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Abstract

This paper examines the implications of learning for the effects of ambiguity aversion. The

key result is that since agents naturally choose to learn about the sources of uncertainty that

reduce utility the most, information acquisition attenuates the most severe effects of ambiguity

aversion. The specific setting we study is the canonical consumption/savings problem. Agents

endogenously learn most about income dynamics at the very lowest frequencies. While ambiguity

aversion typically implies in this setting excessive extrapolation of income shocks, that effect is

eliminated here. Furthermore, deviations of consumption from the full-information benchmark

are largest at high frequencies, so the model naturally generates overreaction of consumption to

predictable short-run income variation.

A large recent literature studies model uncertainty, and ambiguity aversion in particular, as a

major driver of macroeconomic dynamics and asset prices. Ambiguity aversion has been shown

to be able to generate realistic business cycles (Ilut and Schneider (2014) and Bianchi, Ilut, and

Schneider (2017)), to help rationalize variation in survey expectations (Bhandari, Borovicka, and

Ho (2017)), to generate large and time-varying equity risk premia (Hansen, Sargent, and Tallarini

(1999), Ju and Miao (2012), Hansen and Sargent (2015), and Bidder and Dew-Becker (2016)) and

to help explain the VIX and the variance risk premium (Drechsler (2013) and Bidder and Smith

(2015)).

The central idea behind the ambiguity aversion literature is that people are uncertain about

the true model driving the economy and that they choose policies that are designed to be robust

against unfavorable models. While the ambiguity literature has taken the model uncertainty to

be exogenous, one would naturally expect that if people were highly averse to model uncertainty

that they would try to learn and reduce that ambiguity. And that learning should be focused on

precisely the parts of the underlying model where errors are most painful. So learning should be

expected to reduce the most severe effects of ambiguity aversion and model uncertainty.

This paper studies ambiguity and learning in a simple dynamic consumption/savings prob-

lem. The basic intuition above could be captured in many settings, but we choose the consump-

tion/savings problem because it is a canonical dynamic optimization with well understood analytic
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solutions that shares the same basic structure as much richer models used in asset pricing and

macroeconomics.1

The agents in the model face an exogenous income process with uninsurable risk and unknown

dynamics, and they are ambiguity averse over potential models for income. This paper’s key

innovation compared to past work is that agents acquire information that can reduce the degree

of ambiguity, and that acquisition can be directed to different aspects of the income process. Our

goal is to find the optimal information acquisition policy and understand how it changes the effects

of ambiguity on an agent’s behavior. The key analytic result is that there is a simple benchmark

case in which optimal learning completely eliminates the primary effects of ambiguity aversion,

regardless of the total quantity of information acquired. More generally, learning always acts to

reduce the effects, with the degree depending on the details of the cost specification for information.

The optimization problem that agents face has three components: the consumption choice, na-

ture’s choice of a model (embodying ambiguity aversion), and learning. Conditional on a particular

model of the world, agents have standard Bayesian expected utility.2 The agents are unsure of the

true model, though, which is where their ambiguity aversion appears: agents act as though nature

chooses the process for income, among all suffi ciently plausible processes, that will yield the lowest

utility from consumption. This selection criterion ensures that consumption decisions are robust

to uncertainty about the true model.

The third phase of the optimization represents our contribution. Agents allocate attention to

different aspects of the income process, which allows them to endogenously limit the degree of

ambiguity they face. When agents pay more attention to a particular aspect of income, such as

its low-frequency behavior, they receive information about its true behavior along that dimension

and the set of plausible models narrows. A contribution of the paper to the learning literature is in

providing a general description of how a person might learn about different aspects of a dynamic

process.3 Kasa (2006) provides a related analysis of the link between ambiguity and information

acquisition, but the analysis applies to the total quantity of information acquired, whereas the key

mechanism here is the choice of what to learn about.

Given that optimal consumption depends on permanent income, it is the low-frequency features

of income that are generally most beneficial to learn about. But one must also ask how costly it is to

learn about dynamics at different frequencies. Textbook results from the time series econometrics

literature say that learning about all frequencies is equally hard (e.g. Brillinger (1981), Priestly

(1981), Brockwell and Davis (1991), and Hamilton (1994)). But since intuition suggests that low

1See Wang (2004, 2009) and Luo (2008) for analyses of consumption under model uncertainty and information
processing constraints and Caballero (1990) for an analysis of the setup with a known model.

2During this phase of the optimization, no dynamic learning about the model occurs. For boundedly rational
models of dynamic learning, see Abel, Eberly, and Panageas (2007, 2013), Wang (2009), Bansal and Shaliastovich
(2010), Hansen and Sargent (2010), Ju and Miao (2012), and Collin-Dufresne, Johannes, and Lochstoer (2015).

3There is substantial past work on directed learning (e.g. Van Nieuwerburgh and Veldkamp (2006), Peng and
Xiong (2006), Veldkamp (2006), and Barron and Ni (2008)), but we are not aware of work that examines the choice
of what part of a dynamic process to learn about. See Sims (2003), Veldkamp (2011), and many citations therein for
work on directed attention more generally.
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frequencies might be more diffi cult to learn about, we also consider a general specification that

allows for arbitrary costs across frequencies.

The full optimization is analytically tractable which allows us to sharply establish our main

result: when information is equally costly across frequencies, the agent directs almost all attention

to the behavior of income at the lowest frequencies (i.e. at long horizons), which have the largest

impact on utility through their ambiguity aversion. The agent’s learning in that case perfectly

cancels out the most harmful effects of ambiguity. More specifically, we obtain two key results:

1. In past work — in which agents have no ability to acquire information —ambiguity aversion
causes agents to generally overextrapolate income shocks (Hansen and Sargent (2010, 2017)

and Bidder and Dew-Becker (2016)),4 but with endogenous learning, that result is completely

eliminated: agents neither over- nor under-extrapolate shocks when forecasting long-run fu-

ture income. The lack of bias results from the fact that agents acquire the most information

at low frequencies (regardless of the total quantity acquired).

2. The agents’focus on low frequencies yields high-frequency mistakes: at short horizons, con-

sumption growth is positively correlated with the predictable component of income growth.

This comovement violates the permanent income hypothesis (Friedman (1957), Hall (1978))

but matches the extensive empirical evidence on the excess sensitivity of consumption to in-

come (Jappelli and Pistaferri (2010), Kaplan and Violante (2014)). Because agents fail to

learn about the high-frequency characteristics of the income process, much of the predictable

variation in income is surprising and therefore leads agents to adjust consumption.

What connects the two theoretical results is that high-frequency mistakes have minimal impli-

cations for lifetime utility, while low-frequency mistakes can have substantial effects. That idea has

been suggested as an explanation for the excess sensitivity puzzle, and the present model formalizes

it.5 People cannot achieve perfection, so they choose to make mistakes that are minimally costly.

Two aspects of the results are surprising. First, while one might expect that learning would reduce

the effects of ambiguity (though that point has not been made previously), the fact that it can

perfectly cancel those effects in some cases —even though the learning is incomplete in the sense

that not all uncertainty is resolved —has important implications for the interpretation of ambiguity

models. Second, while it is understood that the utility cost of high-frequency mistakes is relatively

small, this is the first paper to obtain such mistakes endogenously, and we show that they can be

4A bias towards belief in overly persistent processes is present also in the boundedly rational frameworks of
Fuster, Hebert, and Laibson (2011) and Bordalo, Gennaioli, and Shleifer (2016). Beyond the fact that this paper
allows for information acquisition, it also differs from Hansen and Sargent (2010, 2017) and Bidder and Dew-Becker
(2016) in that there is an endogenous consumption/savings decision. The fact that low-frequency fluctuations are
most important here is thus an endogenous result (rather than assumed through the use of generalized recursive
preferences). The learning, moreover, completely eliminates the excessive extrapolation that is the main result in
Bidder and Dew-Becker (2016).

5See Cochrane (1989), Eichenbaum (2011), and Kueng (2016) for discussions of the small utility costs of excess
sensitity to transitory income shocks.
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quantitatively realistic. The paper is thus important both to the literature on ambiguity aversion

in dynamic models and also the literature on “mistakes”in household consumption.

The main findings hold in the textbook benchmark where information is equally costly at all

frequencies. We also formalize the idea that low-frequency information should be more expensive to

obtain than high frequency information. In that case, the agent continues to focus primarily on low

frequencies, but with a less extreme tilt. Weighted by the precision of the signals, the median unit

of attention is focused on cycles lasting 250 years in the benchmark case (consistent with results

in Dew-Becker and Giglio (2014)) and 47 years in the frequency-dependent cost case. So while

attention shifts to much shorter cycles, it is still focused on extremely long-lived shocks. In terms

of observable behavior, the results in this case lie between the equal information benchmark and

the case of ambiguity with no attention allocation. The bottom line of the analysis, then, is that

the effects of ambiguity aversion depend critically on how easily agents can acquire information.

In a reasonable benchmark, the main effects can be completely eliminated, but there are also

specifications for information costs that generate intermediate outcomes.

In addition to the work on ambiguity aversion above, our work links to the literature on learning

and attention allocation more generally (e.g. Sims (2003)). Most past work has focused on learning

about hidden states (e.g. Guvenen (2007)). A potentially useful contribution of the paper is to

propose a framework for analyzing information acquisition about specific aspects of a dynamic

process and for motivating how the cost might vary across different features.6 Contemporaneous

work by Epstein and Ji (2017) also examines learning under ambiguity, but in a setting in which

there is no choice about how to allocate attention and in which the source of ambiguity is not

dynamic.

The result that the effects of ambiguity are eliminated by learning presumes that learning is

possible, and here it is relatively straightforward since income is stationary. An implication of

the results is that for ambiguity to have major effects, dynamic models may need to incorporate

nonstationarity or regime shifts, which would make learning much more diffi cult, and also more

realistic.

1 The optimization problem

We study a consumption/savings problem with endogenous information acquisition. The consump-

tion policy choice is affected by the fact that agents are unsure of the true process driving income.

Agents are ambiguity averse and choose their consumption rule to be robust to an unfavorable

income process. The consumption choice and ambiguity aversion are relatively standard. What is

novel is that the model endogenizes the set of income processes over which agents are ambiguity

averse.

While some of the ideas could be illustrated in a simpler model, there are a number of factors

that lead to our choice of the setting to study. First, specifications closely related to this setup have

6See Gabaix (2016) for a recent alternative model of directed attention in a dynamic setting.
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been studied in a number of papers in the ambiguity literature discussed above, so it is valuable

to understand how the results in those models are affected by information acquisition. Second,

the fact that the model has an infinite horizon means that all autocorrelations in income affect

utility, giving the agent a rich space from which to choose information policies. We are able to

derive general results on which autocorrelations have the strongest effect on utility that apply in

canonical consumption/savings models. The infinite horizon also allows us to take advantage of

powerful nonparametric methods that are not available in finite settings. Finally, the information

allocation choice in the model is consequential because it has direct and observable effects on the

persistence of consumption. Much has been made of the question of whether consumption is a

random walk, and this model has direct implications for that.

This section lays out the basic optimization problem, and the information acquisition follows

subsequently.

1.1 Consumption and ambiguity aversion

1.1.1 Income

Agents face a standard budget constraint and income process.

Assumption 1 Financial wealth, Wt, follows the process

Wt = RWt−1 + Yt − Ct (1)

where Ct is consumption, Yt is an exogenous income stream, and R is a fixed gross interest rate.

Income follows

Yt = a (L)Yt−1 + b0εt (2)

εt ∼ i.i.d. N (0, 1) (3)

where a (L) is a power series in the lag operator, L (where Ljxt = xt−j). We assume a (L) is such

that Y is well behaved (in particular, has a spectrum that is positive and bounded). The εt are

unobservable.

The assumptions of linearity and Gaussianity are in line with past work, but can be relaxed —

Gaussianity is not necessary, for example.7 Most of the analysis uses the Wold representation,

Yt = b (L) εt, (4)

where b (L) ≡ b0
1− La (L)

. (5)

7The critical assumptions are that income is second-order stationary and that it has a spectral density that is finite
and bounded away from zero. The distribution of the innovations is largely irrelevant beyond existence conditions,
but it is important that it is fixed over time.
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The coeffi cients in the power series b (L) are denoted bj (i.e. b (L) =
∑∞

j=0 bjL
j). A convenient

feature of the representation b is that the coeffi cient bj represents the impulse response of Yt+j to

εt, so that the bj’s trace out the full impulse response function.

