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2 Continuous Time Summary/Review

We need a statistical model that can apply to stock prices, returns, etc. The point of these notes

is to quickly present the standard diffusion model that we use in asset pricing.

We use continuous time when it’s simpler. In point of fact all our data are discretely sampled.

Whether time is “really” continuous or discrete is an issue we’ll leave to physicists and philosophers.

Most of the approximations that took a lot of effort in Chapter 1 of Asset pricing work much more

easily in continuous time.

2.1 Preview/summary:

2.1.1 Continuous time

1. Brownian motion

+∆ −  ∼ (0∆)

2. Differential

 = lim
∆&0

(+∆ − )

3. dz and dt

 ∼ (
√
)

2 = 

() = 0

() = (
2
 ) = 2 = 

4. Diffusions

 = ( )+ ( )

 () = ( )

2 () = 2( )

5. Examples




= + 

 = −( − )+ 

1Please report typos to john.cochrane@chicagobooth.edu. Make sure you have the latest version of the document.

If you can report the context of the typo and not just the page number that will help me to find it more quickly.
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6. Ito’s lemma

 = + ;  = ( ) =⇒

 =



+




 +

1

2

2

2
2

 =

∙



+




+

1

2

2

2
2
¸
+

∙





¸


7. Stochastic calculus: “do second-order expansions, keep the  and  terms.”

2.1.2 Solving stochastic differential equations

1. Stochastic integral “add up the changes”

 − 0 =

Z 

=0

 ↔  − 0 =

X
=1



the result is just a way of saying  is a normally distributed random variableZ 

=0

 =  − 0 ∼ (0  )

2. Example 1: diffusion

 = + Z 

=0

 = 

Z 

=0

+ 

Z 

=0



 − 0 =  +  ( − 0)

3. Example 2: lognormal diffusion



= + 

 ln =

µ
− 1

2
2
¶
+ 

ln − ln0 =

µ
− 1

2
2
¶
 + 

Z 

0



 = 0
(− 1

2
2)+

 
0


4. Example 3: AR(1)

 = −( − )+ 

 −  = − (0 − ) + 

Z 

=0

−(−)−
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5. Continuous-time MA processes

 =

Z 

=0

( − )

6. With solutions, you can find moments. Examples

(a) Lognormal diffusion

 = 0
(−1

2
2)+

 
0


( ) = 0
(−1

2
2)+ 1

2
2 = 0



(b) AR(1)

( − ) = −(0 − ) +

Z 

=0

−(−)

0( − ) = −(0 − )

2( − ) =

Z 

=0

−2(−)2 =
1− −2

2
2

(c) Continuous-time MA.

 =

Z 

=0

(− )

0() = 0

µZ 

=0

(− )

¶
=

Z 

=0

(− ) () = 0

0(
2
 ) = 0

µZ 

=0

(− )

¶2
=

Z 

=0

(− )2

2.1.3 Finding Moments and Densities

1. Backward equation. What is

( ) =  [( )]?

We can work backwards using Ito’s lemma to find

()


+

()


() +

1

2

2()

2
2() = 0

Then solve this partial differential equation with boundary condition

(  ) = ()

2. Densities and the Forward Equation.
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(a) Define ( |0) = the probability density of  given 0 at time 0. It’s a delta function

at  = 0,  = 0. Looking forward it solves

( |0)


+
 [()( |0)]


=
1

2

2
£
2()( |0)

¤
2

(b) This fact gives a nice formula for the stationary (unconditional) density. The formula is:

() = 


 −2 ()

2()


2()

where  is a constant, so we integrate to one. Evaluating ,

() =

⎡⎣Z 

 
2
()

2()


2()


⎤⎦−1   2 ()

2()


2()

2.1.4 Asset pricing in continuous time

1. Present value formula

 = 

Z ∞

=0

−
0(+)
0()

+ = 

Z ∞

=0

Λ+

Λ
+

2. What’s a “return”?

 =



+






3. What’s a “cumulative value process”




= 

4. What’s a “riskfree rate?”



 

5. What’s an “excess return?”

 − 

  =




+




− 


 

6. What’s the equivalent of 1 = ()?



∙
 (Λ)

Λ

¸
− 


 = 0

or  [ (Λ)] = 0
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7. What’s the equivalent of  = 1()?

