
ECON 2021 - FINANCIAL ECONOMICS I

Lecture 10 – Model Uncertainty & Robust Control

November 19, 2018

KASA ECON 2021 - FINANCIAL ECONOMICS I



MOTIVATION

Last week we saw that recursive preferences can mitigate the Risk-Free Rate Puzzle by
disentangling intertemporal substitution from risk aversion.

However, a high degree of risk aversion is still needed to explain returns on risky assets.

The Long-Run Risk model can reduce the required degree of risk aversion when γ > ρ.

However, the evidence for predictable consumption growth and EIS > 1 is weak.

Today we study ambiguity aversion and robust control. Two key results emerge:
1 An apparently high price of risk might partly reflect a price of model uncertainty.

This allows us to substitute ambiguity aversion in place of risk aversion, and thus
explain asset returns with less risk aversion.

2 The results of the LRR model can be obtained without the actual presence of
long-run risk. It is sufficient that agents suspect that such risk is present.
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HISTORY

Knight (1921): There is a difference between risk and uncertainty.

Keynes (1936): Financial markets are volatile because they price uncertainty, not risk.

Savage (1954): Under certain axioms, the distinction between risk and uncertainty is
behaviorally irrelevant.

Ellsberg (1961): Experiments cast doubt on the Savage axioms.

“It takes a model to beat a model”. SEU dominates in economics until the 1990s (Gilboa
& Schmeidler (1989)). Coincidentally, engineers develop Robust Control methods at
around the same time.

Hansen & Sargent brought these two literatures together.
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THE ELLSBERG PARADOX

Consider 2 urns, each known to contain 100 Red & Black balls.
1 Urn 1: Known to have 50 Red/50 Black balls.
2 Urn 2: No info given about Red vs. Black balls.

Now suppose you can bet on the color of the ball drawn from one of the urns. You get
$100 if you guess correctly, $0 otherwise.

The SEU axioms predict that people should (weakly) prefer Urn 2. According to SEU,
people have unique subjective prior probabilities about the proportion of R vs. B in Urn
2. This prior must assign at least a probability of 0.5 to either R or B, so Urn 2 should be
(weakly) preferred.

In practice, the vast majority of subjects prefer Urn 1. The rationale? It is better to wager
with ‘known probabilities’.

Gilboa & Schmeidler (1989) relax the SEU axioms to incorporate a preference for known
probabilities. According to SEU, if an individual is indifferent between two lotteries, he
should be indifferent to a mixture between them (with known probabilities). The axioms
of GS allow agents to (weakly) prefer the mixture.
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MODEL UNCERTAINTY VS. PARAMETER

UNCERTAINTY

Bayesian Decision Theory does not admit a distinction between Model Uncertainty and
Parameter Uncertainty.

BDT reduces everything to parameter uncertainty. If an agent is unsure about a
collection of candidate models, he assigns prior probabilities to them, and then
formulates a single ‘hypermodel’ by averaging over them.

For example, let f(y|x, d) represent a model for the state, y, tomorrow, given the state,
x, and decision, d, today. If an agent entertains multiple candidate models, he can
formulate a family of models, g(y|x, d,m), indexed by the parameter m.

According to BDT, he must have a unique prior, π(m), over m. Hence, we can reduce
the problem to one with a single (subjectively known) model by a process of Bayesian
Model Averaging

f(y|x, d) =

∫
g(y|x, d,m)π(m)dm

Caveat: BDT encounters difficulties in infinite-dimensional parameter spaces (Diaconis
& Freedman (1986)). So this BMA approach is not well suited to handle ‘unstructured’
model uncertainty.
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ROBUST CONTROL

In Robust Control, agents do not adhere to the Savage axioms. They adhere to
alternative axioms developed by Klibanoff, Marinacci, & Mukerji (2005) and Strzalecki
(2011).

1 They cannot form a unique prior.
2 They do not reduce compound lotteries.
3 They distinguish between model uncertainty and parameter uncertainty.
4 They care about early resolution of uncertainty.

All these behavioral modifications are controlled by a single free parameter, θ. This
parameter is calibrated using detection error probabilities. As θ →∞, Rational
Expectations/Bayesian results are recovered.

Robust Control features two models, not one. One is the agent’s benchmark model. It is
exogenously specified. The other is his worst-case model.

Since the worst-case model depends on his own policy, the agent views himself as being
immersed in a dynamic zero-sum game. A hypothetical ‘evil agent’ picks models to
minimize his payoff.

