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INTRODUCTION

The basic problem in finance has two components:
1 How much should I consume today vs. how much should I save?
2 How should I invest my savings?

These are inherently dynamic problems, so we must learn how to
solve dynamic optimization problems.

We can interpret the solutions from either a normative perspective (ie,
providing advice to investors), or from a positive perspective (ie,
providing predictions about observed data).

As always, the solutions will depend on the interaction between
preferences and market opportunities.

There has been a lot of interesting work recently on the structure of
intertemporal preferences.
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CALCULUS VS. FUNCTIONAL ANALYSIS

Solving dynamic optimization problems is harder than solving static
optimization problems. Static optimization problems involve finding a
single optimal choice. They can be solved using calculus.

Dynamic optimization problems involve finding an entire path. You
can’t choose myopically because today’s choice has consequences for
the future. These problems must be solved using functional analysis.
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WHY DYNAMIC PROGRAMMING?

There are 3 general approaches to these problems:
1 Calculus of Variations ⇒ Euler Eq.
2 Optimal Control Theory ⇒ Hamiltonian
3 Dynamic Programming ⇒ Bellman Eq.

Dynamic Programming has distinct advantages in stochastic/uncertain
settings, since it involves finding an optimal contingency plan. Future
optimal choices are a function of the future state. You solve for the
function rather than the choices themselves. (It clearly makes no
sense to commit to a certain amount of future consumption until you
know what your future income will be!)

DP exploits the recursive structure of many dynamic optimization
problems. When a problem is recursive, you can break it into 2 parts:
Today & Tomorrow, exploiting the fact that Tomorrow’s problem will be
the same as Today’s, except with new initial conditions determined by
Today’s decisions.
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PRINCIPLE OF OPTIMALITY

Bellman called this the Principle of Optimality:

Principle of Optimality
“Under certain conditions, optimal paths have the property that whatever the initial conditions
and controls were over some initial period, the controls over the remaining periods must be
optimal for the “remainder problem” given the state resulting from the earlier controls.”

Or, more succinctly:
1 It is optimal to continue optimal paths.
2 All parts of an optimal path are optimal.

By construction, solutions produced by DP are dynamically consistent.
It is not necessary to reconsider an optimal policy.

KASA ECON 2021 - FINANCIAL ECONOMICS I



A KEY CONDITION

Key condition for DP to produce the optimum:

Today’s actions influence current & future returns, but not past returns.

examples : · consumption determines current & future utility, but not past utility
· investment determines current & future profits, but not past profits

Or equivalently,

Current returns depend on current & past actions, but not on future
actions.

example : · current profits do not depend on future investment

This condition is often violated in 2-agent/strategic settings, where
agents often have incentives to makes promises or threats which they
may not want to keep ex post.
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HJB EQUATION

Although DP is especially useful in stochastic settings, we start with
the deterministic case, which is easier. As usual, we start in
discrete-time, then take continuous-time limits.

Problem
maxu

∫ T
0 f(x, u, t)dt x = state (e.g., wealth)

u = control (e.g., consumption)
subject to: (1) ẋ = g(x, u, t) ẋ = dx

dt
(2) x(0), x(T ) given state transition eq. (eg, budget constraint)

Start by defining the value function, V (t0, x0), which is the optimized
value of the above problem, given the state is x0 and the time is t0.

V (t0, x0) = max
u

∫ T

t0

f(x, u, t)dt s.t. ẋ = g(x, u, t) x(t0) = x0
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We can break this integral into 2 pieces:

V (t0, x0) = max
t0≤t≤t0+∆t

{∫ t0+∆t

t0

fdt+

∫ T
t0+∆t

fdt

}

If the principle of optimality applies,

V (t0, x0) = max
t0≤t≤t0+∆t


∫ t0+∆t

t0

fdt+

when choosing u you can neglect past f ’s︷ ︸︸ ︷
max

t0+∆t≤t≤T

[∫ T
t0+∆t

fdt

] 
⇒ V (t0, x0) = max

t0≤t≤t0+∆t

{∫ t0+∆t

t0

fdt+ V (t0 + ∆t, x0 + ∆x)