 = −

∙
Λ

Λ

¸
8. What’s the equivalent of () = −()?

 ()−  = −

∙
Λ

Λ


¸
9. What’s the equivalent of +1 ≈ 1−  − ∆+1?

Λ

Λ
= −− 




+
1

2
( + 1)

2


Λ

Λ
= −−  [log ] +

1

2
2 [log ]

2

10. What’s the equivalent of  ≈  + (∆)?

 =  +  −
1

2
22

where  log  = + 

11. What’s the equivalent of () ≈ (∆)?

 ()−  = 

∙





¸
= 

∙



 

¸

2.2 A quick discrete time review

I’ll explain continuous time by analogy with discrete time. This is a quick review of the essential

concepts can’t hurt.

1. A sequence of i.i.d. random variables (like a coin flip) forms the basic building block of time

series.

 ∼ 

i.i.d. means “independent and identically distributed.” In particular, it implies that the

conditional mean and variance are constant through time. Our building block series has a

zero mean,

(+1) = 0

(+1) = 2 = const.

The concept of conditional mean and variance is really important here!  means “expec-

tation conditional on all information at time .” We sometimes specify that  are normally

distributed, but they don’t have to be.
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2. We build more interesting time series models from this building block. The AR(1) is the

first canonical example

+1 =  + +1

The sequence of conditional means follows

+1 =  ( + +1) = 

+2 =  (+1 + +2) = 2

+ = 

The AR(1) displays some persistence since after a shock it is expected to stay up for a while,

and then decay gradually back again. A good exercise at this point is to work out the sequence

of conditional variances of the AR(1). The answer is

2 (+1) = 2

2 (+2) = (1 + 2)2

2 (+) = (1 + 2 + + 2(−1))2

3. We can also write the AR(1) as

+1 =  + +1; 
2
 = 1

The earlier notation is more common in discrete time; the latter notation is more common

as we move to continuous time. In either case, note +1 = 0 so it’s uncorrelated with .

Thus you can estimate an AR(1) by an OLS forecasting regression.

4. The canonical example 2 is the MA(1).

+1 = +1 + 

Its sequence of conditional means follows

(+1) = 

(+2) = 0

(+) = 0

It displays some persistence too but only for one period. Problem: work out its conditional

variances.

5. You can transform from AR to MA representations. You can think of this operation as

“solving” the AR(1)

 = −1 + 

 =  (−2 + −1) +  = 2−2 + −1 + 

 = 3−3 + 2−2 + −1 + 

 = 0 +

−1X
=0

−
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“Solving” the difference equation means, really, expressing  as a random variable, given

time 0 information. Now we know  has

0() = 0;

20() = (1 + 2 + + 2(−1))2

If the  are normal, so is .

6. Continuing, we can write the AR(1) as

 =

∞X
=0

−

Thus, an AR(1) is the same as an MA(∞). You can similarly write an MA(1) as an AR(∞).
Choose which representation is easiest for what you’re doing. An example: Let’s find the

unconditional mean and variance of the AR(1). One way to do this is with the MA(∞)
representation

() =

∞X
=0

 (−) = 0

 () = 

⎛⎝ ∞X
=0

−

⎞⎠ =

∞X
=0

22 =
2

1− 2

Notice: the  are all uncorrelated with each other. That’s how we got rid of the covariance term

and all 2 are the same. We can also find the same quantities from the AR(1) representation

() = (−1) + 0→ () = 0

() = 2(−1) + 2 → () =
2

1− 2


To come to the latter conclusions, you have to understand that () = (−1) and () =
(−1).

7. All of the familiar tricks for linear ARMA models, including lag operator notation, have con-

tinuous time counterparts. It takes a little work to make the translation. If you’re interested,

see my “Continuous-time linear models” Foundations and Trends in Finance 6 (2011), 165—

219 DOI: 10.1561/0500000037. It’s on my webpage,

http://faculty.chicagobooth.edu/john.cochrane/research/papers/continuous_time_linear_models_FT.pdf

2.3 Continuous time series

1. Preview. In discrete time, our building block is the i.i.d. (normal) shock  with variance

2() = 1. We build up more complex time series from this building block with difference

equation models such as the AR(1),

+1 =  + +1
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We “solve” such difference equations to represent  as a function of its past shocks,

 =

−1X
=0

− + 0

Our task is to do the exact same sort of thing in continuous time.