Throughout the paper, we refer to models in the time domain in terms of b (L). Since the

distribution of εt is fixed, b (L) completely characterizes the statistical distribution of income.

Importantly, though, the agent forecasts the future using only the past history of income since the

εt are not directly observable.

Agents do not know the true income process. b̂ denotes a generic income process.

1.1.2 Consumption under ambiguity

The foundation of the model is a standard model of consumption choice with the addition of

ambiguity aversion.

Assumption 2 Agents choose a consumption policy to optimize

max
Cpolicy

min
b̂∈B

E

[ ∞∑
t=0

−α−1βt exp (−αCt) | b̂,W−1

]
, (6)

where Cpolicy represents a rule for consumption as a function of wealth and the history of observables

and B is the (compact) set of models the agent deems plausible. E denotes the expectation operator.

A few features of the specification are notable. First, agents have CARA preferences over

consumption for the sake of tractability (yielding lemma 1 below). That rules out wealth effects,

but since the paper is not concerned with balanced growth, it is not a major drawback. Online

appendix 2 shows that our main results go through similarly in a specification where agents have

constant relative risk aversion and uncertainty over returns on wealth instead of income.

Second, the ambiguity aversion is of the form introduced by Gilboa and Schmeidler (1989).

Agents choose a consumption policy under the assumption that, whatever policy they set, nature

will choose the income process that yields the lowest expected utility. In other words, agents choose

a consumption policy meant to be robust to the worst-case scenario for income dynamics. That

worst-case scenario is drawn from a set of possible models B, which is typically exogenous in the

literature. Unlike Hansen and Sargent (2007), who focus on uncertainty about the distribution

of the shocks, ε, our focus here is on how agents learn about dynamics, b, similar to Bidder and

Dew-Becker (2016) and Hansen and Sargent (2010, 2017).

Third, note that the ambiguity aversion is not itself dynamic. Agents choose a consumption

policy and worst-case model timelessly, optimizing over expected utility similarly to a date-0 prob-

lem (though the expectation here is unconditional, not depending on a prior income history). Were

the problem fully dynamic, time consistency would be a concern. The analysis will show that

uncertainty about low-frequency income dynamics is the primary driver of the model, and those
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frequencies are the slowest to learn about, making the assumption that the model b̂ ∈ B is chosen

once and for all time not entirely unreasonable.

The minimax theorem implies that the maximization and minimization in (6) can be reversed.

Intuitively, (6) represents a zero-sum game with a Nash equilibrium, so that Cpolicy and nature’s

choice of a b̂ are best responses to each other. That means that the equilibrium Cpolicy is optimal

for the equilibrium b̂. Optimal consumption under CARA preferences has been widely studied and,

conditional on a model, the standard results hold here: agents consume the annuity value of human

and financial wealth, where human wealth depends on the forecast of future income, and hence b̂.

The full consumption function is analyzed in section 5.1.

More important to us is nature’s minimization problem. Using the solution for optimal con-

sumption yields:

Lemma 1 Expected utility is a decreasing function of b̂
(
R−1

)2, so that
arg min

b̂∈B
max
Cpolicy

E

[ ∞∑
t=0

−α−1βt exp (−αCt) | b̂,Wt−1

]
= arg min

b̂∈B
−b̂
(
R−1

)2
. (7)

where, notationally, b̂
(
R−1

)
=
∑∞

j=0 bjR
−j.

Proof. See appendix A.
Since income processes are ranked according to −b̂

(
R−1

)2, that is the key statistic that drives
the analysis throughout the paper and it will appear repeatedly. b̂

(
R−1

)
is the discounted sum

of the impulse response function of Yt. As usual, innovations to consumption growth under the

optimal policy depend on innovations to the net present value (NPV) of income. b̂
(
R−1

)2 measures
the variance of those innovations, and hence the variance of consumption growth.

Lemma 1 represents the baseline ambiguity aversion solution. The worst-case model is the b̂ ∈ B
with the highest risk, b̂

(
R−1

)2. Ambiguity averse agents therefore choose consumption policies that
are optimal when income is risky in the sense that shocks to its NPV are large.

A simple way for NPV shocks to be large is for income to have a highly persistent component

—i.e. b̂j > 0 for many values of j —which is the basis of the results in Hansen and Sargent (2005,

2017) and Bidder and Dew-Becker (2016) that ambiguity averse agents tend to focus on models

with excess persistence. Those papers, however, consistent with the rest of the ambiguity aversion

literature, take the set of models, B, as exogenously given. We now endogenize B.

1.2 Information and beliefs

Where this paper contributes to the literature is in allowing the agent to acquire information. We

assume agents are able to acquire signals about the true income process, b. The signals are denoted

by x, and their precision by τ . The set of plausible models is then written as B (x; τ). The signals

are not themselves a choice, only their precision. Conditional on τ and b, x is random.

We begin by stating the basic form of the information acquisition problem.
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Assumption 3 Agents choose τ as the solution to

min
τ
E

[
max

b̂∈B(x;τ)
log b̂

(
R−1

)2 | τ] , (8)

subject to a cost of information defined below.

The expectation here is taken over the signals, x. The assumption says that agents choose

signal precisions to optimally constrain nature, in the sense of limiting the extent to which nature

can choose an unfavorable model. In general, more precise signals will make the set B (x; τ) smaller

and thus reduce (in expectation) the maximum income risk that agents think is plausible. That is

their basic motivation for gathering information.

Since the signals are random conditional on τ , there is an element of choice under uncertainty.

We show below that assuming τ is chosen to maximize expected log b̂
(
R−1

)2 makes the model
analytically tractable, and has the advantage of yielding a form of risk-neutrality over the signals.

The log transform in (8) affects only choice under uncertainty about the realizations of the signals,

x. It is irrelevant to both the optimal consumption and ambiguity aversion, and therefore cannot

be determined purely from consumption behavior or knowledge of the set B agents fear. Instead, it

determines preferences over the random realizations of the signals. We therefore use a convenient

functional form that allows for closed-form solutions.

2 Information acquisition technology

This section describes the structure of the signals x, their precisions, τ , and how they map into the

set of plausible models, B (x; τ).

In general, estimates of dynamics in the time domain, whether in terms of lag polynomials or

autocovariances, are correlated across lags. In addition to the facts that these objects are infinite

dimensional and have highly nontrivial constraints (positive definiteness for the autocovariances,

invertibility for a and b), the complicated correlation structure makes the analysis extremely diffi cult

in the time domain. This section introduces a transformation into the frequency domain that

substantially simplifies the analysis, then sets up the information acquisition technology, and finally

shows how information is used to construct a set of plausible models.

A standard toolkit has been developed in the literature for studying learning based on inde-

pendent Gaussian signals. The environment is chosen so that those tools apply directly here.8

The frequency domain analysis, information acquisition technology, and choice of priors combine

to yield a linear-quadratic optimization that has analytic and interpretable solutions. There are

other dimensions of learning not considered here, such as filtering of latent states (e.g. Kasa (2006)

and Guvenen (2007)).

8For example, the final information acquisition problem resembles those studied in Kacperczyk, van Nieuwerburgh,
and Veldkamp (2016) and Crouzet, Dew-Becker, and Nathanson (2018).
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2.1 The spectrum and income risk

The spectral density of the income process, exp f (ω), is the Fourier transform of the autocovari-

ances:

exp f(ω) ≡
∞∑

j=−∞
cos(ωj) cov(Yt, Yt−j). (9)

As f is periodic, we may restrict attention to the domain ω ∈ [0, π]. There are one-to-one mappings

between f , the autocovariances, and the Wold representation, b, so f fully represents the income

process.

The key feature of the spectrum is that it is a variance decomposition for income in terms of

fluctuations at different frequencies:

var (Yt) =
1

π

∫ π

0
exp (f (ω)) dω. (10)

exp (f (ω)) measures the contribution of fluctuations in income at frequency ω to the total variance

of income. The relative magnitude of f across frequencies determines the extent to which variation

in income is driven by low- versus high-frequency fluctuations. An AR(1) process with an autocor-

relation near 1 has a spectrum whose mass is isolated at low frequencies, whereas a process that

features reversals, such as Yt = εt − (1/2) εt−1, has a spectrum with mass concentrated at high

frequencies (those near π).

As with b and b̂, f is the true log spectral density of income and generic spectra are denoted

by f̂ . There is a surprisingly simple mapping between the spectrum, f̂ , and the measure of income

risk that determines utility, b̂
(
R−1

)2:
Lemma 2 For a log spectrum f̂ with associated Wold representation b̂,

log b̂
(
R−1

)2
=

1

π

∫ π

0
Z (κ) f̂ (κ) dκ (11)

where Z (κ) ≡ 1 + 2
∞∑
j=1

cos (κj)R−j . (12)

Proof. This is known as the Poisson representation in complex analysis. Insert R−1 for z in

equation 10.2.10 of Szegő (1939) or equation 2.11 of Inoue and Kasahara (2006).

This result shows that utility decreases linearly in f̂ —i.e. with the variance of income growth —

and the function Z > 0 determines the importance of fluctuations at each frequency. The left-hand

panel of figure 1 plots Z for an annual calibration with R = 1.025. The mass of Z primarily lies on

extremely low frequencies, so what matters for the agent’s utility is the magnitude of the spectral

density at those frequencies.9

9 In the presence of a unit root, the analysis applies to the first difference of income. If ĝ (L) is the Wold rep-
resentation for the first difference of income, then b̂

(
R−1

)
= ĝ

(
R−1

)
/
(
1−R−1

)
. The agent then can calculate

log b̂
(
R−1

)2
by using Lemma 2 applied to the log spectrum of income growth and subtracting log

(
1−R−1

)
. The
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Lemma 2 drives the rest of the analysis, as it shows that the feature of models that agents worry

about most, in the sense that it can damage utility the most, is low-frequency volatility. While the

idea that long-run income shocks are most important is a common intuition, following naturally

from the permanent income hypothesis, lemma 2 (combined with lemma 1) quantifies exactly how

utility depends on fluctuations at all frequencies, and it is a result that has not appeared previously

in the economics literature.

2.2 Learning about the spectrum

We assume that agents gather information about their income process from a large dataset that

reports the income histories of many people, all of whom have the same parameters determining

their income processes (i.e. the same f and hence b), but different realizations (different ε’s). That

dataset can be thought of as representing the information that people can get from talking to family

members, teachers, or other mentors who are old enough to have long income histories.

Using standard time series methods (e.g. Brillinger (1981), chapter 5), each income history

from that database can be used to provide an estimate of the spectral density of income at one or

many frequencies. Specifically, define

f̃i (ω) ≡ log

∣∣∣∣∣T−1
i

Ti∑
t=1

Yi,t exp (iωt)

∣∣∣∣∣
2

+ %, (13)

where Ti is the length of income history i in the database and % is Euler’s constant. f̃i (ω) is an

estimator of f (ω) in that, as Ti →∞,

E
[
f̃i (ω)

]
→ f (ω) (14)

cov
(
f̃i (ω1)− f (ω1) , f̃i (ω2)− f (ω2)

)
→ π2

6
1 {ω1 = ω2} (15)

f̃i (ω) is an unbiased estimator of f , its errors are uncorrelated across frequencies, and the error

variance is independent of both the frequency and the length of the particular history, Ti. While

these are asymptotic results, simulations of our benchmark calibration in online appendix 5 show

they are highly accurate in small samples.10 The existence of an estimator with these useful

properties is the key reason to perform the analysis in the frequency domain.

To obtain information about the log spectrum of income at some frequency ω, the agent cal-

culates the sample spectrum f̃i(ω) for a number τ (ω) of the income histories from the dataset.

Treating the average of those sample spectra as approximately Normal (i.e. appealing to the Cen-

tral Limit theorem) motivates to the following assumption.

loading of utility on frequencies for the level of income is the same as for the first difference.
10The result follows from Brillinger (1981) theorem 5.2.6 combined with the continuous mapping theorem. At

frequencies 0 and π, the variance doubles. Frequency 0 does not appear in our analysis, and we ignore the doubling
at π as it is quantitatively irrelevant, being just a single point.
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Assumption 4 The agent receives signals {x (ωj)}j=1,...,n that are distributed as

x (ωj) ∼ N
(
f (ωj) , τ (ωj)

−1 /dω
)

(16)

where ωj ≡ πj/n, dω ≡ π/n, and the errors are uncorrelated across frequencies. The cost of those
signals is, for a constant θ,

θ
n∑
j=1

γ (ωj) τ (ωj) dω. (17)

For technical reasons (to avoid infinite information flows, for example), we assume that the

agent gains information on the spectrum on the uniform discretization of [0, π] given by ωj = πj/n,

and we take n as large. We scale the variances by dω so that they can be interpreted as the

information density at each point, and ignore the π2/6 term for simplicity.