}
For ∆t small,

1
∫ t0+∆t
t0

fdt ≈ f ·∆t
2 V (t0 + ∆t, x0 + ∆x) ≈ V (t0, x0) + Vt ·∆t+ Vx ·∆x } 1st-order Taylor series

Sub-in, divide by ∆t, and letting ∆t→ 0 we get the HJB equation

−Vt = max
u
{f(x, u, t) + Vx(t, x) · g(x, u, t)}
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Performing the maximization (which is a calculus problem) gives us the
policy function, which provides a recursive representation of the
optimal path.

u∗ = h(x;V )

Subbing u∗ back in gives us an alternative representation of the HJB
eq.

−Vt = f(x, h(x;V ), t) + Vx(t, x) · g(x, h(x;V ), t)

Note the HJB equation is a nonlinear partial differential equation.
PDEs are the bread & butter of science. Unfortunately, they are
notoriously difficult to solve. For linear PDEs, Fourier/Laplace
transform methods provide a general strategy. For nonlinear PDEs, the
only hope is a separation-of-variables/guess-and-verify approach.

In general, there are many solutions to a PDE. Unique solutions are
pinned down by boundary conditions.
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Example:

min
u

∫ ∞
0

e−rt(ax2 + bu2)dt

s.t. ẋ = c · x+ u

HJB: − Vt = min
u

{
e−rt(ax2 + bu2) + Vx · (cx+ u)

}
FOC:(u): 2e−rtbu+ Vx = 0

⇒ u = −Vx
2b
ert

Sub the optimal u back into the HJB eq.

−Vt = e−rt(ax2 +
1

4b
V 2
x e

2rt) + Vx

(
cx−

Vx

2b
ert
)

Guess: V (t, x) = e−rtAx2

⇒ Vt = −re−rtAx2 Vx = 2e−rtAx
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sub these into the HJB equation

re−rtAx2 = ae−rtx2 +
1

b
e−rtA2x2 + 2ce−rtAx2 −

2

b
e−rtA2x2

Note: There is common e−rtx2 term, which can be cancelled out. (This ability to
cancel defines a correct guess!)

we are left with the following quadratic eq. for A. We must select the positive root.

1

b
A2 + (r − 2c)A− a = 0

We then get the optimal feedback policy

u = −Vx
2b
ert = −A

b
x
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A USEFUL SHORTCUT

Many econ/finance problems feature an infinite horizon (as a useful approximation), and
time only enters as an exponential discount factor in the objective function. In these
problems, time per se doesn’t matter. (There is always tomorrow). As a result, the HJB
partial diff. eq. reduces to a much easier ordinary diff. eq.

Here’s how it works

V (x) = max
u

{
f(x, u) ·∆t+ e−r∆tV (x+ ∆x)

}

Note: e−r∆t ≈ 1
1+r·∆t

Multiply both sides by (1 + r ·∆t) and expand V (x+ ∆x).

V (x)(1 + r ·∆t) = f(x, u) ·∆t+ f(x, u) · r(∆t)2 + V (x) + Vx ·∆x

Simplify, divide by ∆t, let ∆t→ 0, and drop higher order terms

rV (x)︸ ︷︷ ︸
riskless return

= max
u
{f(x, u)︸ ︷︷ ︸

dividends

+V ′(x) · g(x, u)︸ ︷︷ ︸
capital gain/loss

} } Stationary HJB Eq.
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STOCHASTIC DYNAMIC PROGRAMMING

Let’s now consider a more realistic situation, where the future evolution
of the state is uncertain.

The previous analysis goes through, with two exceptions:
1 Since we don’t know the future, we can only optimize expected returns/utility
2 Doing the Taylor series approx. of V (x) when obtaining the HJB eq. is a bit tricky

when x is a function of Brownian motion. Since dx ∼
√
dt, we must expand to

2nd-order to get all the dt terms.

