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INTRODUCTION

We can now apply our results on Ito processes and Dynamic
Programming to study continuous-time financial markets. We begin
with the classic dynamic portfolio model of Merton (1969,71).

Merton analyzes a partial equilibrium model of individual lifetime
saving and portfolio choice. Asset prices are exogenous, and
households confront no non-market risk. Next time we aggregate
these optimal policies in order to construct equilibrium prices.

We will also consider a more modern approach to dynamic portfolio
choice called the Martingale Method (Cox and Huang (1989)). This
approach first uses stochastic discount factor processes to solve for
optimal consumption, and then infers supporting portfolio policies by
matching diffusion coefficients.

But first we revisit some basic issues concerning arbitrage, stochastic
discount factors, and equivalent martingale measures.
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ASSET PRICES

Suppose there are N + 1 assets, N risky assets and a riskless asset. The price of the
riskless asset obeys the process

dRt = rtRtdt R0 = 1 ⇒ Rt = exp

[∫ t
0
rsds

]
where rt is the instantaneous riskless rate.

Prices of the risky assets are governed by the following diffusion processes,

dSt

St
= µ · dt+ σdBt

where St is an N × 1 column vector of prices, and Bt is a k× 1 column vector of
Brownian motions. For now we assume the drift and diffusion coefficients are constant,
so prices are geometric Brownian motions, and returns are i.i.d.

If the assets pay dividends, then dS
S

should be interpreted as a dividend-reinvested rate
of return

dSi

Si
=
Di · dt+ dPi

Pi

where the dividend yield D/P is used to purchase new shares, and P represent the
ex-dividend price.

Notice that returns can be correlated, and σσ′ · dt is the variance-covariance matrix of
returns.
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WEALTH DYNAMICS

For now we ignore consumption and non-market wealth (e.g., labor income). With no
outside sources or uses of wealth, wealth only changes due to capital gains or losses.

Let Qt = (Rt, St) be the vector of asset prices, and θt be the corresponding vector of
asset holdings. In discrete-time, the agent’s wealth Wt = θ′tQt evolves according to

θ′t+∆Qt+∆ = θ′tQt + θ′t(Qt+∆ −Qt)

The continuous-time limit is

d(θ′tQt) = θ′tdQt ⇒ Wt = W0 +

∫ t
0
θsdQs

Since the integral is an Ito integral, meaning θs is evaluated at the left endpoint of the
approximating Riemann sum, agents must decide their portfolio allocation without
knowing the instantaneous rate of return.

It is often convenient to consider the riskless asset separately. Letting φi = θiSi be the
value of each risky asset position and ι be an N × 1 vector of 1’s, we have

dW = Wr · dt+ φ′t(µ− rι)dt+ φ′tσdB

It is also often convenient to define πi = φi/W as the share of wealth invested in each
risky asset, which then gives

dW

W
= rdt+ π′(µ− rι)dt+ π′σdB
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DEFINITIONS & THEOREMS

The results from Lecture 2 on arbitrage, SDFs, and EMMs extend with minor
qualifications to continuous-time trading environments

Definition 1: A self-financing trading strategy is a portfolio process, πt, satisfying the
budget constraint

dWt

Wt
= rdt+ π′t(µ− rι)dt+ π′tσdBt

subject to the restriction that π′σ ∈ H2, i.e., E
[∫ T

0 (π′sσσ
′πs)ds

]
<∞

Definition 2: An arbitrage is a self-financing trading strategy such that W0 ≤ 0,
WT ≥ 0, and either W0 < 0 or P (WT > 0) > 0.

Definition 3: A Stochastic Discount Factor Process, M , is a strictly positive Ito process
such that MR and MS are martingales.

Definition 4: An Equivalent Martingale Measure is a probability measure, Q, such that
S/R is a martingale under Q, and Q and P share the same null events.

Theorem 1: An SDF exists if and only if an EMM exists, and the relationship between
them is given by ξ = M ·R, where ξ is the EMM and M is the SDF.

Theorem 2: If an SDF (or EMM) exists, and trading strategies are inH2 (or wealth has
a lower bound), then there is no arbitrage.
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COMPUTING SDF PROCESSES

If we are given price processes, R and S, then the martingale properties of MR and
MS, along with Ito’s lemma, can be used to find explicit expressions for the SDF
process. Given the SDF (or EMM) we can then proceed to price derivative securities.