2. Random walk-Brownian motion .

(a) In discrete time, a random walk  is defined as the sum of independent shocks,

 − 0 =

X
=1

 

Obviously, we recover  as differences of .

∆ = ( − −1) = 

It will turn out to be easier to think first about  in continuous time and then take

differences than to think directly about 

(b) Now, let’s examine the properties of . The variance of  grows linearly with horizon.

+2 −  = +1 + +2

 (+2 − ) = 0

(+2 − ) = 2

+ −  = +1 + +2 + + +

 (+ − ) = 0

(+ − ) = 

(remember, I set  = 1.)

(c) To think about continuous time, just generalize this idea for any time interval. Let’s

define the process  as one with normal increments,

+∆ −  ∼ (0∆)

for any ∆, not just integers. This is a Brownian motion, the continuous-time version of

a random walk.

(d) I.i.d. property In discrete time (+1) = 0, i.e. (+2−+1 +1−) = 0. The nat-
ural generalization is (+∆− +∆+−+∆) = 0, or more generally Nonoverlapping
differences of {} are uncorrelated with each other.

3. The differential dz
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(a) Now let’s take the “derivative” as we took the difference  =  − −1. Define

 = lim
∆&0

(+∆ − )

 ↔  fundamental building block

 is a tiny forward -difference operator.

(b)  is of size
√
. What does this mean? Note

2(+∆ − ) = ∆;

(+∆ − ) =
√
∆

Thus,  is of order (typical size)
√
! This means that sample paths of  are contin-

uous but not differentiable.  makes sense, but  does not.  is of order
√
 so

→ +−∞, moving “infinitely fast” (up and down). The  process is fractal; it’s
jumpy at any time scale; it has an infinite path length.

(c) , , and () are equivalent notations.

(d) Moments:

() = 0; ⇐⇒ (+∆ − ) = 0

() = ; ⇐⇒ (+∆ − ) = ∆,

( ) = 0  6=  ⇐⇒ (+∆ −  +∆ − ) = 0

Watch out for notation. () 6= !  is a forward difference operator, so  ()

means expected value of how much  will change in the next instant. It really means

 (+∆ − ), which is obviously not the same thing as +∆ − 

(e) 2 = . Variance and second moment are the same.

() = (
2
 ) = 2 = 

Second moments are nonstochastic! It’s not just 2 is of order , but in fact 2 =

. We often write (2) to remind ourselves that for any discrete interval these are

second moments of random variables. But in the limit, in fact, second moments are

nonstochastic. Similarly if we have two Brownians  and , they can be correlated

and the cross product is

( ) = () = .

(f) (Optional note.) The fact that squares of random variables are deterministic is hard to

swallow. If  is a normal with standard deviation
√
, why is 2 a number, not a

2 distributed random variables? To see why, compare  and 
2
 . +∆− is (0∆),

(+∆ − ) 
√
∆ ∼ (0 1) so the probability that, say, k+∆ − k  2

√
∆ is 5%. The

“typical size” of a movement +∆ −  goes to zero at rate
√
∆

On the other hand, (+∆ − )
2∆ ∼ 21. (21 or “chi-squared with one degree of

freedom” just means “the distribution of the square of a standard normal.”) The fact

that the distribution (+∆ − )
2∆ stays the same as ∆ gets small means that the
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probability that, say, (+∆ − )
2  2∆ is fixed as ∆ gets small. Thus (+∆ − )

2

goes to zero at rate ∆. The “typical size” of a movement (+∆− )
2 or the probability

that it exceeds any value goes to zero at rate ∆. Things whose movements go to zero at

rate ∆ are differentiable, and hence nonstochastic. (+∆ − ) is of order  and hence

nonstochastic.

4. Diffusion processes. We have the building block, the analog to . Now, we build more

complex process like (1), ARMA, etc. in the same way as we do in discrete time.