The agents also face a cost of gathering information, which comes from the number of income

histories that they use at each frequency. Obtaining τ (ωj) observations at frequency ωj requires

calculating τ (ωj) inner products (equation (13)). If τ differs across frequencies, that means that

the agent calculates the sample spectrum for more income histories at some frequencies than others.

That is, they have many income histories to examine, but for frequencies that they learn less about,

they only estimate the spectrum using a small number of them, and the effort saved is allocated

elsewhere.

Allowing the cost to vary across frequencies according to γ (ω) makes some frequencies more

expensive to learn about than others. In the main results, γ (ω) = 1, and we examine the more

general case in section 6. The case of a constant γ, in which all frequencies are equally diffi cult

to learn about, is a standard benchmark in the time series literature. The nearly universal result

is that estimates of the spectral density have identical variances across frequencies; see Brillinger

(1981), Priestley (1981) and Hamilton (1994) for textbook treatments.

An important caveat to the statistical results, though, is that the lowest frequency that can

be estimated from a given history depends on the history’s length, Ti. A 50-year income history

can only directly reveal information about cycles that last 50 years or less. The assumption that

an agent can potentially obtain signals at all frequencies means that they can find arbitrarily long

income histories in their data. That implication is in fact model consistent since, as is standard,

the agents in the model are infinitely lived.

An alternative interpretation of the model is that agents are not infinitely lived, but rather have

a constant probability of death in each period (so that effective geometric discounting arises from

a combination of the death rate and the rate of pure time preference). Even in that case, some

nonzero number of agents live at least Ti periods for any finite Ti. But finding such long-lived agents

becomes progressively harder as the required Ti grows. Section 6 enriches the model to account for

the idea that finding people with income histories long enough to be informative about the very

lowest frequencies should be asymptotically diffi cult. It also examines a more extreme case where

there is a lower bound to the frequencies agents can learn about (equivalently, that there is a T̄
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such that Ti ≤ T̄ ). The benchmark results focus on the γ (ω) = 1 case due to its prominence in the

literature and the relative ease of its analysis.

A natural baseline in the absence of optimization is for an agent to allocate equal information

costs to all frequencies, so that τ (ωj) ∝ γ (ωj)
−1. When γ (ωj) = 1, this corresponds to obtaining

signals with equal variances at all frequencies, which is the textbook time series result. We therefore

refer to that as the statistical benchmark allocation.

2.2.1 Relationship with rational inattention

Rational inattention provides an alternative and equally important interpretation of the information

structure. It is possible that complete information about the spectrum of income is available, but

agents have trouble processing it. Then the noise in the signals represents cognitive errors that

people make in interpreting the available information. The frequencies at which τ is larger are the

ones the agent pays the most attention to. Such a specification also makes the benchmark with

γ (ω) = 1 natural since a mental information processing constraint need not bind especially tightly

on any particular frequency.

In terms of the literature, the signal structure we analyze is highly similar to that in Kacperczyk,

Van Nieuwerburgh, and Veldkamp (2016) in that agents receive signals with normally distributed

errors and they are constrained by the total precision of the signals. This constraint is most natural

when each independent observation of the spectrum is equally costly to obtain. Sims (2003) proposes

an alternative constraint based on information flow or entropy. In our setting, the total entropy

of the signals is
∑n

j=1 log (τ (ωj) dω), so high-precision signals are relatively less costly under an

entropy constraint. Section 6 provides results for that alternative cost function.

That said, the setting here is more restricted than fully general rational inattention models:

the signal errors are Gaussian (motivated by the Central Limit theorem) and uncorrelated across

frequencies (motivated by the properties of statistical estimates of the spectrum). In the most

general form of the models that Sims (2003) studies, those restrictions need not hold, but they are

commonly imposed elsewhere, as in Kacperczyk, Van Nieuwerburgh, and Veldkamp (2016).

2.3 Priors and model plausibility

The previous section referred to ambiguity over models b̂ in a set B (x; τ). Since there is a one-to-

one mapping between Wold representations b̂ and spectra f̂ , we can equivalently refer to models f̂

in a set F (x; τ). Given a prior for f and knowing the distribution of the signals x, an agent can

use Bayes’rule to calculate the probability that some model f̂ is the true model. We assume that

the set F is those models whose probability of being the truth is above some cutoff.

Those probabilities cannot be calculated without a prior. A first idea might be to use a flat

prior, as that might impose minimal structure. In that case, though, an agent’s posterior mode for

the spectrum would simply be f̂ = x. That estimate has the property that it is most variable —and

so most complex —exactly where the agent has the least information. Moreover, as the discretiza-
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tion becomes small — dω → 0 — the estimate has unbounded variation, making it economically

implausible.

A more natural situation is for agents to have a prior that enforces some simplicity on the

spectrum. We assume that agents believe the log spectrum is likely to be smooth in the sense that

its differences across frequencies have limited variation, rather than fluctuating wildly. Following

Shiller (1973) and others, the prior is represented by a penalty on variability.11 The most plausible

models have perfectly flat spectra —white noise —while the least plausible have highly variable

spectra. Given assumption 4, the log posterior probability of a model f̂ is equal to

P
(
f̂ | x, τ

)
= −1

2

n∑
j=1

(
x (ωj)− f̂ (ωj)

)2
τ (ωj) dω︸ ︷︷ ︸

Data log likelihood

− λ

2

n∑
j=2

(
f̂ (ωj)− f̂ (ωj−1)

dω

)2

dω︸ ︷︷ ︸
Smoothness prior

+constants. (18)

The parameter λ determines the strength of the prior. When the quality of information, τ ,

grows, the prior becomes relatively less important and agents focus on more complicated models that

track the data more closely. So complexity only arises when people have a wealth of information.

The frequencies at which agents have the best signals are also the frequencies at which they will

potentially have the most complicated models. At frequencies agents ignore in the sense of selecting

small τ , they will tend to use models with spectra close to flat across frequencies.

The posterior probabilities (18) lead to the following assumption on F :

Assumption 5 The set of “plausible”models is

F (x; τ) =
{
f̂ : P

(
f̂ | x, τ

)
≥ p̄
}
. (19)

and subject to the condition that f̂ is a step function on the discretization {ωj}nj=1

Agents assume that nature can choose models that are not too inconsistent with the data in

the sense that their probability of being true conditional on x is above some cutoff. Another way

to state the assumption is that, compared to the maximum likelihood estimator of the spectrum,

nature can impose an alternative model that cannot be rejected on the basis of a (penalized)

likelihood ratio test at some confidence level, depending on p̄. The step function simply continues

the discretization from above and becomes unimportant as n becomes large.

Hansen and Sargent (2007) study an alternative measure of plausibility, assuming that agents

have some exogenously specified benchmark model and that nature is constrained to choose a
11The smoothness prior is often explicitly jutified as a belief in simplicity. Shiller (1973), the first application of

such a prior, says “[i]n most applications...the researcher will feel that...the lag coeffi cients should trace out a ‘smooth’
or ‘simple’curve.”Akaike (1979) and Kitagawa and Gersch (1985, 1989) use frequency domain priors almost identical
to ours. We show below that the smoothness prior also imposes smoothness on the AR and MA coeffi cients. That
white noise is treated as the most plausible is also sensible from an information theoretic perspective since Gaussian
white noise has the greatest Shannon entropy among all time series processes with a given variance.
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nearby alternative based on the Kullback—Leibler (KL) divergence. The key differences between

our set F and that in the Hansen—Sargent framework are that we replace their exogenous benchmark

model by the endogenous signals x and that deviations between an alternative model and x are

weighted by the chosen precisions τ , whereas the KL divergence puts equal weight on deviations

at all frequencies (Dahlhaus (1996)).12 It is the endogeneity of τ , and hence the set of plausible

models, that represents our contribution. In the robust control framework, the set of alternative

models is exogenously fixed.

In addition to the smoothness prior, we also assume that agents are able to express a prior

mean over possible models. In the absence of any information about the world, they believe the

average spectrum is flat at f̄ . This assumption is introduced so that it is possible for the agent to

calculate expectations for f̂ prior to observing signals. The belief about the level is associated with

infinite variance, though, so it does not appear in the posterior, P . The existence of a prior mean

is necessary for calculating the optimal τ , but its level is irrelevant and it has no implications for

the model.

3 Solution

All three optimizations in the preferences —the consumption policy, nature’s choice of a model, and

the information decision —are analytically solvable. There is little work that obtains closed-form

solutions for optimal consumption under model uncertainty and rational inattention, and the fact

that the model can be solved when model uncertainty and attention are themselves endogenous is

even more surprising.

The consumption part of the optimization was already solved in section 1.1.2 with the result

that models are ranked according to b̂
(
R−1

)2 (section 5.1 provides further details). This section
solves nature’s minimization over models f̂ ∈ F and then finds the agents’optimal choice for τ .

3.1 Nature’s minimization

Lemma 2 says that the fw ∈ F that maximizes
∫ π

0 Z (κ) f̂ (κ) dκ also maximizes income risk, and

that optimization is a straightforward linear problem. This section reports the solution using vector

notation.

Recall that the agent’s information and nature’s choice of a model are both defined on the

discretization {ωj}. The optimization can be studied in a vector form using the values on just

those points, so we define a vector (in boldface) fw (x; τ ) ≡ [fw (ω1;x, τ) , ..., fw (ωn;x, τ)]′ and

also Z taking the same form (recall that the frequencies ωj = πj/n are the uniform discretization

of the interval [0, π] on which the agent receives signals and that we think of n as large). diag (·)
12Note also that the KL divergence, which is sometimes also called an entropy distance, is separate from entropy

as a measure of information flow to the agents. The KL divergence is used in the robust control setting to determine
the set of plausible models, F . The relative entropy used in rational inattention models measures information flows
—τ here. Section 6 discusses how the analysis changes under the use of the Shannon entropy to measure information
flow.
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is an operator that creates a matrix with its argument on the main diagonal and zeros elsewhere.

We then have

Proposition 1 Nature’s optimization (7) has the associated Lagrangian

max
f̂

∫
Z (ω) f̂ (ω) dω − ψP

(
f̂ | x, τ

)
(20)

where ψ is a Lagrange multiplier. The worst-case model that solves (20) is

fw (x; τ ) =
(
In − λdiag

(
τ−1

)
D
)−1 (

ψdiag
(
τ−1

)
Z+ x

)
(21)

where In is the n× n identity matrix and D is a differencing matrix of the form

D ≡



−1 1 0 · · · 0

1 −2 1
...

0 1 −2
. . . 0

...
. . . . . . 1

0 · · · 0 1 −1


dω−2. (22)

Proof. See appendix B
While the notation is somewhat involved, the result here is simple: fw is a linear function of x

and Z. The worst-case spectrum is shifted up —risk is higher —compared to the agent’s signals, x,

by an amount that decreases with the precision of the signals, increases with the pain associated

with the particular frequency, and increases with the degree of ambiguity aversion, represented

by ψ. The full solution is reported here because it shows exactly what model the agent uses for

decisionmaking, and underlies all of our main results. The vector notation in proposition 1 is

relevant for the solution, and it appears in the derivations in the appendix, but it is not used in

the remainder of what follows —the analysis involves either individual frequencies, or continuous

limits (i.e. n→∞).
Before analyzing the implications of proposition 1 in detail, we first solve the agent’s optimal τ

to help frame the effects of information choice on consumption behavior.

