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STOCHASTIC DISCOUNT FACTORS

Last time we discussed the “Fund. Eq. of Asset Pricing”

Pt = Et[mt+1Xt+1]

We called mt+1 a Stochastic Discount Factor (SDF)

We related mt+1 to a utility function.

Today we study the implications of the mere existence of a
SDF, without attempting to relate it to preferences.

Finance is relatively successful because many of its results
are (nearly) preference free. We just need to assume the
absence of arbitrage opportunities.
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USES OF NO ARBITRAGE REASONING

There are two leading applications of No Arbitrage reasoning in
financial economics:

1 Derivatives Pricing
Derivatives payoffs can be replicated by dynamically trading
other securities. To avoid arbitrage, their prices must equal
the value of the replicating portfolio.

2 Term Structure Modeling
Prices of riskless bonds of different maturities represent
expectations of the same SDF over different horizons. This
imposes tight restrictions on their yields. Separately
modeling bonds of different maturities can easily violate no
arbitrage restrictions.
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THREE THEOREMS

We start by proving 3 key theorems:

1 Law of One Price ⇔ Existence of a SDF

2 No Arbitrage ⇔ Existence of strictly positive SDF

3 Complete Markets ⇔ SDF is unique

To keep things simple, today we assume just 2-dates and a
finite number of states. Later we extend the results to
continuous-time with continuous-states.
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FOUR REPRESENTATIONS

We also want to understand the meaning and uses of the
following alternative representations of the Fund. Eq.

1 P =
∑
s x(s)q(s) } Arrow-Debreu

2 P = E[mx] } SDF

3 P = 1
Rf
E∗[x] } Risk-Neutral

4 P = 1
Rf
E[η · x] } Equiv. Mart. Measure

where π(s) are the agent’s (subjective) beliefs about the state
probabilities, 1/Rf =

∑
s q(s), and

m(s) =
q(s)

π(s)
π∗(s) =

q(s)∑
q(s)

η(s) =
q(s)/

∑
q(s)

π(s)
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COMMENTS

1 The AD rep. is the most fundamental. It expresses the idea that assets
are bundles of state contingent claims. However, q(s) combines both
beliefs and preferences. Sometimes you might want to separate them
(e.g, by imposing Rational Expectations).

2 The SDF rep. separates beliefs from preferences. It is the most useful
for empirical analysis of equilibrium asset pricing models, at least for
those based on RE.

3 The Risk-Neutral rep. is the most useful for theoretical analyses of
derivatives markets. It is also useful for computations based on monte
carlo simulation, since expected values are easy to simulate.

4 The EMM rep. is useful in models of ambiguity and heterogenous
beliefs. For example, η can be interpreted as a distorted probability
measure which agents use to construct robust portfolio/savings
policies. In continuous-time, Girsanov’s Theorem will allow us to
construct η very easily.
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THEOREM 1: LOP ⇔ EXISTENCE OF A SDF

The LOP simply says that if 2 assets (or portfolios) have
the same payoffs (in every state) then they must have the
same price.

If they don’t, then the simplest sort of arbitrage is possible
(buy low, sell high).

It is based on the assumption that investors can costlessly
construct (or deconstruct) portfolios of assets.

Mathematically, the LOP implies P (x) is a linear
functional:

P (α1x1 + α2x2) = α1P (x1) + α2P (x2)
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That a SDF implies the LOP (LOP⇐ SDF) is trivial. It
follows from the linearity of the expectations operator.

Let x = y + z. Then

E[mx] = E[m(y + z)] = E[my] + E[mz]

The more interesting half of the theorem is LOP⇒ SDF

As with many important results, there are many ways to
prove this. The most general is based on the Riesz
Representation Theorem (bounded linear functionals in a
Hilbert space have an inner product representation)

P (x) = m · x ≡ E(mx)

KASA ECON 2021 - FINANCIAL ECONOMICS I



However, in finite-dimensional spaces we can be more constructive. I
will first provide an algebraic proof, then a geometric proof.

Algebraic: Suppose there are n assets and s states. Let X by the
n× s payoff matrix. Define the following projection

mp = proj[m|X]

= X′θ θ ∈ Rn

θ is defined by the following orthogonality condition

E[X(m−X′θ)] = 0⇒ θ = E[XX′]−1E[Xm] = E[XX′]−1P

Therefore, by construction, mp = X′E[XX′]−1P is a valid SDF.