(a) Random walk with drift.

discrete: +1 = +  + +1

+1 −  = + 

continuous:  = + 

i. Moments of the random walk with drift, which gives you some practice in  and

. The mean is

() = +  () = 

For the variance, notice

2 = ()
2 = 22 + 22 + 2 = 2

The first parenthesis clears up notation. In calculus, you learned to keep terms of

order , and ignore terms of order 2 and so on, because they get arbitrarily small

as the time interval shrinks. The new rule is, we keep terms of order  =
√
 and

, but we ignore terms of order 32 2, etc. just as in regular calculus. So terms

like 2 and  drop out. Only the 2 term remains. So, the variance is

() = (
2
 ) = 2 = 2

ii. The mean drops out of the variance. Loosely, diffusions vary so much that variances

overwhelm means and it doesn’t matter if you take the mean out when you take

variance or not. You might have objected, and wanted to define

() = 

n
[ − ()]

2
o

But watch:



n
[ − ()]

2
o
= 

n
[ − ]2

o
= 

n
[]

2
o
= 2

¡
2
¢
= 2

We get the same result whether we take the mean out or not. The  term is of

order
√
, so almost always infinitely bigger than the  term.

(b) Geometric Brownian motion with drift. This is the standard asset price process, so

worth careful attention.



= + 

 is the change in price, so  is the instantaneous percent (not annualized) change

in price or instantaneous rate of return if there are no dividends. We’ll see how to add

dividends in a moment.
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i. The moments are



µ




¶
= 



µ




¶
= 2

so  and  can represent the mean and standard deviation of the arithmetic percent

rate of return. Since they multiply , they have annual units.  = 005 and

2 = 0102 are numbers to use for a 5% mean return and 10% standard deviation of

return.

ii. Don’t forget the dt at the end of these expressions



µ




¶
=  

µ




¶
= 2

is tempting but incorrect. It’s ok to write

1




µ




¶
= 

1




µ




¶
= 2

but it’s better to write



µ




¶
=  

µ




¶
= 2

iii. Sticklers like to write this process

 = + 

so it is in the canonical form

 = (  )+ (  )

iv. You can also see here the reason we call it a “stochastic differential equation.”

Without the  term, we would “solve” this equation to say

 = 0


i.e. value grows exponentially. We will come back and similarly “solve” the stochastic

differential equation with the  term.

(c) AR(1), Ornstein Uhlenbeck process

discrete: +1 = (1− )+  + +1

+1 −  = −(1− )( − ) + +1

 (+1 − ) = −(1− )( − )

 (+1 − ) = 2
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continuous :  = −( − )+ 

 = −( − )

 = 2

The part in front of  is called the “drift” and the part in front of  is called the

“diffusion” coefficient.

(d) In general, we build complex time series processes from the stochastic differential equa-

tion

 = (  )+ (  )

 and  may be nonlinear functions (ARMA in time series are just linear). Note we

often suppress state and time dependence and just write ,  or (·) (·) or  and .

 () = (  )

() = 2(  )

(e) Simulation/approximation. We often use continuous time to derive approximations for

discrete time. We also will often want to simulate forward continuous time processes on

a computer. The “Euler approximation” is a natural way to do this. From

 = ( )+ ( )

write

+∆ −  = ( )∆+ ( )
√
∆+∆

where ∆ is a short time interval and +∆ ∼ (0 1). For example, you could use

∆ = 1365 to simulate daily data.

5. Ito’s lemma. Given a diffusion process for , we can construct a new process  = ()

How can we find a diffusion representation for  given the diffusion representation of ?.

For example, what does the log price process log() look like?

(a) Nonstochastic answer: Given



= 

we use the chain rule.

 =



 =






But that assumes  is meaningful, i.e.  = . What if  = + ?

(b) So our question:

 = + 

 = ()

 = ?

Answer:
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• Do a second order Taylor expansion. Keep terms of order  and  =
√
, ignore

higher order terms. Don’t forget 2 = .

The answer is called Ito’s lemma:

 =



 +

1

2

2

2
2

 =

∙



+

1

2

2

2
2
¸
+

∙





¸


Intuition: Jensen’s inequality says,  [()]   [()] if  () is concave.  [()] 

 [()] for example. The second derivative term takes care of this fact. You will see

this in the “convexity” terms of option and bond pricing.

(c) An example. Geometric growth




= + 

 = ln 

 =
1


 − 1

2

1

2
2 =

µ
− 1

2
2
¶
+ 

(d) Conversely,

 = + 

 = 

 =  +
1

2
2




=

µ
+

1

2
2
¶
+ 

(e) Another example. We will often multiply two diffusions together. What is the product

diffusion? Use the chain rule but go out to second derivatives.