3.2 Optimal information choice

Combining assumptions 3 and 4 with lemma 2, the optimization problem for τ becomes

max
τ

E

[
min

f̂∈F (x;τ)
−
∫ π

0
Z (ω) f̂ (ω) dω

]
− θ

n∑
j=1

γ (ωj) τ (ωj) dω. (23)
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Agents choose the signal precisions τ to minimize how bad a model nature can choose for them,

where “bad”here is (from lemma 1) measured by long-run risk, b̂
(
R−1

)2.13
Proposition 2 The optimal information policy that solves (23) when γ (ω) = 1 is

τ∗ (ωj) = θ−1/2

Cost of info.
× ψ1/2

Ambiguity aversion
× Z (ωj)
Utility weights

. (26)

Proof. See appendix C.
Agents optimally gather information exactly in proportion to Z, learning the most about the

frequencies that are most important for utility. In terms of an adversarial game with nature, the

agent chooses precision to constrain nature most at the frequencies that are potentially most painful.

The parameters θ and ψ determine the scale of τ∗. When information is less costly or agents are

effectively more ambiguity averse —θ falls or ψ rises —agents acquire more more precise signals. To

see the implication of proposition 2 for noise in the signals at each frequency, the right-hand panel

of figure 1 plots Z (ω)−1 ∝ τ∗ (ω)−1. The variance of the signals that the agents receive is a simple

function of frequency, rising smoothly as the frequency increases.

The remainder of the paper analyzes the implications of the solution for the types of models

that agents optimally use and how those choices affect observable consumption behavior.

4 Behavior of the model agents use

We have two relevant cases for τ . The utility-optimal information policy, τ∗ (ω), says that it is

proportional to Z (ω), while the statistical benchmark in the absence of optimization is to set τ (ω)

to equal a constant. We focus on two key results for fw under those policies:

1. Optimal learning eliminates excessive extrapolation: Without an optimal information
policy, the worst-case model displays excessive persistence compared to the truth —people

over-extrapolate shocks. But under optimal information (τ∗), that bias disappears.

2. Agents make mistakes primarily about the transitory component of income: Under
the optimal policy, agents use models that tend to deviate from the truth more at high than

at low frequencies. That behavior does not appear under the non-optimal information policy.

This section derives those results theoretically and examines them in numerical simulations of

the model. Section 5 examines how those results map into consumption behavior.
13The optimization has been laid out in three separate steps —the consumption/savnigs choice, nature’s choice of

a model, and the agents’choice of signal precisions, but it can also be written in a single line as

max
τ

E

[
G

(
max
Cpolicy

min
f̂∈F (x;τ)

E

[ ∞∑
t=0

−α−1βt exp (−αCt) | f̂
])]

(24)

where G (x) ≡ − log log
(
−α (1−R) (βR)1−R x

)
(25)
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4.1 Optimal learning eliminates excessive extrapolation

Taking an expansion around an infinite level of precision, appendix C.1 derives the following first-

order approximation in the continuous limit of the problem (dω → 0) for arbitrary τ :

E [fw (ω;x, τ)− f | f ] ≈ ψτ (ω)−1 Z (ω) + λτ (ω)−1 f ′′ (ω) . (27)

Equation (27) yields our first important result. In the statistical benchmark case where τ is

constant across frequencies, fw is biased in the direction of Z (ω). Recall from figure 1 that Z is large

at low frequencies and close to zero elsewhere. So under the statistical benchmark, the worst-case

model has excessively high power at low frequencies, which means that it is more persistent than

the truth. That result is almost exactly what is obtained in Bidder and Dew-Becker (2016), and

is closely related to results in Hansen and Sargent (2010, 2017). Intuitively, since highly persistent

models lead to the lowest utility by driving b̂
(
R−1

)2 up, agents naturally fear them.
Equation (27) also yields the more important part of the result, though, which is that under

the optimal policy, τ∗, there is no systematic bias towards either under- or over-extrapolation.

Specifically,

E [fw (ω;x, τ∗)− f | f ] ≈ ψ1/2θ1/2 + λτ∗ (ω)−1 f ′′ (ω) . (28)

Since τ∗ (ω) ∝ Z (ω), the frequencies that are most important for utility are also the ones that

the agent learns the most about, thus constraining the worst-case model. The proportionality

completely cancels Z out of the bias, leaving just a constant, ψ1/2θ1/2.

When fw deviates from f by only a constant, the two models have identical autocorrelations and

differ only in the conditional variances. For example (ignoring the effects of f ′′ for the moment; i.e.

for small λ), if income follows an AR(1) process with persistence ρ, then E [fw] is the log spectrum

for an AR(1) also with persistence ρ, but with innovations that have a greater variance. On average

then, the worst-case Wold representation, bw (L), is biased up only in its constant, bw0 , while all the

lag coeffi cients are unbiased relative to the true model b (ω).

Equation (28) is a key result of the paper. It shows that endogenous learning can completely

eliminate overextrapolation. Intuitively, ambiguity averse agents tend to focus on models with

excessive persistence because they are associated with low utility. But that fact also causes them

to obtain the most information about those frequencies, thus entirely canceling out the effect of

ambiguity.

This result stands in conflict with recent work that argues that ambiguity aversion and informa-

tion processing constraints lead to overextrapolation (Fuster, Hebert, and Laibson (2012), Bidder

and Dew-Becker (2016), and Hansen and Sargent (2016)). What we find here is that when people

are able to choose what aspects of income to learn about, they naturally focus on the low frequen-

cies, since those are most important for utility. But it is precisely that focus that then eliminates

any bias towards excessive extrapolation.
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4.1.1 Numerical example

To make the results more concrete, we consider a simple numerical example. Suppose income is

truly i.i.d. over time, Yt = εt, so that the true model has zero persistence. Since f ′′ (ω) = 0, the

second term in equations (27) and (28) is equal to zero. The left-hand panel of figure 2 plots the true

(flat) log spectrum f (ω) along with the mean worst-case spectra under the optimal information

policy τ∗ and for the statistical benchmark in which τ is constant across frequencies (the calibration

is set so that they have equal total precision:
∑

j τ
∗ (ωj) =

∑
j τ), which we denote with f̄

w
∗ and

f̄wF , respectively. The figure shows that f̄
w
∗ is shifted up by a constant compared to f , while f̄

w
F

actually has a significantly different shape, with a peak at low frequencies indicating persistence in

income.

The right-hand panel of figure 2 plots the impulse response functions (the b’s) associated with

the three models. Since income is truly i.i.d., bj = 0 for j ≥ 1 under the true model. Under the

optimal information policy with model uncertainty, the only thing that changes on average is that

b0 becomes larger —people fear a higher variance, but they do not on average act as though income

actually has any persistence. Under the statistical benchmark, though, there is clearly persistence

in income: the impulse response is consistently positive after the initial impact. Figure 2 thus

illustrates our first basic result. While ambiguity aversion and model uncertainty can often drive

agents to act as though income is excessively persistent, that result is delicate: it disappears when

people can allocate attention and information acquisition optimally.

4.2 Agents make mistakes about the transitory component of income

The primary mistakes in the agent’s worst-case model come from the term in (27) involving f ′′ (ω).

That part of the formula is driven by the agent’s smoothness prior. In the face of noisy data, agents

estimate the spectrum of income by smoothing information across frequencies. Since fw (ω;x, τ)

is a convex combination of the data x local to ω, it is biased upward when f ′′ > 0 and downward

when f ′′ < 0. Intuitively, if there is a narrow peak in f , a simple model will tend to smooth the

peak out, and thus be biased downward.

In that sense, the agents also have a bias towards simplicity: they use models with smaller

variations across frequencies when they have less information.14 When the true spectrum is in

fact complex, in the sense that it has local peaks and troughs, any estimated model will tend

to make mistakes in smoothing those peaks out. So the errors appear exactly where f ′′ is large.

The information policy matters here, though, because it determines the frequencies at which those

mistakes are concentrated.

Since the optimal information policy gives the agents noisier signals about the spectrum at high

frequencies, that is also where they make the largest smoothing errors. In (28), f ′′ (ω) is multiplied

by τ∗ (ω)−1. So when precision is high, the term is scaled down and the worst-case spectrum tracks

14That intuition can be formalized. It is possible to show that correlations in the estimated spectrum, fw (ω;x, τ),
are higher across frequencies, implying that complexity is lower, in regions where τ is smaller.
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the true spectrum closely. But when τ∗ is small —at high frequencies —agents do more smoothing

across frequencies and make larger mistakes.

4.2.1 Numerical example

To illustrate the errors caused by smoothing, we now consider a richer and more realistic numerical

example with multiple peaks in the spectrum. The left-hand and middle panels of figure 3 plot

the log spectrum of the data-generating process for income, while the right-hand panel plots the

impulse response of income to a shock. The calibration is chosen to have both high-and low-

frequency components (see evidence discussed in Kaplan and Violante (2010)). The high-frequency

piece —which generates the middle peak in the spectrum —is driven by the fact that a component of

the shocks to income reverts: when income rises higher by $1 today, it is lower on average by 50 cents

over the next three periods. That behavior can be caused by forces that shift income over time but

have little effect on total lifetime income. For example, many people overpay taxes during the year

and then receive refunds (e.g. Souleles (1999)). The low-frequency component of income —the left-

hand peak in the spectrum —comes from the fact that the impulse response is persistently positive in

the later periods following a shock. This represents a persistent component in income growth, and

could come from variation over time in the average growth rate of the economy or the performance

of one’s employer. The preference parameters are chosen to illustrate the main mechanisms in the

model. θ is chosen so that agents make quantitatively large consumption mistakes (see below).15

We examine two specifications for τ : the first is the optimum derived above, τ∗, which is

proportional to Z (ω); the second specification is the statistical benchmark that sets τ (ω) to be

constant at the mean of τ∗:

τF (ωj) = τF ≡ n−1
n∑
i=1

τ∗ (ωj) . (29)

As in the previous example, the choice of the mean for τF implies that it has the exact same

information cost as τ∗. Note, though, that since precision is the inverse of variance, the average

variance of the errors across frequencies is in fact much smaller under τF than under τ∗.

Figure 3 plots f̄w∗ and f̄
w
F for the two-peak calibration. The average model under the optimal

policy, f̄w∗ , matches f very well at the lowest frequencies, but it does a poor job of matching the

middle-frequency peak in f and also deviates substantially at higher frequencies. The average model

under the statistical benchmark, f̄wF , has the opposite behavior: it matches the middle-frequency

15Technically, the impulse response function for income is equal to [1,-0.15,-0.3,-0.15,0,...] plus 0.095 exp (−0.1j).
It is then scaled so that the standard deviation of consumption growth is 1.56 percent (when initial consumption is
equal to 1).
As discussed above, n is intended to be taken as large — it is only used to avoid infinities — so we set it to 4000.

β = 0.975 to represent an annual calibration, and R = β−1 for simplicity. τ̄ , λ, and ψ are chosen in order to ensure
that the agents make non-trivial mistakes in modeling consumption and that the behavior is visibly different across
the two policies for τ . ψ = 10−4; λ = 0.00075; τ̄ = 405.83; θ = 49.35. The parameterization is meant to illustrate the
qualitative behavior of the model rather than match specific quantitative data. The degree of ambiguity aversion,
ψ, has minimal effects on behavior under the optimal information policy, but it matters much more under the flat
information policy.
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peak and high-frequency behavior well, and in fact matches f well at almost all frequencies, but it

fits relatively poorly at low frequencies. That is exactly what the formulas predict: optimal learning

causes models to be relatively more accurate at low than high frequencies. Overall, though, f̄wF has

a much better fit than f̄w∗ , with a root mean squared error that is 42 percent smaller, due to the

fact that f̄wF spreads information evenly across frequencies.

The right-hand panel of figure 3 plots the lag polynomials, b, b̄w∗ , and b̄
w
F , associated with the log

spectra f , f̄w∗ , and f̄
w
F , respectively. b̄

w
∗ fails to match the short-run mean-reversion in the income

process, while the lag polynomial for the suboptimal information policy, b̄wF , does not, as predicted

by the analytic results. The figure shows that the greater smoothness of f̄w∗ also translates into

smoothness in the associated lag polynomial, and in particular errors in the transitory behavior of

income. But the figure shows that the optimal policy performs better at longer lags, giving a closer

fit to the persistent component of the impulse response function. Since it is the long-run part that

determines human wealth, and hence optimal consumption, it is optimal from an expected utility

perspective for agents to use models that fit the persistent component at the cost of missing the

transitory dynamics.

5 Implications for observable consumption behavior

We now explore the implications of the results in the previous section for the observable behavior

of consumption.