Suppose
dx = µ(x, u) · dt+ σ(x)dW

Given that x follows an Ito process, let’s use Ito’s lemma to derive the
stochastic HJB eq. The value function is

V (xt) = Et

∫ ∞
t

e−r(s−t)f(x, u)ds
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Following the same steps as before,

V (x) = max
u

{
f(x, u)∆t+

1

1 + r ·∆t
E[V (x+ ∆x)|x, u]

}

Multiply by 1 + r ·∆t, subtract V (x) from both sides, divide by ∆t,
and let ∆t→ 0

rV (x) = max
u

{
f(x, u) +

1

dt
E[dV ]

}
From Ito’s lemma,

dV = Vxdx+
1

2
σ2(x)Vxxdt

= Vx[µ(x, u)dt+ σ(x)dW ] +
1

2
σ2(x)Vxxdt

⇒ E[dV ] =
(
Vxµ(x, u) + 1

2
σ2(x)Vxx

)
dt sinceE[dW ] = 0
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Hence, we get the following stochastic HJB eq.

rV = max
u

{
f(x, u) + µ(x, u) · Vx +

1

2
σ2(x)Vxx

}
Note, this is a 2nd-order ODE.

Example 1: The Stochastic Linear-Quadratic Regulator

Let’s return to our earlier example, but now suppose the state evolves
randomly,

min
u
E

∫ ∞
0

e−rt(ax2 + bu2)dt

s.t. dx = (cx+ u)dt+ σdW

The stationary HJB eq. is

rV = min
u

{
(ax2 + bu2) + (cx+ u) · Vx +

1

2
σ2Vxx

}
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FOC (u): 2bu+ Vx = 0⇒ u = −1
2b
Vx

Sub u back into HJB

rV = ax2 +
1

4b
V 2
x + cx · Vx −

1

2b
V 2
x +

1

2
σ2Vxx

Guess: V (x) = Ax2 +B⇒ Vx = 2Ax Vxx = 2A

Sub guess in HJB, r(Ax2 +B) = ax2 − 1
b
A2x2 + 2Acx2 + σ2A

Match Coefficients
1 rA = a− 1

b
A2 + 2Ac⇒ 1

b
A2 + (r − 2c)A− a = 0 } same as before

2 rB = σ2A⇒B = σ2A
r

Comments:
1 Note, the optimal policy is the same as before, u = −A

b
x. Why? Why doesn’t

‘risk’ matter? Does this mean risk is irrelevant?
2 Verify that if instead, dx = (cx+ u)dt+ σxdW (note, x now affects the

variance of the shocks) then σ would influence behavior.
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Example 2: A Stochastic Growth Model

Consider the following growth model featuring a linear/stochastic
technology and CRRA preferences:

max
c
E

∫ ∞
0

c1−γ

1− γ
e−ρtdt

s.t. dk = (µk − c) · dt+ σkdW

The stationary HJB eq. is,

ρV = max
c

{
c1−γ

1− γ
+ (µk − c) · Vk +

1

2
σ2k2Vkk

}

FOC(u): c−γ = Vk⇒ c = (Vk)
−1/γ

Guess: V (k) = A
1−γk

1−γ ⇒ Vk = Ak−γ Vkk = −γAk−γ−1
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Sub into HJB eq.

ρ
A

1− γ
k1−γ =

1

1− γ
A1−1/γk1−γ +µAk1−γ−A1−1/γk1−γ−

1

2
σ2γAk1−γ

Cancel Ak1−γ from both sides,

ρ = A−1/γ + µ(1− γ)− (1− γ)A−1/γ −
1

2
σ2γ(1− γ)

Note, c = (Vk)−1/γ = A−1/γk. So let’s solve for A−1/γ

A−1/γ =
1

γ

[
ρ− (1− γ)µ+

1

2
σ2γ(1− γ)

]

Therefore,

c =

[
µ+

1

γ
(ρ− µ)−

1

2
σ2(γ − 1)

]
k } Policy Function

dk =

[
1

γ
(µ− ρ) +

1

2
σ2(γ − 1)

]
· kdt+ σkdW
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Comments
1 The 2nd term in the consumption function is an

intertemporal substitution effect. The 3rd term is a
precautionary savings effect.