() =
()


 +

()


 +

1

2
× 2× 2()




=  +  + 

The second partials with respect to x and y 2()2 are zero. Notice the extra term

 relative to the usual chain rule.

(f) Ito’s lemma more generally. If

 = ( )

then

 =



+




 +

1

2

2

2
2

 =

∙



+




+

1

2

2

2
2
¸
+

∙





¸


The version with partial derivatives starting from  = (1 2 ) is obvious enough

and long enough that I won’t even write it down.
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2.4 Solving stochastic differential equations.

1. The problem: We want to do the analogue of “solving” difference equations. For example,

when we write an AR(1),

 = −1 + 

we solve backward to

 = 0 +

−1X
=0

− .

How do we do this in continuous time?

2. Another motivation. If you have a differential equation

 = 

you know how to solve this. Integrate both sides from 0 to  ,

 = 0 + 

Z 

=0

 = 0 + 

So, how do you solve a stochastic differential equation,

 = + ?

3. A natural idea: Why don’t we just integrate both sides,Z 

=0

 = 

Z 

=0

+ 

Z 

=0



What meaning can we give to the integrals? Why not just “add up all the little changes.”’Z 

0

 = (∆ − 0) + (2∆ − ∆) + (3∆ − 2∆) + + ( − −∆) =  − 0

Then our solution reads

 − 0 =  +  ( − 0) 

Now, we defined ( − 0) to mean “a normally distributed random variable with mean 0 and

variance  .” So this solution means, “ −0 is a normally distributed random variable with

mean  and variance 2 .” Similarly, if  are the little changes, you get  back if you add

them up.

4. In sum, the building block of solutions is the opposite of our  differencing operator, and

completes the analogy we started when defining  in the first place

 − 0 =

Z 

=0

 ↔  − 0 =

X
=1


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R 
=0

 is called a Stochastic integral. This is a fundamentally different definition of “integral”

which gives mathematicians a lot to play with. For us, it just means “add up all the little

changes.” Recall that  is not differentiable. That’s why we do not write the usual integral

notation

Yes:  − 0 =

Z 

0



No :  − 0 =

Z 

0

µ
()



¶


We do not define the integral as the “area under the curve” as you do in regular calculus.

What we mean by “
R 
0
” in the end is just a normally distributed random variable with

mean zero and variance . Z 

0

 =  − 0 ∼ (0  )

5. Now, to more complex stochastic differential equations. In discrete time, we “solve” the

difference equation:

 = (1− )+ −1 + 

 −  =  (−1 − ) + 

 −  =  (0 − ) +

−1X
=0

− 

This means we know the conditional distribution of the random variable  , and really that’s

what it means to have “solved” the stochastic difference equation.

 |0 ∼ 

⎡⎣+  (0 − )  2

−1X
=0

2

⎤⎦
Let’s do the same thing in continuous time.

6. I’ll just do some examples. I won’t use anything fancier than the basic idea: plop
R 
=0

on

both sides of an expression and interpret the results.

(a) Random walk. If we start with  and integrate both sides,

 − 0 =

Z 

=0



 − 0 ∼ (0  )
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(b) Random walk with drift

 = + Z 

=0

 =

Z 

=0

+

Z 

=0



 − 0 =  + 

Z 

=0



 − 0 =  + ;  ∼ (0 2)

 − 0 ∼ ( 2)

As in discrete time,

 = 0 +  +

X
=1



(c) Lognormal price process.



= + 

By Ito’s lemma

 ln  =

µ
− 1

2
2
¶
+ 

now integrate both sides,Z 

0

 ln  =

Z 

=0

µ
− 1

2
2
¶
+

Z 

=0



ln  − ln 0 =

µ
− 1

2
2
¶
 + 

Z 

=0



 = 0
(− 1

2
2)+

 
=0



i.e,

 = 0
(− 1

2
2)+

√
  ∼ (0 1)

 is lognormally distributed. (Lognormal means log of  is normally distributed.)

• A geometric diffusion, where the arithmetic return is instantaneously normal, means
that the finite-period return is lognormally distributed.