5.1 Consumption function

Online appendix 1 shows that given a worst-case model bw, consumption growth follows

∆Ct =
(
1−R−1

)
bw
(
R−1

)
εwt+1 +

α

2

(
1−R−1

)2
bw
(
R−1

)2
+ α−1 log βR (30)

where εwt+1 ≡ bw (L)−1 Yt. (31)

∆ is the first-difference operator and bw (L) is the Wold representation associated with the worst-

case model fw. In the case where agents use the true model, so that bw = b (i.e. under complete

information), the filtered shocks, εw are equal to the true shocks, ε, and consumption follows a

random walk with innovations equal to the innovation in the annuity value of the NPV of future

income,
(
1−R−1

)
b
(
R−1

)
εt+1. When the agent uses a model that differs from the truth, though,

εwt+1 is no longer an i.i.d. process and consumption growth is no longer uncorrelated over time.

That is, the agent’s estimated shocks, εw, are in general serially correlated, which leads to serial

correlation in consumption growth, which is suboptimal from a full-information perspective.

The log spectrum of consumption growth is

fw∆C (ω;x, τ) = log
((

1−R−1
)2
bw
(
R−1;x, τ

)2)
+ f (ω)− fw (ω;x, τ) . (32)

20



When the agent knows the true model, fw∆C is perfectly flat, and we have the usual result that

consumption growth is uncorrelated over time and the level of consumption is a random walk. But

in general the agent does not know the true model. For example, if the true spectral density has

a peak at some frequency but the worst-case spectrum does not, then fw∆C will inherit the same

peak through the term f (ω) − fw (ω;x, τ). That is, features of the income spectrum that the

agent “ignores”in the sense that they do not appear in fw are passed through to the spectrum of

consumption growth.

Using (32), we can immediately map the results in the previous subsections into the spectrum

of consumption growth. Specifically, for general information policies and for the optimal policy,

plugging (27) into (32) yields

E [fw∆C (ω;x, τ) | f ] ≈ E log
((

1−R−1
)2
bw
(
R−1;x, τ

)2)
−ψτ (ω)−1 Z (ω)− λτ (ω)−1 f ′′ (ω) , (33)

E [fw∆C (ω;x, τ∗) | f ] ≈ E log
((

1−R−1
)2
bw
(
R−1;x, τ∗

)2)
−ψ1/2θ1/2 − λτ∗ (ω)−1 f ′′ (ω) . (34)

Again, the information policies differ in two key ways. First, comparing the terms ψτ (ω)−1 Z (ω)

and ψ1/2θ1/2, there are no systematic deviations of consumption growth from white noise under

the optimal information policy. Under other policies, though, since people overextrapolate income

shocks, consumption is actually mean reverting in the long-run —there is a trough in fw∆C at fre-

quency zero. Intuitively, overextrapolation causes people to consume more than they can afford

(more than human wealth) following positive shocks. Eventually, then, they must reduce consump-

tion, causing long-run mean reversion. So the observable prediction of the model is that we actually

should not observe long-run mean reversion in consumption growth. By the same token, people

should also not underreact to shocks (as under rational inattention), which would lead to long-run

persistence in consumption growth.

The second class of mistakes is the smoothing errors due to the term λτ (ω)−1 f ′′ (ω). This

term says essentially that variation in the spectrum of income that the agent is not aware of passes

directly into consumption growth. When f ′′ is negative, for example, there is a local peak in the

spectrum of income, and the spectrum of consumption growth then is also relatively high. Again,

these errors are scaled by the precision of signals. The model predicts that consumption should

track income relatively more closely — have a similar impulse-response function — at high than

low frequencies. Transitory variation in income, such as the shifts in income over time studied by

Souleles (1999), is predicted to pass directly into consumption. We illustrate that behavior below

in a numerical example.

Compared to the behavior under the standard setup with no model uncertainty, our model

generates, through limited information, excess sensitivity of consumption to high-frequency shocks

to income. This result is not obtained, though, by appealing to some sort of irrationality; rather, it
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arises simply from people optimally choosing to focus their attention on low frequencies. Endoge-

nous attention leads to our second difference from the literature, which is that unlike other recent

work on model uncertainty (Fuster, Hebert, and Laibson (2012), Bidder and Dew-Becker (2016),

and Hansen and Sargent (2016)), the model does not predict excessive extrapolation of shocks. The

model predicts excess sensitivity to transitory variation in income, but in fact the correct sensitivity

to the permanent component.

The model also has rather different predictions from rational inattention over state variables

(as opposed to rational inattention over model specifications), which suggests that they could be

tested against each other empirically. As discussed by Sims (2003), the most prominent prediction

of rational inattention is delayed reaction to shocks, due to the fact that people observe the shocks

imperfectly. If income rises permanently, Sims (2003) shows that in general people will take a

number of periods to fully realize that such a shock has occurred, meaning that consumption

responds slowly to permanent shocks to income. Here, on the other hand, agents respond rapidly

to permanent shocks because it is precisely the low-frequency part of income that they understand

best.

Sims (2003) and Luo (2008) show that rational inattention can also generate excess sensitivity

of consumption to income shocks, but the effects are calibration-specific and may be quantitatively

small (e.g. the simulations in Sims (2003)). Intuitively, excess sensitivity arises because agents are

not able to distinguish permanent from transitory shocks. So to obtain high-frequency mistakes,

the rational inattention model must also predict low-frequency mistakes. In our model, though, the

prediction of optimal information acquisition is in fact that the same attention choice both induces

high-frequency mistakes and eliminates low-frequency mistakes. Furthermore, we see in the next

section that the high-frequency mistakes can be quantitatively large and realistic.16

5.2 Numerical example

We examine the behavior of consumption under the numerical simulation when income has both

transitory and persistent components. Figure 4 plots the log spectra of consumption growth under

the various models. f̄w∗ provides a closer fit to the utility optimal consumption spectrum at all

frequencies. On the other hand, the statistical information policy produces a spectrum that is

flatter —and closer to white noise —across most frequencies, but it has a very large peak at the

lowest frequencies. The key question, then, will be which type of deviation —low- or high-frequency

—is more relevant for utility.

To see how the fitting errors affect the behavior of consumption growth in the time domain,

the right-hand panel of figure 4 plots the impulse response of the level of consumption to a unit

shock to εt (i.e. a true innovation, not a filtered one) under the three consumption rules along with

the cumulative impulse response of income (multiplied by
(
1−R−1

)
). As we would expect, the

response of consumption under the full-information rule is flat: the permanent income hypothesis
16 It is also worth noting that the models in Sims (2003) and Luo (2008) can only be solved under quadratic utility,

whereas we are able to accommodate CARA preferences here.
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holds, and the response of consumption is approximately equal to the cumulative increase in income.

The line for consumption under the optimal information policy shows that it inherits some of the

short-run mean-reversion in income, rising and falling in the first few periods. It does not include

the persistent component in income, though —consumption immediately jumps to approximately its

long-run level, but the fluctuates around that level excessively. So the consumption policy is “right”

in the long-run, but it is excessively sensitive to transitory variation in income in the short-run.

The behavior of a person using the model f̄w∗ is again notably different from one using f̄wF . The

latter model does a better job of eliminating high-frequency fluctuations in consumption, but at the

cost of inheriting the low-frequency behavior of income. The initial response of consumption under

f̄wF is too small, and consumption slowly drifts upward over the 80 periods of the IRF plotted here,

eventually overshooting. So the τF policy, counter to what is observed empirically, eliminates the

sensitivity of consumption to transitory fluctuations in income, but causes consumption growth to

deviate from white noise at long horizons. This result argues that empirically, τ∗ is a better de-

scription of consumption behavior than a setting where agents do not choose information optimally,

τF .

Those results may also be observed in more standard time series regressions for consumption

growth. Table 1 below reports the coeffi cients from simulated regressions of consumption growth on

the predictable and unpredictable components of income growth under the two information policies

and also under the full-information optimum.17

Information policy Predictable income Unpredictable income

τ∗ 0.50 1.13

τF 0.12 0.72

Full-info. optimum 0 1.11
Table 1. Coeffi cients from regressions of consumption growth on income growth

The coeffi cient from the regression of consumption growth on the predictable part of income is

of the same order of magnitude as the coeffi cient on the unpredictable part under τ∗. The model

can thus replicate the empirical result that consumption responds strongly to predictable income

changes. That value is consistent (by calibration) with the results of Parker (1999) and Souleles

(1999), who both find that consumption rises by 0.5 percent following a 1-percent anticipated

increase in income.

Under the statistical benchmark, τF , on the other hand, that relationship is much weaker, with

the response to predictable income being, at 0.12, smaller by a factor of four. It is precisely the

fact that agents optimally (under τ∗) fail to learn about high-frequency features of the model that

causes them to overreact to predictable parts of income. Furthermore, note that the response of

17Here we use the version of the model in which income is difference-stationary. That is, the calibration of the
impulse responses and the spectrum are applied to income growth instead of its level. As discussed in footnote 9, the
theoretical results go through identically in that case. The difference is simply that then consumption and income
have volatilities that are of the same order of magnitude, as observed in the data. The calibration is otherwise
identical to what is discussed in footnote 15.
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consumption to true income shocks is far closer to the full-information optimum under τ∗ than

under τF . This again demonstrates that τ∗ helps agents get long-run responses right.

An alternative way to examine the behavior of consumption in the time domain is to study

its autocorrelations. The left-hand panel of figure 5 plots the autocorrelations of consumption

growth under τ∗ and τF . Obviously under the full-information optimum, the autocorrelations

are zero. At short lags, the autocorrelations are higher under τ∗. Subsequently, though, the

autocorrelations are substantially lower —by nearly a factor of 10. The right-hand panel plots the

first autocorrelation of consumption growth over different spans. For a horizon denoted by n on

the x-axis, we plot corr
(∑n−1

j=0 ∆Ct+j ,
∑n−1

j=0 ∆Ct−n+j

)
. So the figure represents how consumption

growth is correlated over neighboring intervals of length n. Consistent with the left-hand panel,

for short intervals the correlations are higher under τ∗ than τF . As we claimed above, though, the

figure shows that consumption growth over long periods is substantially less autocorrelated under

τ∗ than τF .

To summarize, this example confirms the analytic results above that the optimal information

policy generates consumption growth that is close to white noise in the long-run, but that it causes

consumption to be excessively sensitive to variation in income in the short-run. It also shows that

the model can generate the empirical result that consumption responds to predictable variation in

income.

5.3 Empirical evidence

Since the optimal information policy implies that people learn the most about low-frequency fea-

tures of the income process, it says that deviations of consumption growth from white noise should

be observed primarily at high frequencies. Specifically, if the agent’s model of income dynamics,

fw (ω;x, τ∗), is flat at high frequencies, then any variation in the shape of the true spectrum passes

directly into consumption. The shape of the spectrum of fw∆C (ω;x, τ∗) will typically be similar to

that of f (ω) at high frequencies as the model predicts that people use simple (flat) models there.

Another way to build intuition for that prediction of the model is to note that high-frequency

shocks also have relatively small effects on the net present value of income compared to more

persistent shocks (which is why the function Z is relatively small at high frequencies). So the model

essentially predicts that people spend excessively out of relatively small high-frequency increases

in income compared to the larger low-frequency shocks.

Those predictions of the model are consistent with recent empirical evidence. Parker (1999)

and Souleles (1999) provide classic evidence on the response of consumption to predictable changes

in income due to the tax code (the cap on social security taxes and tax refunds, respectively).

The shocks studied in those papers essentially shift income over time, exactly as in our numerical

example. The results above show that consumption in the model does in fact respond to such

variation in income, and that it tracks predictable income variation strongly.

Kaplan and Violante (2014) review extensive evidence on the effectiveness of fiscal stimulus
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payments, finding that people tend to spend approximately 25 percent of these transitory payments

in the quarter that they are received, even though the standard frictionless model would imply that

they should spend a fraction near the level of the real interest rate (i.e. less than 1 percent per

quarter). Moreover, these responses occur even among people with high incomes, who are less likely

to be liquidity constrained (see also Kueng (2016)).

Kaplan and Violante explain the empirical evidence by arguing that when people hold illiq-

uid assets, their consumption is excessively sensitive to transitory shocks because the benefit of

smoothing is smaller than the cost of adjusting the stock of illiquid assets (e.g. housing). The in-

tuition behind our results is similar to theirs (and also that of Cochrane (1989)) in that our results

are also driven by the relatively small welfare benefit of smoothing transitory shocks. We differ

in emphasizing the cost of learning about high-frequency dynamics, as opposed to assuming that

saving is costly. Kaplan and Violante (2016) note that their model is consistent with the finding

of Hsieh (2003) that consumption seems to respond relatively more to small than to large income

shocks. That intuition is consistent with our argument that it is most natural for people to learn

about shocks that have large effects on human wealth.