Although there may be other SDFs, mp is the unique SDF in X.
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We can visualize this as follows - Suppose there are 2 states, and just
1 asset. Let x = (4, 2), i.e, the asset pays 4 in s1 and 2 in s2. Also
suppose π1 = π2 = 1/2 and P = 3.

An SDF satisfies the equation

3 = (1/2)x1m1 + (1/2)x2m2 ⇒ 3 = 2m1 +m2

mp = (1.2, 0.6) is the unique SDF that lies on the span of X.
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Hansen & Jagannathan (1991) use this idea to derive a lower bound
on the volatility of any SDF that prices a given collection of assets.

Let’s consider returns (x/P ) rather than payoffs, so the Fund. Eq.
takes the form 1 = E(mR), where R is an n× 1 vector of returns.
Let µ = E(R) and Σ = cov(R).

Now project m onto span(R)

m = E(m) + β′(R− µ) + ε ⇒ β = Σ−1cov(m,R)

Since E(mR) = 1 we can write β = Σ−1[1− E(m)µ].

By construction, ε is orthogonal to β′(R− µ). Therefore,

var(m) ≥ β′Σβ = [1− E(m)µ]′Σ−1[1− E(m)µ]

⇒ σm ≥
√

[1− E(m)µ]′Σ−1[1− E(m)µ]
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Here is a plot of the lower bound on σm as a function of E(m),
using annual returns data on the S&P500 and US T-Bills.
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Note that it is very concentrated around the reciprocal of the
mean T-Bill return (we do not assume the T-Bill is riskless).
This reflects the very low variance of the T-Bill return.
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Geometric Proof: The LOP can be stated as follows

∀(θ, θ̂) X ′θ = X ′θ̂ ⇒ P ′θ = P ′θ̂

This is equivalent to: X ′θ = 0 ⇒ P ′θ = 0.

Now, X ′θ = 0 says that θ is orthogonal to the columns of
X, i.e., it is in the ‘orthogonal complement’ of col(X).

Thus, P ′θ = 0 implies P is orthogonal to the orthogonal
complement of col(X).

But the orthogonal complement of the orthogonal
complement of col(X) is just col(X)! That is, P must lie in
the space spanned by the columns of X

P = Xq

which is just the AD rep. of the Fund. Eq.
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THEOREM 2: NO ARBITRAGE ⇔ m > 0

We must now be more precise about what we mean by
arbitrage. An arbitrage is a portfolio θ ∈ Rn such that
either P ′θ ≤ 0 and X ′θ > 0 or P ′θ < 0 and X ′θ ≥ 0.

For example, an arbitrage is a portfolio strategy that costs
you nothing, will definitely not lose money, and might make
you money.

Hence, it is defined ex ante rather than ex post.

Note, the LOP might hold, but there could still be arbitrage
opportunities. (Exercise: Construct an example).
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That a m > 0 implies No Arbitrage (No Arbitrage⇐
m > 0) is easy. We know P ′θ = E[m(

∑
θixi)]. Since∑

θixi ≥ 0 for all states, and
∑
θixi > 0 for some states,

then m > 0 for all states clearly implies P ′θ > 0.

Hence, the more interesting half of the theorem is that No
Arbitrage implies the existence of a strictly positive SDF.

In finite-dimensional spaces, proofs of this can be based
on some version of the Separating Hyperplane Theorem.

In infinite-dimensional spaces (e.g., with continuous-time
trading), technical difficulties can arise, and the theorem is
only valid in an approximate sense (discussed next time).
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Sketch of Proof:

Define M ⊂ Rs+1 = {(−P (x), x) : x ∈ X}, where X is the set of
asset payoffs. Given No Arbitrage, the LOP holds and we know M is
linear space with 0 ∈M .

No Arbitrage means that M cannot consist of strictly positive elements
(eg., if x > 0 then −P < 0). Thus, M ∩ Rs+1

+ = {0} (ie, M is a
hyperplane in Rs+1 that only intersects Rs+1

+ at 0).

From the Separating Hyperplane Theorem, there exists a linear
functional F : Rs+1 → R such that F (−P, x) = 0 ∀(−P, x) ∈M
and F (−P, x) > 0 ∀(−P, x) ∈ Rs+1

+ \ {0}.