The agent is prudent, not paranoid. To avoid undue pessimism, the evil agent must pay
a relative entropy cost.

It is typically assumed the agent’s doubts are all in his head. His benchmark model is
correct. He just doesn’t know it.
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ROBUST CONTROL: MECHANICS

Benchmark Model

dx = f(x, c)dt+ σ(x, c)dB

Relative Entropy

R(q) = r

∫ ∞
0

e−rt
[∫

log

(
dqt

dq0t

)
dqt

]
dt

∫
log

(
dqt

dq0t

)
dqt =

1

2
Ê

∫ t

0

|hs|2ds

B̂(t) = B(t)−
∫ t

0

hsds
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Drift Distorted Models

dx = [f(x, c) + σ(x, c)h]dt+ σ(x, c)dB̂

Dynamic Zero-Sum Game

V (x) = max
c

min
h
Ê0

∫ ∞
0

[u(x, c) +
1

2
θh2]e−rt

Worst-Case Model

h = −
σ(c, x)

θ
Vx(x)
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EX. 1: ROBUST PORTFOLIO CHOICE

Let’s now introduce model uncertainty into the Merton problem. Suppose the agent’s
benchmark model is:

dS

S
= µdt+ σdB

When discussing learning, we assumed the agent fully trusted this model. He just didn’t
know µ.

Now suppose he fears more general forms of model misspecification (e.g., omitted
variables, neglected nonlinearities, etc.)

In response, he surrounds the benchmark model with a ‘cloud’ of alternative models,
parameterized by h

dS

S
= (µ+ σht)dt+ σdB̂

Notice that we have changed probability measures, from dB to dB̂.
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To formulate robust saving/portfolio policies, he solves the following dynamic zero-sum
game

max
c,π

min
h
Ê0

∫ ∞
0

e−δt

[
C

1−γ
t

1− γ
+

1

2ψ
h2
t

]
dt

s.t. dW = [(r + π(µ+ σht − r))W − C]dt+ πσWdB̂

where for notational convenience, ψ ≡ θ−1.

Applying Ito’s lemma, the stationary HJB/Isaacs equation is

δV = max
c,π

min
h

{
C1−γ

1− γ
+

1

2ψ
h
2

+ [(r + π(µ+ σh− r))W − C]Vw +
1

2
π

2
σ

2
W

2 · Vww

}

The FOCs are:

ψ−1h+ πσWVw = 0 (h)

C−γ − Vw = 0 (C)

(µ+ σh− r)W · Vw + πσ2W 2Vww = 0 (π)

Notice that the agent’s plans depend on the actions of the ‘evil agent’ (and vice versa).
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Solving for h we get
h = −ψπσW · Vw

This tells us a lot about robustness:
1 Notice that as long as Vw > 0 and π > 0, robustness takes the form of

pessimism, i.e., the drift distortion is negative, h < 0.
2 The agent worries more when he is more ‘exposed’, i.e., when π is large.
3 The agent worries more when volatility, σ, is higher. Greater volatility makes it

harder to rule out alternative models.
4 The agent’s doubts depend on his wealth level. To a 1st-order approx., they

decline with wealth when γ > 1

Subbing this into the agent’s FOC for π we get the robust portfolio policy

π =

[
−Vw

W (Vww − ψV 2
w)

]
µ− r
σ2

Notice that when ψ = 0 we get the usual Merton result. However, when ψ > 0 there is
a sense in which the agent is ‘more risk averse’, since Vww − ψV 2

w is more negative.

However, unless γ = 1, so that V ∼ log(W ), the agent’s problem is now
nonhomothetic. Portfolio and savings policies will depend nonlinearly on the level of
wealth.
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Nonhomotheticity is a general property of robust decision rules. It creates challenges for
aggregation. It is also the subject of much recent research, e.g., Anderson (2005),
Bhandari (2018), Borovicka (2018).

Maenhout (2004) proposed a ‘trick’ to preserve homotheticity. He suggested scaling the
robustness parameter by the inverse of the value function,

ψ̂ =
ψ

(1− γ)V

When γ > 1, this implies agents become more ambiguity averse as their wealth
increases. This keeps their doubts alive. [The reverse is true when γ < 1]. The
decision-theoretic foundations of this trick remain unclear.