While the key source of variation for Kaplan and Violante (2014) is the size of shocks to income,

for us it is their duration. Consumption mistakes should appear in response to short-duration shocks

in our setting, and the empirical research finding violations of the permanent income hypothesis

typically studies transitory income shocks.

Cochrane and Sbordone (1988) examine the joint relationship between aggregate consumption

and output at long horizons and find that consumption helps forecast future output growth, but

output does not help forecast consumption (nor do lags of consumption itself), implying that

consumption growth is approximately white noise at long horizons. In other words, our model

is consistent with the view that consumption growth may deviate from white noise and respond

excessively to income in the short-term, but at longer horizons it is well described as white noise.

That implication requires aggregation, though, which is a nontrivial step. Since the consumption

function in our model is linear, it will have desirable aggregation properties, but the exact details

will depend on how income is driven by aggregate and idiosyncratic shocks at each frequency.

Aggregate empirical results are thus not an ideal test of the model. The most direct test would

be to measure the extent to which individual consumption growth is close to white noise over long

horizons.

An alternative way to test the model, instead of examining consumption, would be to directly

ask people what they are willing to pay for information. If they are at the optimum τ∗, then

information is equally valuable at all frequencies. On the other hand, under the standard models of

ambiguity aversion without endogenous information acquisition, people would value low-frequency

information most highly and be willing to pay the most for it. That said, this paper faces the same

problem as others in the information acquisition literature that there is no direct data on the type

or quantity of information that people have (see Angeletos, Collard, and Dellas (2017) for a related

discussion).

25



6 Alternative information cost specifications

The baseline case has equal information costs across frequencies — γ (ω) = 1 — consistent with

textbook time series analysis results. There is a common intuition, though, that information about

low frequencies should be more costly to obtain. That intuition does not have a formalization,

so this section introduces one. We then examine a case where agents are constrained in the total

entropy of their signals.

The online appendix reports two extensions of the results here. First, section 3 develops an

alternative formalization of the idea that low frequencies are harder to learn about than higher

frequencies. In that specification, even though low frequencies are harder to learn about, the

information policy remains τ∗ ∝ Z, as in the baseline. In what follows with γ (ω) 6= 1, on the other

hand, that will not be true. Second, section 4 examines a case in which there is a ω̄ such that

agents cannot directly learn about any frequency ω ≤ ω̄. The results are highly similar to what is

reported in section 6.1.

6.1 Costs varying by frequency

Recall that the model of information acquisition is that agents have a database of income histories

that they can query. If the people whose incomes are in the database (i.e. the friends, mentors,

etc. who the agent learns from) exit the labor force at a constant rate over time, then the length of

the histories in the database is naturally geometrically distributed. Specifically, if people exit the

labor force in each period with probability δ, then the fraction of people in the dataset who worked

for at least k periods is (1− δ)k−1.

In order to get information about cycles that least k periods, the agent needs to look at an

income history that is at least k periods long. So to learn about a frequency ω, the agent must find

a history lasting 2π/ω periods. On average, that will require looking at (1− δ)1−2π/ω histories. For

lower ω, there are fewer suffi ciently long histories, and thus less available information. We therefore

set in this section

γ (ω) = (1− δ)1−2π/ω . (35)

The benchmark results so far correspond to the case where δ = 0. We now study how the

results are affected by assuming δ > 0. The only direct effect this has on the model is to change

the optimal information policy. The general expressions obtained above for fw ((21) and (27)) and

consumption growth ((30), and (32)) as functions of τ continue to hold. As in the baseline case,

we calibrate the parameter θ in this section so that the response of consumption to a one-percent

increase in the predictable consumption is 0.5 percent.

6.1.1 Optimal information policy

While the model does not appear to have a closed-form solution in general when δ > 0, there is a

solution in the case with no smoothness prior (λ = 0):
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Proposition 3 The optimal information policy for arbitrary γ and for λ = 0 is

τγ (ωj) = γ (ω)−1/2

1/Frequency-specific cost
× θ−1/2

Cost of info.
× ψ1/2

Ambiguity aversion
× Z (ωj)
Utility weights

. (36)

Proof. See appendix C.2.
The only difference between this result and the main specification is that τγ now is decreasing

in the frequency-specific information costs —agents obtain less information about expensive than

about inexpensive frequencies. At the same time, though, they continue to obtain information in

proportion to the utility weights. What this result shows, then, is that even with frequency-specific

information costs, agents always undo the effects of nature’s minimization by setting τ larger where

Z is larger, all else equal. At the same time, though, τγ is obviously smaller when information is

more costly, which can cause nature to distort the model at the costly frequencies.

We calibrate δ = 0.975, corresponding to an exit probability of 2 percent, which would imply

people have on average a 50-year working life if each period is a year. The top panels of figure 6

then plot the optimal information policies τ∗ ∝ Z and

τγ (ω) = θ−1/2ψ1/2 (1− δ)1−2π/ω Z (ω) . (37)

Both lines again peak at low frequencies, but whereas τ∗ peaks at frequency zero, τ δ peaks at a

slightly interior frequency (the lines are normalized to have equal information costs). That peak

comes at a frequency corresponding to cycles lasting approximately 160 years, though. So while the

function γ in this case causes agents to learn less about the very lowest frequencies, the function Z

is suffi ciently strong that it still causes people to focus their attention on extremely low frequencies.

6.1.2 Behavior of the model agents use

To find the average behavior of the worst-case model with arbitrary γ, we insert the analytic

solution for τγ from the case where λ = 0 —i.e. ignoring the effects of smoothing on the optimal τ

—into the general formula for the bias, (27), to obtain

E [fw (ω;x, τγ)− f | f ] ≈ (1− δ)(1−2π/ω)/2 θ1/2ψ1/2

+λθ1/2ψ−1/2 (1− δ)(1−2π/ω)/2 Z (ω) f ′′ (ω) . (38)

The first term again represents the average bias. When the cost of information at low frequencies

is larger, the model tends to be biased upward at low frequencies, inducing excessive extrapolation.

So we now obtain excess extrapolation, but through a different mechanism than in past work

on ambiguity in dynamic models (Hansen and Sargent (2010, 2016) and Bidder and Dew-Becker

(2016)). Whereas excess extrapolation in those models appears because low-frequency shocks are

most painful to agents, in (38) it appears because low frequencies are most diffi cult to learn about.

As above, we compare the results under τ∗ and τγ to the case where an equal fraction of
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the total information budget is allocated to each frequency. In this case, then, that is τFγ ∝
(1− δ)−(1−2π/ω)/2. The middle panels of figure 6 plot the worst-case spectra under various τ

policies now also including τγ and τFγ .18 That policy leads to results between the benchmark τ∗

and the equal-cost
(
τFγ

)
policy. At the very lowest frequencies, the τγ model does not match the

true spectrum as well as τ∗, but it still does much better than τFγ . At the middle frequency peak

and at higher frequencies, on the other hand, the policy τγ does a better job of matching the log

spectrum than τ∗ but still worse than τFγ .

6.1.3 The response of consumption to shocks

The bottom two panels of figure 6 plot the behavior of consumption under the various models.

The left-hand panel plots the spectra. The spectral density of consumption growth under the τγ

policy again lies between those of the τ∗ policy and the statistical benchmark. While it has a hump

at middle frequencies, it is somewhat smaller than that for the optimal policy. The bottom-right

panel plots the impulse responses of consumption. The τγ policy is nearly as effective as the τ∗

policy at replicating the optimal initial response of consumption, and it shares some of the excess

sensitivity to the short-run variation in income.

The table below calculates the coeffi cients from regressions of consumption growth on the pre-

dictable and unpredictable parts of income, as we did for the benchmark results.

Information policy Predictable income Unpredictable income

τγ 0.50 1.00

τFγ 0.29 0.75

Full-info. optimum 0 1.11
Table 2. Coeffi cients from regressions of consumption growth on income growth with

frequency-specific information costs

The optimal information policy again generates excess sensitivity to income shocks. In this

case, compared to the baseline, the response of consumption to unpredictable income shocks is

slightly smaller, but it is still economically very close to the full-information optimum. The equal-

cost information policy, τFγ , as with τF above, again generates much smaller responses to both

predictable and unpredictable shocks to income.

Overall, when low frequencies are more costly to learn about, the main results are weakened, but

by a quantitatively small amount. Agents continue to allocate the most attention to low frequencies,

just not to the very lowest —the peak is at an interior frequency, but one corresponding to cycles

lasting a century or more. Agents under both the baseline and the case with frequency-specific

information costs make relatively larger mistakes in their models at middle than low frequencies,

18For non-zero λ with γ varying across frequencies, τγ (ω) ∝ Z (ω) γ (ω)−1/2 is not technically the optimal policy
— it must be solved for numerically. We focus on the analytic case for the sake of simplicity. Furthermore, the
calibration in figure 6 is set up so that the total precision under τ∗ is the same as that under τγ —they differ only in
how that precision is allocated across frequencies.
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they respond suboptimally strongly to predictable variation income, and they respond nearly opti-

mally to the unpredictable component. The model therefore generates similar overall behavior in

beliefs and consumption under both information cost specifications.

6.2 Entropy cost for information

In terms of entropy, the total information flow to the agents in the model can be measured based on

the difference between the prior variance that they have at each frequency and the posterior. In our

case, since we do not write down a fully specified prior, the information flow cannot be calculated

exactly. One way to interpret our agents’prior information, though, would be as a limit in which

the prior variance becomes infinite. In such a case, the frequency-by-frequency information flow

approaches
∑

j log (τ (ωj)) dω.

As with the δ > 0 case above, there is not a closed-form solution in the case with entropy costs.

However, assuming λ = 0 again (and with γ = 1), appendix C.2 shows that the optimal information

policy takes the form

τ entropy (ωj) = θ−1ψZ (ωj)
2 (39)

So whereas in the benchmark we had τ∗ ∝ Z, with the entropy constraint we find τ entropy ∝ Z2,

thus making the focus on the lowest frequencies even stronger and further emphasizing the main

results. Intuitively, this result appears because the entropy cost is logarithmic in the precision of

the signals, rather than linear, making particularly precise signals relatively less costly in this case

than in the benchmark.

7 Conclusion

The basic innovation of this paper is to endogenize the set of models that agents consider in a model

of ambiguity aversion. Typically, there is an exogenously specified set of models and agents make

decisions as though they will face an unfavorable model. When agents can gather information so

as to narrow the set of models, they naturally choose to learn about the features of the world that

are potentially most painful. Optimal learning therefore can therefore eliminate some of the most

severe consequences of ambiguity aversion.

This paper studies ambiguity and learning in a standard consumption/savings problem. In that

setting, it is low-frequency shocks that are most painful. Without learning, agents therefore tend

to focus on models with excess persistence, causing them to overextrapolate income shocks. In our

model, though, when it is precisely low frequencies that agents choose to learn about. In the case

where information is equally costly at all frequencies, they do so in a way that turns out to exactly

cancel out the excess extrapolation. More generally, they always focus on the lowest frequencies in

such a way as to at least substantially reduce the overextrapolation caused by ambiguity.

An interesting side-effect of the optimal learning is that agents then end up making mistakes

at high frequencies. By focusing their attention on low frequencies, they are relatively uninformed
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about the transitory variation in income. So optimal information acquisition actually leads agents

to consume suboptimally in response to transitory income shocks. We show that the model can

generate quantitatively realistic overreactions to predictable transitory variation in income.

