is inapplicable. Even

though in the long run the agent observes that I = I’ always gives p = 10,

he assesses zero posterior probability to this relationship, because he

assessed zero prior probability to it. (It was not one of his two models.)

This could never happen In a rational learning model (or, more precisely, it

happens with zero prior probability), because agents must assess positive

prior probability to pricing relations that have positive prior probability.

And, we contend, even if agents do not learn in a wholly rational manner, it
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is hard to imagine agents so irrational that they don’t begin to wonder if

some stable relation is emerging that they hadn’t counted on.

6. Concluding Remarks.

In this paper we have shown that if agents are rational Bayesians, then

their beliefs must converge. Moreover, with “sufficient” regularity, beliefs

converge to the “correct beliefs” which characterize a stationary rational

expectations equilibrium.

However we do not believe that these results provide a satisfactory

answer to the question: “How does a rational expectations equilibrium come

about?” The Bayesian learning process that we describe allows for agents’

uncertainty about things .which are taken to be known parameters in standard

models of rational expectations equilibrium (e.g., risk aversion). However

we assume that agents have extraordinary insight into the way their world

operates given these parameters, and an ability to calculate the probability

of events in their world given their prior assessments which greatly exceeds

our own. We were able to outline how such a calculation could be performed

for an extremely simple example in which only one agent learns, but we not

provide a closed—form solution. Other authors have also worked particular

examples of models with Bayesian learning (see the introduction). However

in general agents wouldbe solving very difficult problems with extremely

complex dynamics, particularly when two or more agents are learning from

each other.

We find this incredible, and so despite the attractive convergence

properties of rational learning, we are led to reject it as a plausible

model for investigating the attainment of rational expectations equilibria.

One could, of course, accept the point that economic agents, like billiards
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players, probably do not carry out the appropriate calculations and proba-

bility assessments, but follow Friedman [1953] in arguing that, to a good

approximation, agents act as if they did so. Friedman argues that the appro-

priate test of a behavioral assumption is not its superficial plausibility,

but its predictive power. Without entering into this methodological debate,

we feel safe in saying that we are all in favor of empirical tests of the

rational expectations. hypothesis.

Nevertheless, we would like to point out that we do in fact know some-

thing about how agents form expectations. In some instances people are likely

to be somewhat inarticulate about what their expectations are and where they

come from. However in many cases economic expectations are derived in whole

or in part from the conscious application of techniques of statistical inference

to past data. These techniques may or may not be those which our hypothetical

brilliant Bayesian would use —— econometricians may lack the insight to know

a priori, what the appropriate specification of the model to be estimated is,

as do we. However, given a model for which a rational expectations equilibrium

has been posited, one can pose the question: “Could agents in the model who

initially don’t know how to form rational expectations learn how to do so by

using standard statistical techniques on the data generated by the model?”

One of us (Bray) has done precisely this and has c~btained, albeit with some

difficulty, and for a very simple model, a condition guaranteeing almost sure

convergence to the rational expectations equilibrium. General analytic

results along these lines may be hard to come by; the simulation approach

followed by Cyert and DeGroot [1974] is more tractable, although care is

required in interpretation of the results.

On the other hand, considerations of rational statistical inference

can be used to place bounds upon the degree of non—rationality that we are
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prepared to countenance. In particular, we find it implausible that a learning

process converges to a stationary equilibrium in which agents maintain beliefs

indefinitely which are systematically confounded by the events that they

observe. This is reminiscent of the old argument for adopting the rational

expectations equilibrium concept, and we accept that in the long run, equilibrium

expectations must either be nonstationary or else rational. We merely believe

that we have no satisfactory story about the attainment of a long run equilibrium

in which expectations matter.
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