From the Riesz Representation Theorem, we know F can be
represented by a vector (1, q),

F (−P, x) = (1, q) · (−P, x) = −P + q · x

Since F > 0 for x > 0, we know q > 0. Finally, since F = 0
∀(−P, x) ∈M , we have P = q · x.
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Comments:

Just as P = E(mx) is called the ‘Fundamental Eq. of Asset Pricing’,
the result that No Arbitrage⇔ ∃m > 0 is (again, pompously) called
the ‘Fundamental Theorem of Asset Pricing’.

This result says nothing about uniqueness. There may be many
m > 0 that rule out arbitrage.

The result is stated in terms of AD state prices, but we can convert to
SDF form by defining m(s) = q(s)/π(s).

The earlier projection argument mp = proj[m|X] does not guarantee
mp > 0. However, if No Arbitrage applies on X as well as LOP, then
mp can be extended to a strictly positive m. This result bears some
resemblance to the ‘Anything Goes’ theorem of
Sonnenschein-Mantel-Debreu. It implies that if X satisfies the
relatively weak (eg, preference free) result of No Arbitrage, then we
can interpret the data as if it was generated by a complete markets
general equilibrium economy.
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Theorem 3: Complete Markets ⇔ m is Unique

It is best to think of complete markets in terms of outcomes, rather
than by mechanically counting the number of assets and states.

In our 2-date/finite-state world, the market is complete if any payoff
w ∈ Rs can be attained by some portfolio θ ∈ Rn (ignoring costs and
budget constraints)

w = X′θ

This is a system of s equations in n unknowns. Clearly, a necessary
condition for complete markets is then n ≥ s.

Hence, if payoffs are continuously distributed (e.g, Normal) then we
need an infinite number of securities to complete the market. However,
later we shall see that with dynamic trading, markets can be complete
with a small number of assets even when payoffs are continuous, as
long as information arrival is itself continuous in a certain sense.
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Proof:

Suppose markets are complete, so that rank(X′) = s. By the LOP we
know P = Xq for some (potentially nonunique) q. Premultiply both
sides by X′⇒X′P = X′Xq. Since rank(X′) = s, X′X is
invertible, and so q = (X′X)−1X′P is the unique AD state price
vector (and m = q/π is the unique SDF).

Note, if n = s then X and X′ are themselves invertible, so
q = X−1P .

Now suppose there is a unique q such that P = Xq. Note, this
requires n ≥ s. Without loss of generality, assume n = s. (If n > s
we can eliminate redundant assets). Therefore X′ is invertible, which
then implies that for any w ∈ Rs we can construct the supporting
portfolio θ = (X′)−1w. Hence, markets are complete.
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SUMMARY

If these 3 theorems were only valid in a 2-date/finite-state world, they
wouldn’t be very useful. Fortunately, they are much more general.

However, with many periods, and especially in continuous-time,
portfolio strategies can be quite complex, so we need to impose some
(technical) restrictions to rule out arbitrage.

The key idea will be to relate absence of arbitrage to the martingale
behavior of appropriately scaled wealth and price processes. The
scale factor will be an SDF stochastic process. Doob’s Optional
Stopping Theorem then assures us of the absence of arbitrage.

In practice, the result that P = Xq is used as follows: We observe
prices of traded securities, P . We then ‘invert’ X to find q = X−1P .
Given q, we can then compute the No Arbitrage price of any derivative
asset with payoff y by simple summation: Py =

∑
y(s)q(s).

However, what if we want to value an asset when its payoffs are not
spanned by an existing set of assets?
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EQUILIBRIUM & EFFICIENCY

So far we have inferred P given q, or q give P . What if we don’t know
either? For example, what if we want to value a non-redundant asset?

This is a question of economic equilibrium. To answer it, we must
introduce preferences, budget constraints, and market-clearing.

We would also like to address the welfare implications of financial
markets. To what extent do financial markets efficiently allocate risk
and investment resources?

With complete markets, the answers are well known:

1 Competitive equilibria are Pareto Optimal (1st Welfare
Theorem)

2 Market prices can be determined by the marginal conditions
of ‘Representative Agent’ (2nd Welfare Theorem)
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With complete markets we can just view agents as directly choosing
state-contingent consumption subject to state-contingent prices.