Let Y = MR, where R is the riskless asset price, dR
R

= rdt. Applying Ito’s lemma
(note the 2nd-order term is 0 here)

dY = dM ·R+M · dR ⇒
dY

Y
=
dM

M
+ rdt

For Y to be a (local) martingale, its drift must be zero. Therefore, we know the drift of
dM/M is−rdt. This is the continuous-time counterpart to our previous discrete-time
result that E(m) = 1/Rf .

Next, the Martingale Representation Theorem tells us that the diffusion component of
M is spanned by the underlying Brownian motions, so we can write

dM

M
= −rdt− λ′dB

for some stochastic process λ. The k× 1 vector λ will turn out to be the market price of
risk for each of the underlying Brownian shocks.

Again applying Ito’s lemma to the processes Yi = MSi gives

dYi = dM ·Si+M ·dSi+dMdSi ⇒
dYi

Yi
=
dM

M
+
dSi

Si
+

(
dM

M

)(
dSi

Si

)
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Since the drift of dSi/Si is µi, for Yi to be a (local) martingale we must have

(µi − r)dt = −
(
dM

M

)(
dSi

Si

)

That is, the risk premium on each asset equals its instantaneous covariance with
dM/M . This is the continuous-time counterpart to our previous discrete-time result,
E(R)−Rf = −Rf cov(m,R).

Combining these N martingale conditions give us

(µ− rι)dt = −
(
dM

M

)(
dS

S

)
= σ(dB)(dB)′λ = σλdt

This imposes restrictions on the λ process. For example, the solvability of the system
σλ = µ− rι determines whether markets are complete and a unique SDF exists. If
N < k (more Brownian shocks than risky assets), we have more unknowns than
equations, and a unique solution (and SDF) will generally fail to exist. However, if
N = k and σ is nonsingular, we get a unique SDF process

dM

M
= −rdt− (µ− rι)′σ−1dB
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COMPUTING EMM PROCESSES
By definition, an Equivalent Martingale Measure is a probability measure, Q, that makes
S/R a martingale under Q.

Note that an SDF process simultaneously adjusts for time and risk. In contrast, an EMM
process only adjusts for risk. You must still discount payoffs using the risk-free rate.

Constructing an EMM involves taking expectations w.r.t. a new, transformed, probability
measure. Changing probability measures is accomplished using Radon-Nikodym
derivatives.
Here’s a simple example: Suppose x ∼ N(0, 1). Its prob measure is

dP (x) =
1
√

2π
e−

1
2
x2
dx

Suppose you want to transform P so that x ∼ N(µ, 1) under Q,

dQ(x) =
1
√

2π
e−

1
2

(x−µ)2dx

Note that if we define ξ(x) = exµ−
1
2
µ2

we have

dQ(x) = ξ(x)dP (x) =
1
√

2π
exµ−

1
2
µ2− 1

2
x2
dx =

1
√

2π
e−

1
2

(x−µ)2dx

ξ(x) = dQ
dP

is an example of a Radon-Nikodym derivative. It transforms a N(0, 1)

density to aN(µ, 1) density. Note that it is invertible. ξ(x)−1 transforms fromN(µ, 1)
to N(0, 1). Also, note EP [ξ(x)] = 1.
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We want a stochastic process analog of this result. This is provided by Girsanov’s
Theorem.

Suppose we have a Brownian motion Bt defined relative to a probability measure P .
Suppose we are also given an Ft-adapted process Xt (remember, Ft = filtration
generated by Bt). Now define the process ξt as follows

ξt = e
∫ t
0 XsdBs−

1
2

∫ t
0 X

2
sds t ∈ [0, T ]

Note that ξ0 = 1.

To ensure ξt is well defined, we impose the restriction that Xt not be ‘too volatile’

E
[
e
∫ t
0 X

2
sds

]
<∞ t ∈ [0, T ]

This is known as Novikov’s condition.

Using Ito’s lemma, the differential of ξt is

dξt = ξtXtdBt ⇒ ξt = 1 +

∫ t
0
ξsXsdBs

Since ξt is driftless, it is a local martingale, which satisfies EP (ξt) = 1. Given
Novikov’s condition, we know that it is in fact a global martingale.
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Now, Girsanov’s Theorem states that we can use ξt as a Radon-Nikodym derivative,
and define a new probability measure, Q, such that the process

dB̃t = Bt −
∫ t

0
Xsds ⇒ dB̃t = dB −Xtdt

is a Brownian motion relative to Q.