In the end, then, the paper contributes to the ambiguity literature by showing that making

the set of models over which agents are ambiguous endogenous can have important quantitative

and quantitative implications, and it contributes to the consumption literature by providing a fully

solvable framework in which agents learn about income dynamics and endogenously make the types

of consumption mistakes that have been observed empirically.
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A Proof of lemma 1

From online appendix 1, the optimal consumption rule is

Ct = (R− 1)Wt−1 +−α
2
R−1

(
1−R−1

)
b̂
(
R−1

)2
+ z (L) ε̂t − α−1 log βR

R− 1
(40)

for a lag polynomial z (L). The Euler equation immediately implies that

Et

−α−1
∞∑
j=0

βj exp (−αCt+j)

 =
−α−1

1−R exp (−αCt) (41)
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Figure 6: Effects of information cost varying across frequencies

50  25  16.7 12.5 10  

Cycle length

0

0.2

0.4

0.6

0.8

1
Optimal information policies (low freq.)

τ*

τ
γ

10 5  3.3 2.5 2  

Cycle length

0

0.2

0.4

0.6

0.8

1
Optimal information policies (all freq.)

τ*

τ
γ

50  25  16.7 12.5 10  

Cycle length

-10

-9.5

-9

-8.5

-8
Spectra (low freq.)

f

f
w

*

f
w

Fγ

f
w

γ

10 5  3.3 2.5 2  

Cycle length

-10

-9.5

-9

-8.5

-8
Spectra (all freq.)

f

f
w

*

f
w

Fγ

f
w

γ

20 10 6.7 5  4  3.3 2.9 2.5 2.2 2  

Cycle length

-17

-16.5

-16

-15.5

-15
Log spectrum of consumption

f
∆C

f
w

*,∆C

f
w

Fγ ,∆C

f
w

γ ,∆C

0 20 40 60 80

Periods

2

2.5

3

3.5

4

4.5

5
×10

-4 IRFs of consumption

b
∆C

b
w

*.∆C

b
w

Fγ ,∆C

b
w

γ ,∆C

Income

Notes: The middle panels of this figure replicate the left and middle panels in figure 3, but using the optimal
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(note that the probability measure for the expectation operator here is arbitrary) which implies

−α−1 logEt

(1− β)
∞∑
j=0

βj exp (−αCt+j)

 = −α−1 log
(1− β)

1−R + (R− 1)Wt−1

−α
2
R−1

(
1−R−1

)
b̂
(
R−1

)2
+ z (L) ε̂t − α−1 log βR

R− 1
.(42)

The result in the text then immediately follows.

B Finding the worst-case spectrum (proposition 1)

Nature chooses
{
f̂ (ωj)

}
to solve

{fw (ωj)} = arg max
{f̂(ωj)}

n∑
j=1

Z (ωj) f̂ (ωj) dω −
ψ−1

2

n∑
j=1

(
x (ωj)− f̂ (ωj)

)2
τ (ωj) dω (43)

−ψ
−1

2
λ

n∑
j=2

(
f̂ (ωj)− f̂ (ωj−1)

dω

)2

dω. (44)

The first-order conditions for interior points (1 < j < n) are

0 = Z (ωj)+ψ
−1 (x (ωj)− fw (ωj)) τ (ω)+

ψ−1λ

dω

((
fw (ωj+1)− fw (ωj)

dω

)
−
(
fw (ωj)− fw (ωj−1)

dω

))
.

At the boundaries they are

0 = Z (ω1) + ψ−1 (x (ω1)− fw (ω1)) τ (ω1) + ψ−1λ
fw (ω2)− fw (ω1)

dω2
(45)

0 = Z (ωn) + ψ−1 (x (ωn)− fw (ωn)) τ (ωn)− ψ−1λ
fw (ωn)− fw (ωn−1)

dω2
. (46)

We define here vectors containing the various objects at the frequencies ωj using variables

with no subscript. For example, τ ≡ [τ (ω1) , τ (ω2) , ..., τ (ωn)]′. We can then write the first-order

conditions as

0 = Z + ψ−1diag (τ) (x− fw) + ψ−1λDfw, (47)
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where diag (τ) is a matrix with τ on the diagonal and zero elsewhere and D is a differencing matrix:

D ≡



−1 1 0 0 · · · 0

1 −2 1 0

0 1 −2 1
...

...
. . . 0

0 1 −2 1

0 · · · 0 0 1 −1


dω−2. (48)

The second-order condition is that

−diag (τ) + λD (49)

is negative definite, i.e. that all of its eigenvalues are negative.

The solution to nature’s optimization problem is then obtained by directly solving (47):

fw = (diag (τ)− λD)−1 (ψZ + diag (τ)x) (50)

=
(
I − λdiag

(
τ−1

)
D
)−1 (

ψdiag
(
τ−1

)
Z + x

)
, (51)

where τ−1 here is an elementwise inverse of the vector τ . Since this is a linear problem, the solution

is unique as long as the matrix inverse exists.

C Proposition 2

Consider a total derivative of (47) with respect to τ ′ at the point x = f̄ :

0 = ψ−1diag
(
f̄ − fw

)
− ψ−1diag (τ)

dE [fw]

dτ ′
+ ψ−1λD

dE [fw]

dτ ′
. (52)

We can then solve for dE[fw]
dτ ′ :

dE [fw]

dτ ′
=
(
λD − diag

(
τ ′
))−1

diag
(
E [fw]− f̄

)
(53)

Now the objective is to minimize

{τ∗ (ωj)} = arg min
{τ(ωj)}

logE
[
bw
(
R−1

)2]
+ θ

∑
j

τ (ωj) dω (54)

= arg min
{τ(ωj)}

Z ′E [fw] dω + θ
∑
j

τ (ωj) dω. (55)

The first-order condition for that problem is

0 = Z ′
dE [fw]

dτ ′
+ θ11×n, (56)
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where 11×n is a 1× n vector of ones. Inserting the formula for dfw

dτ ′ yields

0 = Z ′
(
λD − diag

(
τ∗′
))−1

diag
(
E [fw]− f̄

)
+ θ11×n (57)

Z ′ = −θ11×ndiag
(
E [fw]− f̄

)−1 (
λD − diag

(
τ∗′
))
. (58)

Now we conjecture that E [fw] − f̄ is equal to a constant c multiplied by a column of ones. We
then have

Z ′ = −θc−111×n
(
λD − diag

(
τ∗′
))

(59)

= θc−1τ∗′, (60)

where the second line uses the fact that 11×nD = 01×n since the columns of D sum to zero.

In order to confirm that result, we must now show that when Z = θc−1τ∗, E [fw]− f̄ = c1n×1.

Inserting Z = θc−1τ∗ into (47) yields

0 = θc−1τ∗ + ψ−1diag (τ∗)
(
f̄ − E [fw]

)
+ ψ−1λDE [fw] . (61)

In order for it to be the case that E [fw]− f̄ = c1n×1, we must have

0 = θc−1τ∗ − ψ−1diag (τ∗) 1n×1c+ ψ−1λD1n×1

(
f̄ + c

)
(62)

= θc−1τ∗ − ψ−1τ∗c. (63)

where the second line uses the fact that D1n×1 = 0n×1. This is solved by√
θψ = c (64)

Z = θc−1τ∗ (65)

τ∗ = (θ/ψ)−1/2 Z. (66)

We can then plug the value of τ∗ into the equation for E [fw]:

E [fw] =
(
I − λdiag

(
τ∗−1

)
D
)−1

(
ψdiag

(
(θ/ψ)1/2 Z−1

)
Z + x

)
(67)

=
(
I − λdiag

(
τ∗−1

)
D
)−1

(
1n×1θ

1/2ψ1/2 + x
)
, (68)

where, as with τ−1, Z−1 is an elementwise inverse of the vector Z. It follows that

E [fw] =
(
I − λdiag

(
τ∗−1

)
D
)−1

(
1n×1θ

1/2ψ1/2 + f̄
)

(69)

= 1n×1θ
1/2ψ1/2 + f̄ , (70)
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where the last line follows from the fact that the rows of
(
I − λdiag

(
τ∗−1

)
D
)−1 sum to 1. To see

why, note that

(
I − λdiag

(
τ∗−1

)
D
)−1

= I + λdiag
(
τ∗−1

)
D +

(
λdiag

(
τ∗−1

)
D
)2

+ ... (71)

The rows of λdiag
(
τ∗−1

)
D sum to zero, meaning that 1n×1 is an eigenvector with eigenvalue zero.

When a matrix is raised to a power, its eigenvectors are unchanged and its eigenvalues are raised to

the same power, meaning that 1n×1 remains an eigenvector with 0 the associated eigenvalue, and

the rows sum to zero. Since the rows of I sum to 1, the rows of
(
I − λdiag

(
τ∗−1

)
D
)−1 then do

also.

C.1 Bias of fw (ω;x, τ)

From above, the solution for the vector fw is

fw (x, τ) =
(
I − λdiag

(
τ−1

)
D
)−1 (

ψdiag
(
τ−1

)
Z + x

)
(72)

fw (x, τ) =

I +
∞∑
j=1

(
λdiag

(
τ−1

)
D
)j(ψdiag (τ−1

)
Z + x

)
(73)

fw (x, τ)− ψdiag
(
τ−1

)
Z − x =

 ∞∑
j=1

(
λdiag

(
τ−1

)
D
)j(ψdiag (τ−1

)
Z + x

)
. (74)

Now scale τ−1 by c and divide both sides by c

c−1fw (x, τ/c)−ψdiag
(
τ−1

)
Z−c−1x =

(
λdiag

(
τ−1

)
D

+
∑∞

j=2 c
j−1
(
λdiag

(
τ−1

)
D
)j
)(

cψdiag
(
τ−1

)
Z + x

)
.

(75)

Since both sides are linear in x, we can take take the expectation and then the limit as c → 0 to

yield

lim
c→0

E [fw (x, τ/c)]− f
c

= ψdiag
(
τ−1

)
Z + λdiag

(
τ−1

)
Df. (76)

In the limit as n→∞, Df becomes f ′′.

C.2 Alternative information cost specifications

When λ = 0, the formula for fw as a function of τ becomes

fw (ωj) = ψτ (ωj)
−1 Z (ωj) + x (ωj) (77)

and the first-order condition for the optimization of τ (ωj) is in the case with arbitrary γ (ωj)

0 = −ψτ (ωj)
−2 Z (ωj)

2 + θγ (ωj) (78)
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The result from the text then follows immediately. For the entropy information cost, the first-order

condition is

0 = −ψτ (ωj)
−2 Z (ωj)

2 + θτ (ωj)
−1 (79)

which again immediately yields the desired result.
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Online appendix for “Directed Attention and Nonparametric
Learning”

Ian Dew-Becker and Charles G. Nathanson

March 10, 2019

1 The behavior of consumption

The Euler equation conditional on a model b̂ is

1 = Et

[
β exp (−a∆Ct+1)R | b̂

]
(1)

It is then straightforward to confirm that is solved by

Ct = (R− 1)Wt−1 + Zt − (R− 1)
−1
α−1 log (βR) (2)

Wt = Wt−1 + Yt − Zt + (R− 1)
−1
α−1 log (βR) , (3)

where
Zt =

(
1−R−1

)
Yt −

1

α
R−1 logEt exp (−αZt+1) . (4)

We then have
∆Ct+1 = (R− 1)Yt + Zt+1 −RZt + α−1 log (βR) . (5)

Now define H as follows:

Ht ≡ Zt −
(
1−R−1

)
Yt (6)

Ht = − 1

α
R−1 logEt exp

(
−α

(
Ht+1 +

(
1−R−1

)
Yt+1

))
. (7)

This definition yields

∆Ct+1 = R
((

1−R−1
)
Yt − Zt

)
+ Zt+1 + α−1 log (βR) (8)

= Ht+1 −RHt +
(
1−R−1

)
Yt+1 + α−1 log (βR) . (9)

Guessing Ht = h̄+ h (L) εt, we have the recursion

h̄+ h (L) εt = − 1

α
R−1 logEt

[
exp

(
−α

(
h̄+ h (L) ε̂t+1 +

(
1−R−1

)
b̂ (L) ε̂t+1

))
| fw

]
(10)

= R−1

h̄+

∞∑
j=1

(
hj +

(
1−R−1

)
b̂j

)
ε̂t+1−j

−R−1α

2

(
h0 +

(
1−R−1

)
b̂0

)2

(11)

where ε̂t ≡ b̂ (L)
−1
Yt. The solution is

hj = R−1hj+1 +R−1
(
1−R−1

)
b̂j+1 (12)

h̄ = − R−1

1−R−1

α

2

(
h0 +

(
1−R−1

)
b̂0

)2

(13)

= −R−1α

2

(
1−R−1

)
b̂
(
R−1

)2
(14)
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Now we can insert the formulas for the various objects:

∆Ct =
(
1−R−1

)
b (L) εt+1 + (1−R) h̄+ h0ε̂t+1 +

∞∑
j=0

(hj+1 −Rhj) ε̂t−j + α−1 log βR (15)