With just 2-dates/S-states, his problem becomes

max
C0,C(s)

U(C0) + β
∑
s

π(s)U(C(s))

s.t. C0 +
∑
s q(s)C(s)) = y0 +

∑
s q(s)y(s)

where {y0, y(s)} are his current and future (state-contingent)
endowments.

Letting λ be the Lagrange multiplier on the budget constraint (and
assuming an interior solution), the optimality conditions are:

λ = U ′(C0)

λq(s) = βπ(s)U ′(C(s)) s = 1, 2, · · ·S
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Combining these FOCs gives

q(s) = βπ(s)
U ′(C(s))

U ′(C0)
⇒ m(s) =

q(s)

π(s)
= β

U ′(C(s))

U ′(C0)

Hence, m is related to the Intertemporal Marginal Rate of Substitution

The beauty of AD General Equilibrium is that it extends basic micro
intuition to dynamic/stochastic settings. Portfolio choice can be
visualized as follows:

 

C(1) 

C(2) 

𝑠𝑙𝑜𝑝𝑒 =  −
𝜋(1)𝑈′(𝑐(1))

𝜋(2)𝑈′(𝑐(2))
 

𝑠𝑙𝑜𝑝𝑒 = −
𝑞(1)

𝑞(2)
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Comments:

As always, high curvature of an indifference curve reflects a low
willingness to substitute. When goods are state-contingent claims, this
reflects a high degree of risk aversion.

Note, if q(1)
q(2)

= π(1)
π(2)

then C(1) = C(2). (If AD prices are actuarily fair,
then risk aversion implies full insurance).

From q(s) = βπ(s)U
′(C(s))
U ′(C0)

we see that AD prices are high when

1 π(s) is high. (State-contingent claims only pay off if the
state is realized).

2 C(s) is low. (Supply & Demand: prices are high when
supply is low and demand is low when prices are high).
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Since everyone faces the same prices, the model has strong
risk-sharing implications:

Intertemporal

βiπi(s)U
′(Ci(s))

U ′(Ci,0)
= q(s) =

βjπj(s)U
′(Cj(s))

U ′(Cj,0)
∀i, j, s

⇒ Equality across households of Intertemporal MRS

Across States

U ′(Ci(s))

U ′(Ci(s′))
=
q(s)

q(s′)
=
U ′(Cj(s))

U ′(Cj(s′))
∀i, j, s, s′

⇒ Equality across households of MRS state-by-state
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Example:

Suppose households have identical beliefs, rates of time preference,
and CRRA utility functions: U(C) = 1

1−γC
1−γ . Let Y0 =

∑
h yh,0

and Y (s) =
∑
h yh(s) be the aggregate endowments in each period.

Then the above risk-sharing conditions imply

Ci(s)

Y (s)
=
Ci(s

′)

Y (s)
and

Cj(s)

Y (s)
=
Cj(s

′)

Y (s)

⇒ Constant shares across states

and

Ci,0

Y0

=
Ci(s)

Y (s)
and

Cj,0

Y0

=
Cj(s)

Y (s)

⇒ Constant shares across dates
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By equating supply to demand in both periods we find the

market-clearing AD prices: q(s) = βπ(s)
(
Y (s)
Y0

)−γ
In this example, the equilibrium can be decentralized with a very
simple market structure - a simple bond and equity market. Even
though S could be very large, we only need 2 assets (n = 2) to
support the equilibrium (and optimal) allocation!

This is because we’ve imposed so many restrictions on preferences,
i.e., time-additive CRRA with identical risk aversion coefficients. CRRA
implies the willingness to bear (proportional) risk is independent of
wealth/endowments, so the allocation of initial wealth is irrelevant to
market-clearing equity prices.

Alternatively, we can impose weaker assumptions on preferences, but
stronger assumptions on market structure (eg, full menu of Arrow
securities). This allows us to construct a ‘Representative Agent’, who
owns the aggregate endowment, and whose marginal conditions
determine market-clearing prices.

KASA ECON 2021 - FINANCIAL ECONOMICS I



However, unless preferences again satisfy certain restrictions, the
preferences of the Representative Agent will typically depend on the
distribution of wealth.