Note that Q effectively adds a drift process, Xt, to any diffusion process defined relative
to P .

P : dY = µ(Y )dt+ σ(Y )dB

Q : dY = [µ(Y ) +X]dt+ σ(Y )dB̃

The stochastic process Xt plays the same role that µ did in our previous example,
except now it is a drift process that is shifted, rather than a single mean value. In finance
applications, Xt will be (minus) the equilibrium price of risk.

The following chain of equalities nicely illustrate the relationships among SDFs, EMMS,
and RN derivatives:

E
Q

[1A] =

∫
A
dQ =

∫
A

dQ

dP
dP =

∫
A
ξdP =

∫
A

(M · R)dP = E
P

[1A ·MR]
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Hence, if MS is a P -martingale, then S/R will be a Q-martingale. Remembering that
dQ/dP = ξ = M ·R, this can be seen as follows,

EP [MS] = EQ
[
dP

dQ
MS

]
= EQ

[
1

ξ
MS

]
= EQ

[
MS

MR

]
= EQ

[
S

R

]

Comments:

1 The terminology Equivalent Martingale Measure means that P and Q are equivalent in
the sense that they share the same null events. If one equals 0, so does the other. The
necessity of this can be seen from the definition of a Radon-Nikodym derivative,
dQ/dP .

2 The Novikov condition guarantees that ξ is not just a local martingale, but a global
martingale as well. An analogous restriction must be imposed to ensure that MS is a
global martingale. As usual, this takes the form of anH2 restriction on the price of risk,
E
∫
λ′λdt <∞.

3 Note that we restricted the time interval to be finite when defining an EMM. Due to the
Law of Large Numbers, it can be very difficult to construct equivalent martingale
measures over infinite horizons. Incidentally, the reason we only distort the drift is that in
continuous-time, differences in diffusion coefficients can be detected using an arbitrarily
short time interval. Hence, for 2 processes to be equivalent, they must have the same
diffusion coefficients.

KASA ECON 2021 - FINANCIAL ECONOMICS I



THE MERTON MODEL

The Merton model is the springboard for most of modern financial economics. It was the
first dynamic model of the interaction between saving and portfolio allocation. It was also
the first application of the Ito calculus in economics. The 1969 ReStat paper focuses on
a couple of special cases. The 1971 JET paper generalizes and extends the analysis in
various directions.

The model contains 3 key results:
1 If asset prices are geometric Brownian motions (returns are i.i.d.), then the classic

‘Separation Theorems’ of the CAPM apply in an intertemporal setting. Investors
can span the Mean-Variance frontier with just 2 mutual funds (or just 1 fund of
risky assets if there is a riskless asset).

2 If prices are geometric Brownian motions and preferences belong to the HARA
class (Hyperbolic Absolute Risk Aversion), then decision rules are linear in
wealth, and the model can be solved analytically.

3 If prices are geometric Brownian motions, and preferences have Constant
Relative Risk Aversion, then optimal portfolios are constant, even if agents have
finite horizons (i.e., the portfolio policy is ‘myopic’).
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HARA UTILITY FUNCTIONS

The HJB equation of the Merton model is a nonlinear PDE, which generally fails to
possess an analytical solution. However, when asset prices are geometric Brownian
motions and preferences are HARA, then you can obtain explicit solutions.

The defining feature of HARA is linear risk tolerance

−U ′

U ′′
= β +

C

γ

HARA utility functions are just the solutions of this ODE.

HARA : U(C) = α
γ

1− γ

(
β +

C

γ

)1−γ

HARA functions nest several workhorse preference specifications as special cases:

lim
γ→∞

⇒ U(c) = −βe−c/β } CARA

β = 0 ⇒ U(C) =
1

1− γ
C1−γ } CRRA

γ = −1 ⇒ U(C) = −
1

2

(
β − C)2 } Quadratic
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THE INFINITE HORIZON CRRA PROBLEM

For simplicity, assume there is a single risky asset, which follows the process:
dS/S = µdt+ σdB. The investor’s objective function is

max
c,π

E0

∫ ∞
0

e−δt
C1−γ

1− γ
dt

s.t. dW = [(r + π(µ− r))W − C]dt+ πσWdB

Notice that we now subtract the rate of consumption from the wealth accumulation
equation.