(d) AR(1)

 = −( − )+ 

The solution is,

 −  = − (0 − ) + 

Z 

=0

−−

this looks just like the discrete time case

 −  =  (0 − ) +

−1X
=0

− 
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i. To derive this answer, you have to be a little clever. Find


³
 ( − )

´
=  ( − ) + 

=  ( − ) +  [−( − )+ ]

= 

Now integrate both sides,Z 

=0


³
 ( − )

´
=

Z 

=0



 ( − )− (0 − ) = 

Z 

=0



( − ) = − (0 − ) + 

Z 

=0

(− )

In the continuous time tradition, we usually express integrals going forward in time,

as this one is. To connect with discrete time, you can also rearrange the integral to

go back in time, Z 

=0

−(− ) =
Z 

=0

−−

ii. To check this answer, write it as

 −  = − (0 − ) + 

Z 

=0

−(−)

and take . The first term is just the usual time derivative. Then, we take the

derivative of the stuff inside the integral as time changes, and lastly we account for

the fact that the upper end of the integral changes,

 = −− (0 − ) + 

Z 

=0

(−) −(−) + 

 = −
∙
− (0 − ) + 

Z 

=0

−(−)

¸
+ 

 = − ( − ) + 

(e) This example adds an important tool to our arsenal. Notice we can weight sums of 
terms, just as we weight sums of  terms. We can produce or write results as continuous

time moving average processes

 =

Z 

=0

( − )

7. Once you have “solved an sde” you have expressed  as a random variable. Naturally, you

will want to know moments — means and variances of  . Here are some examples.
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(a) Example: Diffusion:

 − 0 =  + 

Z 

=0



 ( − 0) =  + 

Z 

=0

 () = 

 ( − 0) = 2

µZ 

=0



¶2
= 2

Z 

=0


¡
2
¢
= 2

Z 

=0

 = 2

I used  = 0 for  6=  in the last line.

(b) Example: Lognormal price process




= + 

The solution is

 = 0
(− 1

2
2)+

 
=0



and then we can find the expected value

0() = 0
(− 1

2
2)+1

2
2
 
=0

 = 0
(−1

2
2)+1

2
2 = 0



(In the last line I use the fact that for normal , () = ()+
1
2
2().)

(c) Example: AR(1). Start with the solution, then use the fact that () = 0 (
2
 ) =

 () = 0, for  6= .

( − ) = −(0 − ) +

Z 

=0

−(−)

0( − ) = −(0 − )

2( − ) = 

"µZ 

=0

−(−)

¶2#

=

Z 

=0

−2(−)2 =
1− −2

2
2

as in discrete time

0 (+ − ) = (0 − )

0 ( − ) = 

⎡⎣⎛⎝−1X
=0

−

⎞⎠2⎤⎦ = −1X
=0

22 =
1− 2

1− 2
2

(d) Example: Continuous-time MA. If you have a solution

 =

Z 

0

(− )
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then

0() = 0

µZ 

0

(− )

¶
=

Z 

0

(− ) () = 0

and

0(
2
 ) = 0

µZ 

0

(− )

¶2
=

Z 

0

(− )2;

8. In general, solving SDE’s is not so easy! As with regular differential equation, you can’t just

integrate both sides, because you might have an  on the right side as well that you can’t

easily get rid of. The idea is simple, from

 = ( )+ ( )

you can write

 = 0 +

Z 

0

( )+

Z 

0

( )

We end up describing a random variable ( |0). The hard part is finding closed-form
expressions, when the  and  depend on . The first term is just a standard differential

equation. (And remember how “easy” that is!)

9. Simulation. You can easily find distributions and moments by simulating the solution to a

stochastic differential equation. Use the random number generator and program

+∆ =  + ( )∆+ ( )
√
∆+∆; +∆ ∼ (0 1)

10. A last example. The CIR (Cox Ingersoll Ross) square root process. Suppose we generate 
from  by

 = −( − )+ 
√


The AR(1) process ranges from −∞ to ∞. As  → 0, volatility goes down, and the drift is

pulling it back, so  can’t cross zero. That fact, and the fact that it’s more volatile when the

level is higher, makes it a good process for nominal interest rates. It’s a nonlinear process,

not in ARMA class. A strong point for continuous time is that we can handle many of these

nonlinear processes in continuous time, though we really can’t really do much with them in

discrete time. For example, the discrete-time square root process is

 = −1 +
√


Now what do you do? There are closed form solutions for the CIR process and many other

nonlinear processes. I won’t give those here.