Using this scaling trick, one can readily verify the following solution for the robust Merton
problem

V (W ) = A
1

1− γ
W 1−γ A = γ

[
δ − (1− γ)r −

1− γ
2(γ + ψ̂)

(
µ− r
σ

)2
]−1

π =
1

γ + ψ̂

(
µ− r
σ2

)
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AN OBSERVATIONAL EQUIVALENCE

Comparing this solution to our previous solution using Duffie-Epstein SDU preferences,
we obtain the following intriguing observational equivalence result:

Proposition: An agent with time-additive CRRA preferences and a homothetic
preference for robustness, ψ̂, is observationally equivalent to a Stochastic Differential
Utility agent with EIS = γ−1 and relative risk aversion γ + ψ̂

Skiadas (2003) and Hansen, Sargent, Turmuhambetova, & Williams (JET, 2006) show
that this observational equivalence extends beyond the realm of the Merton problem. It
becomes more apparent if we use the unnormalized SDU aggregator. The ψ̂σ2(x)V 2

x
term that appears in the robust HJB equation turns out to be the SDU variance multiplier.

Observational equivalence is often regarded as a problem. For us it is an opportunity.
This is because γ and ψ̂ have different interpretations.

γ reflects aversion to gambles with known probabilities, and can therefore be calibrated
to match the low values often ascribed to these situations. In contrast, ψ̂ reflects
aversion to model uncertainty. It is an aspect of the environment, not preferences.
Hence, it is context specific. Hansen and Sargent calibrate it using detection error
probabilities.
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DETECTION ERROR PROBABILITIES

In robust control, agents are prudent, not paranoid. They only worry about empirically
plausible alternatives.

Det. Error Prob
1

2
P (H1|H0) +

1

2
P (H0|H1)

Like a significance level, except null and alternative are symmetric.

If DEP is small, then worst case model could be easily rejected based on historical data.

Example: Two i.i.d. Gaussian processes with common variance

DEP ≤
1

2
exp{−Tρ} ρ =

(µ1 − µ0)2

8σ2

DEP will be small when:
1 Sample size, T , is large.
2 Difference in means is large.
3 Variance is small.
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SOME RESULTS

Remember, the Merton model is a partial equilibrium model. Prices are exogenous.
However, we can gauge the impact of model uncertainty by looking at its effects on risky
asset demand.

To do this, let’s calibrate parameters to conventional values, and then vary ψ̂. The
parameter values are: γ = 5, σ = .16, and (µ− r) = .06 (corresponding to an
annual time unit).

The following table displays the resulting risky portfolio share as a function of ψ̂

ψ π EPQ DEP (Chernoff) DEP(Normal)

0 .469 .06 .500 .500
1 .391 .05 .476 .377
5 .234 .03 .322 .174

The column EPQ is the perceived equity premium. The last 2 columns display
detection error probabilities. DEP(Chernoff) is the Chernoff bound. The final column
uses the exact DEP, which is available due to the i.i.d./normal environment.

Evidently, an empirically plausible fear of model misspecification can reduce the demand
for risky assets by more than 50%! Current research is using ambiguity and model
uncertainty to explain the lack of participation in financial markets.
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EX. 2: EQUILIBRIUM PRICES

Following the usual strategy, let’s now take consumption as exogenous and compute
equilibrium prices. Not surprisingly, the equilibrium response of a reduced demand for
the risky asset is an increase in the risk premium.

With homothetic robustness, the economy remains i.i.d., so to compute market-clearing
prices we can just impose the market-clearing condition π = 1 in the Merton soln.

r = δ + γµc −
1

2
(1 + γ)(γ + ψ̂)σ2

c

µS − r = (γ + ψ̂)σ2
c

Note that we can keep γ low to match the risk-free rate, while increasing ψ̂ as needed in
order to match the equity premium. The only real question is whether the implied DEP is
plausible.

Barillas, Hansen & Sargent (JET, 2009) examine US quarterly data for the period
1948-2007. They assume IES = 1 and suppose the benchmark model for
consumption growth is i.i.d. They find that the SDF nearly hits the HJ bound for
DEP = .05. It gets half-way to the HJ bound for DEP ∈ (.15− .20).
Which is more plausible? A coefficient of relative risk aversion of 50, or a DEP of .05?