Applying Ito’s lemma, the stationary HJB equation is

δV = max
c,π

{
C1−γ

1− γ
+ [(r + π(µ− r))W − C]Vw +

1

2
π2σ2W 2 · Vww

}

The FOCs are:

C : C−γ = Vw ⇒ C1−γ = (Vw)1−1/γ

π: (µ− r)W · Vw + πσ2W 2Vww = 0 ⇒ π =
(
−Vw
W ·Vww

) (
µ−r
σ2

)
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Guess: V (W ) = AW1−γ . This implies,

Vw = (1− γ)AVw ⇒ C = [(1− γ)A]
−1/γ

W

Vww = −γ(1− γ)AW
−γ−1 ⇒

−Vw
W · Vww

=
1

γ

Sub these into the HJB equation and cancel the commonAW1−γ term,

δ =
1

1− γ
(1−γ)

1−1/γ
A

−1/γ
+(1−γ)

{[
r +

(µ− r)2

γσ2

]
− [(1− γ)A]

−1/γ −
1

2

(µ− r)2

γσ2

}

Now solve for (1− γ)−1/γA−1/γ

(1− γ)
−1/γ

A
−1/γ

=
1

γ

[
δ − (1− γ)

[
r +

(µ− r)2

2γσ2

]]

This gives us the policy functions:

C =
1

γ

{
δ − (1− γ)

[
r +

(µ− r)2

2γσ2

]}
W

π =
µ− r
γσ2
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Comments:

1 Notice the portfolio policy is the same as in the static CAPM with quadratic preferences!
The combination of constant, i.i.d. expected returns with preferences that make attitudes
toward multiplicative risks independent of your wealth level (ie, CRRA), convert the
portfolio choice problem into an essentially static problem. You are basically confronting
the same problem over and over again. Still, the solution has a strong intuitive appeal, at
least as a first approximation. The risky portfolio share is increasing in the relative rate of
return, and decreasing in both the amount of risk and the degree of risk aversion. Also,
note that constant portfolio shares doesn’t mean you never trade. Instead, it produces
an apparent ‘contrarian’ response to price changes - selling stocks that have risen in
price, and buying those that have fallen.

2 Notice also that consumption is a fixed fraction of wealth (ie, saving rates are constant).
Again, the comparative statics are intuitive,

δ ↑ ⇒ C ↑
σ2 ↑ ⇒ C ↓ if γ > 1

3 In the knife-edge case of log utility (γ = 1), things simplify dramatically

C = δW

In this case, the income and substitution effects resulting from changes in expected
returns exactly offset each other, and saving rates are independent of the rate of return.
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THE FINITE HORIZON CRRA PROBLEM

People don’t live forever. It is often argued that the life-cyle should (and does) have
strong effects on savings and portfolio choice. As a first step toward addressing these
issues, we simplify in the opposite direction, by assuming that agents know exactly when
they will die. The investor’s problem is now

max
c,π

E0

∫ T
0
e−δt

C1−γ

1− γ
dt

s.t. 1.) dW = [(r + π(µ− r))W − C]dt+ πσWdB

2.) V(T) = 0 (no bequest)

where T is the known lifespan. A positive bequest could easily be incorporated.

Now t becomes a relevant state variable and the HJB equation becomes a PDE

−Vt = max
c,π

{
e−δt

C1−γ

1− γ
+ [(r + π(µ− r))W − C]Vw +

1

2
π2σ2W 2 · Vww

}
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The FOC for π is the same as before. The FOC for C becomes

e−δtC−γ = Vw ⇒ C =
[
eδtVw

]−1/γ

Subbing the FOCs back into the HJB gives us a nonlinear PDE. Our only hope is to
employ a separation of variables stategy. Let’s guess

V (t,W ) = e−δtA(t)γW 1−γ

Now, instead of having an undetermined coefficient to solve for, we have the
undetermined function A(t) to solve for. Still, if our guess works, it’s a lot simpler to
solve an ODE for A(t) than a the original PDE for V !

The functional form inW indeed works, and theW terms cancel out of the HJB. We are
left with the following ODE

δ−γA−1Ȧ = (1−γ)−1/γA−1−(1−γ)

{
(1− γ)−1/γA−1 −

[
r +

1

2

(µ− r)2

γσ2

]}
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Multiplying by A and collecting terms give us

Ȧ = φA− (1− γ)−1/γ φ =
1

γ

{
δ − (1− γ)

[
r +

(µ− r)2

2γσ2

]}

We must solve this (linear) ODE s.t. A(T ) = 0. One can easily see that the
homogeneous solution is of the form A(t) = Beφt, while the particular solution is