2 If γ = 1 (log utility), then we get Friedman’s Permanent
Income Hypothesis., c = ρk.

3 The usual condition for ‘endogenous growth’ is that µ > ρ.
However, notice with uncertainty there can be sustained
growth even if µ < ρ, as long as γ > 1 and σ2 is big
enough.
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VERIFICATION THEOREMS

You may have noticed a chicken-or-the-egg aspect of DP. We use V to
compute u, but u determines V ! In practice, we start with a guess (of
either V or u), and then iterate till convergence.

Is this always valid? How do we know this produces a result that is
independent of the initial guess?

In discrete-time, one can derive existence and uniqueness results
(Stokey-Lucas-Prescott). These conditions are rarely met in practice,
and do not apply in continuous-time settings.

In continuous-time, one can show that the HJB eq. is necessary, but
you need to do extra work to show that it is sufficient. That is the role
of a Verification Theorem.
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Example:

Let’s go back to our doubling strategy. Consider an agent who can continuously bet on
the instantaneous outcomes of a Brownian motion during the interval [0, 1]. Letting θ
denote the size of his bet, his wealth evolves as

dW = θdB

(Note, I’ve now used B to denote Brownian motion, since W is used to denote wealth).
His portfolio is of course adapted to the filtration generated by B, so it is a random
variable. Define the set L2 = {θ :

∫ 1
0 θ

2
sds <∞ w.p.1}. Thus, his bets must be

bounded w.p.1.

Suppose his objective is to maximize a quadratic function of his expected terminal
wealth,

max
θ
E[−(W̄ −W (1))2|W (0) < W̄ ]

Since there is no discounting, drift, or flow payoff, the HJB equation is trivial

0 = max
θ

{
1

2
θ2Vww

}
V (W1) = −(W̄ −W (1))2

Since Vww < 0 (ie, the agent is risk averse), the FOC clearly implies that it is optimal to
set θ = 0. (By definition, a risk averter will never take a fair bet).

However, we know this is not the optimal strategy! By engaging in a doubling strategy he
can (w.p.1) guarantee himself W̄ .
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To see this, define the stopping time τ = inf{t > 0 : Bt = b} where b is some
threshold. First, note that τ <∞ w.p.1 and E(τ) =∞.

As an illustration of the power of martingale reasoning, let’s prove this. SupposeB0 = 0 and letA = (−a, b) be some
interval containingB0 . Let τ = inf{t : Bt = −a or Bt = b} be the escape time from the interval. We knowBt
andB2

t − t are martingales. Therefore, letting p = prob(Bτ = b), we haveE(Bτ ) = pb+ (1− p)(−a) = 0.
Thus, p = a

a+b
. From the 2nd martingale property,E(τ) = E(B2

τ ) = pb2 + (1− p)a2. Subbing in for p and
solving we get,E(τ) = ab. Finally, note that p→ 1 andE(τ)→∞ as a→∞. In other words,Bt will hit b w.p.1.,
but the mean time until it does so is infinite!