=
(
1−R−1

)
b (L) εt+1 + (1−R) h̄+

(
1−R−1

) (
b̂
(
R−1

)
− b̂0

)
ε̂t+1 (16)

−
∞∑
j=0

(
1−R−1

)
b̂j+1ε̂t−j + α−1 log βR (17)

=
(
1−R−1

)
b (L) εt+1 + (1−R) h̄+

(
1−R−1

) (
b̂
(
R−1

)
− b̂0

) b (L)

b̂ (L)
εt+1 (18)

−
∞∑
j=0

(
1−R−1

)
b̂j+1

b (L)

b̂ (L)
εt−j + α−1 log βR (19)

=
(
1−R−1

)
b (L) εt+1 + (1−R) h̄+

(
1−R−1

)
b̂
(
R−1

) b (L)

b̂ (L)
εt+1 (20)

−
(
1−R−1

)
b̂ (L)

b (L)

b̂ (L)
εt+1 + α−1 log βR (21)

=
(
1−R−1

)
b̂
(
R−1

) b (L)

b̂ (L)
εt+1 + (1−R) h̄+ α−1 log βR. (22)

So consumption growth is equal to a constant plus
(
1−R−1

)
b̂
(
R−1

) b(L)

b̂(L)
εt+1. The dynamic behavior of

consumption growth is therefore determined by b̂
(
R−1

) b(L)

b̂(L)
. To help with the intuition, note that

b (L)

b̂ (L)
εt+1 = ε̂t+1 (23)

so this simply says that people follow the usual consumption rule but applied to their filtered innovations,
which may not be the true innovations.
The spectral density of consumption growth is

f̂∆C (ω) = b̂
(
R−1

)2 f (ω)

f̂ (ω)
. (24)

2 Epstein—Zin preferences

Suppose people have preferences of the form

vt = (1− β) ct +
β

1− α logEt [exp ((1− α) vt+1)] (25)

where ct = logCt. They face the budget constraint

Wt+1 = Rt+1 (Wt − Ct) (26)

Returns follow the process
rt+1 = logRt+1 = r̄ + b (L) εt+1 (27)

lower-case letters from here on denote logs.
Since people have a unit elasticity of intertemporal substitution, the consumption-wealth ratio will be

constant. We write
ct = c̄+ wt (28)
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The budget constraint can be rewritten as

∆wt+1 = rt+1 + log (1− exp (c̄)) (29)

where ∆ is the first-difference operator.
For consumption growth, we then have

∆ct+1 = ∆wt+1

= rt+1 + log (1− exp (c̄))

and we guess that lifetime utility is
vt = v̄ + ct + v (L) εt (30)

We can confirm this guess,

v̄ + ct + v (L) εt = (1− β) ct +
β

1− α logEt [exp ((1− α) (v̄ + ct+1 + v (L) εt+1))] (31)

v̄ + v (L) εt =
β

1− α logEt [exp ((1− α) (v̄ + log (1− exp (c̄)) + r̄ + b (L) εt+1 + v (L) εt+1))] (32)

= β (v̄ + log (1− exp (c̄)) + r̄ + b+ (L) εt+1 + v+ (L) εt+1) + β
1− α

2
(b0 + v0)

2
σ2(33)

where v+ and b+ denote the lag polynomials with the constants (b0 and v0) removed and the coeffi cients in
the polynomials are denoted bj and vj .

Matching coeffi cients yields

v̄ =
β

1− β

(
log (1− exp (c̄)) + r̄ +

1− α
2

(b0 + v0)
2
σ2

)
(34)

vj = β (vj+1 + bj+1) (35)

⇒ v0 + b0 = b (β) (36)

So we have

v̄ =
β

1− β

(
E [∆c] +

1− α
2

b (β)
2
σ2
ε

)
(37)

Next we insert this into the Euler equation along with the expression for consumption growth

1 = Et

[
β

exp ((1− α) vt+1 −∆ct+1 + rt+1)

Et [exp ((1− α) vt+1)]

]
c̄ = log (1− β)

finally yielding

v̄ =
β

1− β

(
log (β) + r̄ +

1− α
2

b (β)
2
σ2

)
(38)

The key result here is that lifetime utility depends on b (β)
2
σ2
ε, which is the same term as in the main

text. Note also that log utility is the special case of the above in which α = 1. In that case, agents are
indifferent to return risk.

3 Prior on smoothness in terms of cycle length

The main analysis studies the spectrum in the frequency domain, with a prior on smoothness that is equally
strong at all frequencies. This section considers an alternative specification where the analysis is in terms
of cycle length and shows that the optimal information acquisition policy remains unchanged, even though
lower-frequency fluctuations become more diffi cult to learn about.
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Recall from the main text that for a fluctuation at a frequency ω, the length of the associated cycle is
ζ = 2π/ω. It is obviously possible through a simple change of variables to write the entire model in terms
of cycles instead of frequencies.
The key difference in this section from the main text is that we assume that agents have a prior on the

smoothness of the spectrum in terms of cycles, rather than frequencies. Note that in the frequency domain,
the upper half of the range [0, π] is associated with cycles lasting four or fewer periods, whereas the lower
half of the range is associated with all longer cycles. In economic terms, we might think there is potentially
much more interesting variation in the model in the range of cycles lasting longer than four periods. Put
another way, any cycle lasting less than, say, four quarters, could be said to be “high”, with little meaningful
to distinguish them, whereas cycles lasting longer than four quarters could include business cycles, medium-
frequency trends, and long-term growth rates. It might be more natural, then, for the agent to have a prior
on the smoothness of the spectrum written in terms of cycles than frequencies.
Formally, define

f̃ (ζ) ≡ f
(

2π

ζ

)
(39)

We now say that the agent has a prior that restricts the total squared variation in f̃ , which would be∫ ∞
2

f̃ ′ (ζ)
2
dζ =

∫ π

0

f̃ ′
(

2π

ω

)2
2π

ω2
dω (40)

=

∫ π

0

f ′
(

2π

ω

)2

ω2dω (41)

In other words, since the transformation 2π/ω stretches the space around the very lowest frequencies, the
agent is essentially open to the possibility that the spectrum might be infinitely variable at the very lowest
frequencies.
Going back to the discretization used in the main analysis, we write the penalized likelihood in this case

as

P
(
f̂ | x, τ

)
= −1

2
dω

n∑
j=1

(x (ωj)− f (ωj))
2
τ (ωj)−

λ

2

n∑
j=2

(
f̂ (ωj)− f̂ (ωj−1)

dω

)2

ω2
jdω (42)

+constants (43)

with the only difference now being the added ω2
j in the second summation, showing that the smoothness

prior is tighter at high than low frequencies. This can be written in terms of vectors and matrices as

P
(
f̂ | x, τ

)
= −1

2
dω
(
x− f̂

)′
diag (τ)

(
x− f̂

)
− λ

2
f̂ ′Dω f̂dω (44)

+constants (45)

where

Dω ≡



−ω2
2 ω2

2 0 0 · · · 0
ω2

2 −ω2
3 − ω2

2 ω2
3 0

0 ω2
3 −ω2

4 − ω2
3 ω2

4

...
...

. . . 0
0 ω2

n−1 −ω2
n − ω2

n−1 ω2
n

0 · · · 0 0 ω2
n −ω2

n


dω−2. (46)

3.1 Estimation precision

There is a formal sense in which the change in the smoothness prior makes it more diffi cult for an agent to
learn about low frequencies. Consider the simple estimation problem of choosing f̂ to maximize the posterior
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probability P
(
f̂ | x, τ

)
. The point estimate is then

f∗ ≡ arg max
f̂

P
(
f̂ | x, τ

)
(47)

= (diag (τ)− λDω)
−1
diag (τ)x (48)

If we set τ = τ̄1n×1 for a scalar τ̄ , so that the agent has signals with equal precision at all frequencies, we
obtain

f∗ =
(
I − λτ̄−1Dω

)−1
x (49)

The variance matrix of f∗ is

var (f∗) = τ̄−1
(
I − λτ̄−1Dω

)−1 (
I − λτ̄−1Dω

)−1
(50)

The variance is straightforward to analyze numerically. Figure A.1 plots the main diagonal of the variance
matrix for various values of λτ̄−1. Each case is rescaled so that they are equal for the lowest frequency,
illustrating how the variances differ across frequencies. In all cases, the variance of the estimator f∗ (ω) is
lower at high frequencies. So when agents have a weaker prior on smoothness at low than high frequencies
(due to the assumption of equal smoothness in terms of cycles), it is more diffi cult to learn about the spectrum
at low frequencies.

3.2 Optimal information policy

It is straightforward to confirm that the optimal information policy, τ ∝ Z, is unchanged in this case. The
result follows from the fact that the two characteristics of D that are necessary for the main result —that
its rows and columns sum to zero —also hold for Dω.

4 Case with a ceiling on the length of available income histories

The discussion in section 2 notes that our analysis assumes that the agent is able to find income histories
in their database that are potentially arbitrarily long. That assumption is model consistent, but it is still
valuable to check the model’s robustness to it. The main text checks robustness by assuming that the cost
of acquiring signals about the spectrum becomes infinite as the frequency approaches zero. This section
considers an alternative case where there is a fixed frequency below which agents are completely unable to
acquire signals. This corresponds to a case where the database of income histories contains no histories
longer than some specific cutoff.
To implement this analysis, we simply assume that the cost of acquiring signals, γ (ω), becomes infinite

for ω < ω̄. We retain the same calibration as in the main text for the case of an income spectrum with
two peaks. We set ω̄ to correspond to cycles lasting 74 years or longer. We choose that length because it
corresponds to the length of the post-war US period, which is a common sample used in estimation. It is
also similar to typical lifespans (though somewhat longer than working lives, in general).
Figure A.2 replicates figure 6 from the main text, but using the hard cutoff for γ. The top two panels

show that the precision of the signals agents acquire in this case has a large spike at low frequencies. That
point is just to the right of the frequency cutoff. Intuitively, since agents cannot learn about the very lowest
frequencies, they shift the attention that would have gone to those frequencies to the lowest they are able
to observe. Their smoothness prior means that the information at ω̄ is still useful for providing information
about the spectrum at frequencies below ω̄.
The results in the second and third rows of figure A.2 are very similar to those in figure 6. Specifically,

the optimal information policy in this case again yields beliefs about the spectrum for income, along with
a spectrum for consumption growth, that lie between those obtained under the optimum with constant
information costs (τ∗) and those for the equal-cost policy, τFγ . Here, τFγ is equal to zero for ω < ω̄ and a
constant otherwise, since all ω ≥ ω̄ have equal cost.

Figure A.2 therefore shows that optimal information choice continues to cause agents to learn more
about the lowest frequencies than they would under a purely statistical policy. This causes them to make
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comparatively larger mistakes at middle and high frequencies, but smaller mistakes at low frequencies. As
in figure 6, that result is weaker than in our baseline case with constant costs across all frequencies, but the
same intuition continues to go through.

5 Small-sample simulations for the periodogram distribution

Our analysis uses the standard time series result that the periodogram is exponentially distributed around
the true spectrum with errors that are uncorrelated across frequencies. This section checks the accuracy of
that result in small-sample simulations of the two-peak spectrum used for most of the analysis. Since that
spectrum has a peak at low frequencies, it accounts for the potential concern that the results might not be
accurate in the presence of strong persistence.
We simulate 100-year histories of the income process. For each history, we calculate the periodogram at

the fundamental Fourier frequencies. Figure A.3 plots the standard deviation of the log periodogram across
1,000,000 simulations at the 49 Fourier frequencies (2πj/100 for j ∈ {1, 2, ..., 49}; the other frequencies
mirror the first 49, and the analysis ignores frequencies 0 and π, which have slightly different distributions).
The horizontal line is set at π/

√
6, which is the theoretical standard deviation. The simulated standard

deviations are tightly clustered around the theoretical standard deviation.
We also examine the correlation matrix of the simulated periodograms. The maximum simulated absolute

correlation is 0.0045, while the mean absolute correlation is 0.0008 and the standard deviation is 0.0006.
The correlations are therefore uniformly close to zero across the full range of frequencies.
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Figure A.1: Variance of spectral estimates with alternative prior
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Figure A.2: Effects of no information below a cutoff frequency
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Figure A.3: Standard deviation of log periodogram across frequencies
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