A(t) =
(1−γ)−1/γ

φ
. Adding the two together and imposing the boundary condition

gives B = −(1− γ)−1/γφ−1e−φT . Therefore,

A(t) =
(1− γ)−1/γ

φ

[
1− e−φ(T−t)

]
The implied policy functions are then

C =
φ

1− e−φ(T−t)W π =
µ− r
γσ2

KASA ECON 2021 - FINANCIAL ECONOMICS I



Comments:

1 Notice we get the same portfolio policy as before. This is not too
surprising given the assumptions. Remember, with i.i.d. returns and
CRRA utility, the agent’s portfolio problem is essentially static, so the
horizon, whether finite or infinite, doesn’t matter.

2 Notice, however, that the horizon does matter for the
consumption/savings policy. As you would expect, you consume more
of your wealth as you get older. This captures the right-hand side of
Modigliani’s life-cyle savings policy. To get the rising left-hand side we
must extend the model to include other state variables, e.g.,
nontradeable labor income.
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CARA UTILITY

With CRRA, a rich person is just a ‘scaled-up’ version of a poor person. Portfolio
allocations are constant, and identical, and consumption is a fixed fraction of wealth.

With CARA [U(c) = −α−1e−αc] the policy functions turn out to be

C = rW +

[
δ − r + (µ− r)2/2σ2

αr

]
π =

µ− r
rασ2W

The agent now invests a fixed dollar amount in the risky asset. His share of wealth in the
risky asset declines as his wealth grows. (Because relative risk aversion increases).
This portfolio behavior is grossly at odds with the data. That’s why people prefer CRRA
to CARA.

However, notice that with CARA, rich people save a higher fraction of their wealth, which
is arguably more consistent with the data.

CARA is often used when shocks are additive (eg., idiosyncratic labor income), since
there are no wealth effects in this case. Equilibrium prices remain unaffected by the
distribution of wealth.
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LABOR INCOME
The basic Merton model assumes all income derives from invested wealth. This may be
a decent approximation for Donald Trump, but for the rest of us, labor income is very
important.

In principle, it is straightforward to incorporate labor income. Let y = labor income, and
assume it follows the process:

dy = λ(y) · dt+ σy · dBy

The budget constraint then becomes:

dW = [(r + π(µ− r))W + λ(y)− c]dt+ πσWdB + σydBy

Now y becomes a state variable, and the HJB equation contains a few additional terms,

δV = max
c,π

{
C1−γ

1− γ
+ [(r + π(µ− r))W + λ(y)− C]Vw +

1

2
π2σ2W 2 · Vww

+λ(y) · Vy + 1
2
σ2
y · Vyy + ρπσσyWVyw

}
where ρ = the correlation between y and the risky asset return.
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Note, we are following tradition in the finance literature and ignoring the disutility of labor.
Labor income is assumed to be exogenous. This is quite restrictive. With endogenous
labor supply, agents can adjust labor supply in response to market outcomes (e.g., delay
retirement if the market crashes).

In general, even with exogenous labor income, the problem becomes unsolvable (at
least analytically). However, there are a couple of interesting cases to consider.

Case 1: Labor income is riskless and tradeable. Merton (1971) discusses this case. The
agent can fully ‘capitalize’ his labor income and incorporate it into his initial financial
wealth. For example, if y = ȳ is constant, then ‘human capital’ is H = ȳ/r, and this
just gets added to W0. The problem then becomes identical to the original one.

Case 2: Labor income is riskless and nontradeable. In practice, people can’t fully borrow
against their future labor income due to obvious moral hazard considerations. In this
case, the agent effectively has a risk-free investment in the form of labor income. He can
then simply adjust his financial portfolio in response. For example, let H = Human
wealth and W = Financial wealth. Then invest π(W +H) dollars in the risky asset,
and (1− π)(W +H)−H in the risk-free. Notice that the share of financial wealth
invested in the risky asset is

π̂ =
π(W +H)

W
= π

(
1 +

H

W

)

Note, H/W changes over the lifecycle. It is high when you are young (because H is
high and W is low), and low when you are old. Hence, young people should hold more
risky assets in their financial portfolios than old people. This is a common piece of
investment advice.
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HEDGING

Of course, the more realistic case is that labor income is both risky and correlated with
market returns. The FOC for π is

π = −
(

Vw

σ2WVww

)(µ− r) +

hedging demand︷ ︸︸ ︷
ρσσy

(
Vwy

Vw

)
If your labor income is positively correlated with the market (ρ > 0) and more income
lowers the marginal value of wealth (Vwy < 0), then you will want to hedge your labor
income risk by investing less in risky tradeable assets. In fact, you might even want to
short the risky asset (π < 0) if the hedging demand offsets the positive risk premium.
This perhaps explains the limited participation in financial markets by many individuals.