Assuming identical beliefs and rates of time preference, the
Representative Agent/Social Planner solves the following problem

V (C0, C1) = max
Ch,0,Ch(s)

{∑
h

λh[Uh(Ch,0) + β
∑
s

π(s)Uh(Ch(s))]

}

s.t.
∑
hCh,0 = Y0 and

∑
hCh(s) = Y (s) ∀s.

Exercise 1: Use the envelope theorem to prove that the Planner’s MRS
provides a valid SDF.

Exercise 2: Assume Uh = −e−γhCh,0 − βEe−γhCh,1 . Show that the
Planner’s preferences have the same functional form:
V = −A

[
e−γC0 + βEe−γC1

]
, where γ−1 =

∑
h(1/γh), and A is a

constant that depends on the distribution of Pareto weights, λh.

Exercise 3: Assume Uh = 1
1−γh

C1−γh

h . Show that the Planner’s utility
function does not have the same functional form unless γh = γ ∀h.
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USING OPTIONS TO COMPLETE THE MARKET

So far, we’ve taken the number of assets as given. In practice, assets
are created to fill missing markets.

This is one way to interpret options. A wide spectrum of call options on
a single underlying asset with many potential payoffs can effectively
complete the market.

Suppose there are N states, and a single asset with payoffs
Xs = s ·∆ for s = 1, 2, · · ·N . Suppose you can buy and sell call
options on this asset, with strike prices equal to s ·∆.

Note that the value of call option i is

C = max[Xs − i ·∆, 0]

Its payoff is 0 for s ≤ i and is (s− i) ·∆ for s > i.
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For states 1 < i < N − 1 consider the following butterfly spread portfolio
1 long 1

∆
units of option i− 1

2 short 2
∆

units of option i

3 long 1
∆

units of option i + 1

Note that this portfolio pays 1 for s = i and 0 for s 6= i. (Hence, butterfly spreads can
be interpreted as a bet on volatility).

The endpoints require modification. For i = N , simply go long 1
∆

units of option
N − 1. This will pay 1 for s = N , and 0 otherwise. For i = N − 1, go long 1

∆
units of

option N − 2 and short 2
∆

units of N − 1. Finally, for s = 1 we can go long 1 unit of a
risk-free asset, short 1

∆
units of option 1, and long 1

∆
units of option 2. (Note that the 2

options have a payoff of−1 for s ≥ 2, which nullifies the risk-free payoff).

Thus, using the butterfly spreads and the endpoint portfolios we can synthesize a full
menu of Arrow-Debreu securities. As a corollary, we could then synthesize any pattern
of state-contingent payoffs we want. The market is complete!

Notice that a butterfly spread is just a discrete approx. of the 2nd derivative of the call
option. In particular, suppose there are a continuum of states, with density π(s)

C =

∫ ∞
0

max[s−K, 0]π(s)ds =

∫ ∞
K

(s−K)π(s)ds

Leibniz’s rule then implies

dC

dK
= −

∫ ∞
K

π(s)ds
d2C

dK2
= π(K)
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ANOTHER EXAMPLE

Let’s use no arbitrage reasoning to prove that American call options
will never be exercised early, i.e., they are “worth more alive than
dead”.

Let t = time until expiration. Let S0 = stock price at expiration, and
K = strike price. At expiration, the value of a call option is
C0 = max[S0 −K, 0].

A European call can only be exercised at expiration. An American call
can be exercised anytime before (or at) expiration. Obviously, an
American call is worth at least as much as a European call. We now
show that it is worth no more than a European call. That is, we are
going to show Ct ≥ St −K.

Let Bt = time-t price of a bond that pays $1 at 0. Clearly, Bt < 1 if
interest rates are positive. Finally, let q(s) = AD state price vector.
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Now, by no arbitrage

Ct =
N∑
1

q(s)max[S0 −K, 0]

≥
∑
s

q(s)(S0 −K)

=
∑
s

q(s)S0 −KBt since
∑

q(s) = Bt

= St −KBt since St =
∑

q(s)S0

Since Bt < 1, we have Ct ≥ St −K! Hence, an American call will never be be
exercised early, so it must have the same value and price as a European call.

Comments:

1 Technically, this equivalence only applies if the stock does not pay dividends during the
maturity of the contract. You might want to exercise early to receive dividends.

2 Note that we have obtained a nonparametric bound on the option price. We did not have
to say anything about the stochastic process followed by the stock.
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