Let α be the stopping time till hitting the wealth threshold. Consider the portfolio strategy,

θt =
1

√
1− t

t < α

= 0 t ≥ α

Notice that bets get larger and larger until the threshold is hit. An important result in the theory
of continuous time martingales is that a change of variance is equivalent to a change in
time-scale. In this case, the betting strategy induces a standardized Brownian motion, Yt, over
a transformed, infinite horizon, time-scale

Yt = B̂(βt) βt =

∫ t
0

ds

1− s
= log

(
1

1− t

)
0 ≤ t < 1
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We can now appeal to our earlier hitting time results for standard Brownian motion. First,
the fact that we hit our threshold w.p.1 tells us that our L2 constraint on portfolios is
satisfied,

∫ 1

0
θ2
sds =

∫ α
0

ds

1− s
= log

(
1

1− α

)
= τ <∞ w.p.1

However, the fact that the mean hitting time (on the elongated, infinite horizon, time
scale) is infinite tells us that the variance of our portfolio strategy (and wealth) is infinite,

E

[∫ 1

0
θ2
sds

]
= E

[
log

(
1

1− α

)]
= E(τ) =∞

Hence, if the agent cared about the variance of his interim wealth, he would never
engage in this strategy.

What does this have to do with DP and Verification Theorems? Remember that when
deriving the HJB eq. we used Ito’s lemma to calculate E[dV ]. When doing this, we
assumed E

∫
σ(x)VxdW = 0, appealing to the result that Ito integrals are

martingales. However, remember that without restrictions on the integrand, Ito integrals
are only local martingales. To be a martingale, we must have E

∫
σ2(x)V 2

x ds <∞.
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Since Vw ∼ |W | ∼ θ and σ2(x) ∼ constant on the transformed time scale, this martingale restriction is

equivalent toE
[∫ 1

0 θ
2
sds

]
<∞, which the doubling strategy violates.

DefineH2 = {θ : E
∫
θ2sds <∞}. Note,H2 ⊂ L2, sinceL2 permits infinite outcomes with vanishingly

small probability. These infinitely large, measure zero portfolios are essential to the success of the doubling strategy.
Hence, most applications of continuous-time finance constrain admissible control policies to be inH2 . Even then one
must engage in an ex post verification that the induced state process satisfies the martingale requirement
E
∫
σ2(xs)V

2
x ds <∞ for all admissible controls.

Assuming this martingale restriction applies, the logic of the verification theorem is as follows. Assume that V is
sufficiently smooth to apply Ito’s lemma, and that V satisfies the boundary condition

fT (XT ) = VT (XT ) = V0(X0) +

∫ T
0
dV (Xs)

Using Ito’s lemma and the state transition eq. dX = µ(X,u)dt+ σ(X)dB

fT (XT ) = VT (XT ) = V0(X0) +

∫ T
0

[Vt + µ(X,u)Vx +
1

2
σ

2
(x)Vxx]dt+

∫ T
0
σ(X)VxdB

Taking expectations of both sides, adding
∫ T
0 e−ρtf(x, u)dt to both sides, and then imposing the martingale

assumption to drop the last integral, we get

E

[∫ T
0
e
−ρt

f(X,u)dt+ f(XT )

]
= V0(X0) + E

[∫ T
0

(
e
−ρt

f(X,u) + Vt +D[V ]
)
dt

]

whereD[V ] = µ(X,u)Vx + 1
2
σ2(x)Vxx is the Dynkin operator. According to the HJB eq., the integrand on

the r.h.s achieves a maximum at zero. For nonoptimal controls it is negative. Hence,

E

[∫ T
0
e
−ρt

f(X,u)dt+ f(XT )

]
≤ V0(X0)

with equality for controls satisfying the HJB equation.
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VISCOSITY SOLUTIONS

Notice that we assumed V was sufficiently smooth to apply Ito’s
lemma. How are we supposed to know this unless we know what V is
(which begs the question)?

Leading sources of potential nondifferentiability in economics are: (1)
binding state/control constraints, and (2) nonconvexities.

In practice, Inada conditions are typically assumed so that constraints
never bind along the optimal path.

If nondifferentiability is a potential issue, one can appeal to a weaker
solution concept of the HJB eq., based on subgradients, known as a
viscosity solution.

Ben Moll has a useful exposition aimed at economists posted on his
website [ Viscosity Solutions for Dummies (Including Economists)].
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