KASA ECON 2021 - FINANCIAL ECONOMICS I



RECENT WORK
This lecture has reviewed what can be considered ‘1st-generation’ models of robust control and
model uncertainty. Here is quick overview of more recent work:

1 Like the rest of economics, recent work focuses more on heterogeneity and aggregation:
Bhandari (2014), Doubts, Asymmetries, and Insurance – 2 agents with distinct models. Time-varying Pareto
weights. Stable wealth dist if IES > 1.
Miao & Rivera (Ecma, 2016), Robust Contracts – Principal agent problem. Principal has doubts about the
cash flow process.
Kasa & Lei (JME, 2018), Risk, Uncertainty, & the Dynamics of Inequality – OLG model with nonhomothetic
robustness. Wealthy agents are less ambiguity averse, so invest more in higher yielding assets. This
amplifies and accelerates wealth inequality.
Cho & Kasa (2018), Doubts, Inequality, & Bubbles – Two agents trade an indivisible asset, and have doubts
about underlying cash flows. Doubts depend on wealth, which depends on asset ownership. Heterogeneous
beliefs create a resale option value as in Scheinkman & Xiong (2003).

2 Disentangling intertemporal substitution, risk aversion, and ambiguity aversion.

The above noted observational equivalence has sparked a recent literature that attempts to distinguish risk
aversion from both ambiguity aversion and intertemporal substitution. The key to separating risk aversion
from ambiguity aversion is to introduce hidden state variables, which the agent attempts to learn about.
Ambiguity is defined by distortions of the agent’s estimates of the hidden states. Hidden states can be used
to represent alternative models.
Distorted beliefs about hidden states can be interpreted from the perspective of the KMM (2005) model of
smooth ambiguity aversion. In the KMM model an agent prefers act f to act g if and only if

Eµφ(Eπu ◦ f) ≥ Eµφ(Eπu ◦ g)

where E is the expectation operator, π is a probability measure over outcomes conditional on a model, and
µ is a probability measure over models. Ambiguity aversion is characterized by the properties of the φ
function, while risk aversion is characterized by the properties of the u function. If φ is concave, the agent is
ambiguity averse.
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KMM refer to Eπ as ‘first-order beliefs’, while Eµ is referred to as ‘second-order beliefs’. Note that when φ is
nonlinear, the implicit compound lottery defined by selecting a model with unknown parameters cannot be reduced to
a single lottery over a ‘hypermodel’, as in Bayesian decision theory, so the distinction between models and parameters
becomes important. Also note that from the perspective of smooth ambiguity aversion, evil agents and entropy
penalized drift distortions are just a device used to produce a particular distortion in second-order beliefs about
continuation values, i.e., where φ(V ) ≈ − exp(−εV ).

The KMM model is static. Hayashi & Miao (2011) propose a model of generalized smooth ambiguity aversion by
combining KMM with an Epstein-Zin aggregator. Unfortunately, this model does not extend to continuous-time with
Brownian information structures. Intuitively, first-order uncertainty (risk) isO(dt), whereas second-order uncertainty
(ambiguity) isO(dt2), and so it evaporates in the continuous-time limit. In response, Hansen & Sargent (JET, 2011)
and Hansen & Miao (2018) propose a trick to retain ambiguity aversion, even as the sampling interval shrinks to zero.
In particular, they show that if the robustness/ambiguity-aversion parameter is scaled by the sampling interval, then
ambiguity aversion will persist in the limit. Intuitively, even though second-order uncertainty becomes smaller and
smaller as the sampling interval shrinks, because the agent effectively becomes more ambiguity averse at the same
time, ambiguity continues to matter.

3 Learning
Learning and robustness are alternative responses to model uncertainty. With learning you try to reduce
uncertainty. With robustness you simply cope with it.
A natural question is which is the ‘better’ approach. Hansen & Sargent (2011, Wanting Robustness in
Macroeconomics) argue that it depends on the dimensionality of the problem. You can learn your way out of
small dimensional uncertainty, but not infinite-dimensional uncertainty. (Remember Savage’s warning about
‘small worlds’!)

Hansen & Sargent (JET, 2007) develop a framework that combines learning and robust control. An agent
entertains a small number of competing models, each of which is potentially misspecified. Over time he
(robustly) learns which is the best of the potentially misspecified models. In their Fragile Beliefs paper, HS
apply this framework to the Bansal-Yaron long-run risks model. The agent does robust BMA over a model
with i.i.d. consumption growth, and an alternative with persistent growth fluctuations. They show that weight
on the LRR model is countercyclical, the agent assigns higher probability to the LRR model during bad times.
Essentially, the agent thinks bad times will be persistent, while good times will be transitory. This generates a
large countercyclical risk premium even though actual consumption growth is i.i.d.!
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