2.5 Finding Moments more generally

(The remaining sections will not be used in Asset Pricing or my courses.)

Often you don’t really need the whole solution, you only want moments. If  is a cash payoff

at time  , you might want to know its expected value, ( ). You might want the expected value
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of a function of  , i.e.  [( )]. This happens in option pricing, where  is the call option payoff

function. The most basic asset pricing valuation formula is a moment 0
£R

−
¤
.

We saw above how to find moments after you have a full solution. but that’s hard. But you

can often find moments without first finding the whole “solution” or distribution of the random

variable, i.e.  or ( ) itself.

1. But we can also find moments directly because Moments follow nonstochastic differential

equations. You don’t have to solve stochastic differential equations to find the moments.

(a) Example.

 = + (·)
Let’s suppose we want to find the mean. Now,

0(+∆)−0() =  [0()] = 0() = 

Watch the birdie here. By  [0()] I mean, how does the expectation 0() move

forward in time. But now the point: Since the  term is missing, you can find the mean

of x without solving the whole equation.

(b) Example: lognormal pricing



= + 

The mean follows

0()

0()
= 

0() = 0()

0() = 0


This is the same solution we had before. Look how much easier that was!

(c) Similarly, to find moments 0(), find the diffusion representation for 0() by Ito’s

lemma.

(d) Alas, this technique is limited. If () then 0() = 0(()) You need to know

the distribution of  to get anywhere.

2. The “Backward equation.” What is  [( )]? We know that  [( )] = ( ). We can

work backwards using Ito’s lemma to find  [( )]. We have a process

 = (·)+ (·)

and we want a moment, say

 [( )] 

In particular, ( ) is () =  (
2
 ) is () = 2  Define

( ) =  [( )]
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Since it’s a conditional expectation,  [+∆(·)] = (·), so

() = 0

Applying Ito’s lemma to 

 =



+




+

1

2

2

2
2

()


=




+




(·) + 1

2

2

2
2(·) = 0

Thus, the conditional expectation solves the “backward equation”

()


+

()


() +

1

2

2()

2
2() = 0

starting from the boundary condition

(  ) = ()

(a) This is a partial differential equation (ugh). The usual way to solve it is to guess and

check — you guess a functional form with some free parameters, and then you see what

the free parameters have to be to make it work. It is also the kind of equation you can

easily solve numerically. Use the spatial derivatives at time  to find the time derivative,

and hence find the function at time −∆. Loop. That may be easier numerically than
solving for ( ) by Monte-Carlo simulation of  forward. Or, the Monte-Carlo

simulation may turn out to be an easy way to solve partial differential equations.

3. Finding densities. You can also find the density by an Ito’s lemma differential equation

rather than solving the whole thing as we did above. This is called the “Forward equation.”

(a) The density at +∆ must be the density at  times the transition density to go from 

to +∆

(+∆|0) =

Z
(|0)(+∆|)

=

Z
(|0)

∙
(+∆ −  − ()∆)

()
√
∆

¸


...Ito’s lemma and lots of algebra, and allowing explicit ( ), ...

( |0)


+
 [()( |0)]


=
1

2

2
£
2()( |0)

¤
2

Note the  and 2 are inside the derivative. This is because its ()∆ not (+∆)∆.

(b) This fact gives a nice formula for the stationary (unconditional) density. The formula is:

() = 


 −2 ()

2()


2()
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where  is a constant, so we integrate to one. Evaluating ,

() =

⎡⎣Z 

 
2
()

2()


2()


⎤⎦−1   2 ()

2()


2()

This is often pretty easy to use.

i. Derivation: The unconditional density satisfies  = 0 so from the forward equa-

tion,

 [()()]


=
1

2

2
£
2()()

¤
2

()() =
1

2


£
2()()

¤


2
()

2()

£
2()()

¤
=


£
2()()

¤


2()() = 

 
2
()

2()


() = 


 
2
()

2()


2()

Normalizing so
R
() = 1,

() =

⎡⎣Z 

 
2
()

2()


2()


⎤⎦−1   2 ()

2()


2()
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