Hedging occurs not only in response to labor income, but in response to any state
variable that changes the investment problem in some relevant way. Other leading
examples include changes in the ‘investment opportunity set’ (ie, predictable mean
returns) or changes in beliefs about returns that might occur in response to learning.
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In some cases, the problem can be reduced to an ODE, which is much easier to solve. A
widely studied example is when the drift of asset prices is stochastic (i.e., time-varying
expected returns). There is abundant empirical evidence in support of this. In particular,
suppose the risky asset follows the process:

dS

S
= µ(X)dt+ σdB

where the (exogenous) state variable X follows its own diffusion process

dX = α(X)dt+GdBx

If preferences are CRRA and the horizon is infinite, one can readily verify that the value
function takes the form, V (X,W ) = f(X)W 1−γ . Consumption continues to be
proportional to wealth, and a common W 1−γ can be canceled from the HJB equation.
We are then left with a 2nd-order ODE in the unknown function f(X).

The sign of the hedging demand depends on γ. Assume (w.l.o.g) that increases in X
represent favorable changes in the investment opportunity set
(Vx = f ′(X)W 1−γ > 0). The sign of the hedging demand is the same as the sign of
Vxw = (1− γ)f ′(X)W−γ . Hence, if γ < 1 an increase in expected returns
increases the hedging demand. Relatively risk tolerant investors want to take advantage
of a more favorable investment climate. However, if γ > 1 then the hedging demand is
negative. Relatively risk averse investors, with rapidly declining marginal value of wealth,
will respond to higher expected returns by scaling back their risky investments.
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THE MARTINGALE METHOD

Portfolios are a derived demand, i.e., a means toward an end. Presumably, people don’t
derive utility from asset trading, but instead trade assets in order to manage their ability
to acquire and consume the things they really care about.

Given this, we can study optimal portfolio behavior in 2 distinct steps: (1) Given an SDF
process that summarizes the prices of all state- and date-contingent claims, solve the
agent’s lifetime consumption plan. Importantly, given knowledge of the SDF process, the
agent has a single lifetime budget constraint. (2) Figure out which portfolio policies will
support this optimal consumption plan.

In general, there will be many different supporting portfolios. Roughly speaking, the
more complex the securities (e.g., nonlinear/state-contingent), the less frequently they
will need to be traded.

This 2-step approach is called the ‘Martingale Method’ because it views wealth as the
price of an asset, an asset which yields consumption as its dividend. Like any asset
price, its dividend inclusive price follows a martingale when scaled by the SDF.

There are 2 advantages to the Mart. Method: (1) It is easier. Rather than having to solve
a nonlinear PDE for the value function, a simpler linear PDE must be solved, (2) It
doesn’t rely on an exogenously specified asset market structure. The asset market
structure emerges as part of the problem’s solution. The main drawback is that it relies
on a given SDF process, so is better suited to complete markets environments. With
incomplete markets, the DP/HJB equation approach is more natural.
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Rather than describe the method in full generality, I apply it to the simple 2-asset/CRRA
example we solved earlier when studying the Merton problem. This will allow us to more
easily compare the two approaches.

The objective function is the same as before,

max
c
E0

∫ ∞
0

e−δt
C1−γ

1− γ
dt

The only difference is that we are now only choosing consumption.

The key difference concerns the budget constraint. Rather than confronting a sequence
of flow budget constraints, the agent has a single lifetime budget constraint.

W0 = E0

(∫ ∞
0

MtCtdt

)
where Mt is the SDF process, which obeys the diffusion

dM

M
= −rdt− κdB

and where κ = (µ− r)/σ is the price of risk.

Letting λ be the Lagrange Multiplier on the budget constraint, the FOC is

Ct =
(
eδtλMt

)−1/γ
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Again, the key idea is that at each moment of time optimally invested wealth finances the
future stream of optimally chosen consumption.

Wt = Et

[∫ ∞
t

Cs
Ms

Mt
ds

]

where consumption is valued using the SDF process. Substituting in from the FOC,

Wt = M
−1
t λ−1/γEt

∫ ∞
t

e−(δ/γ)sM
1−1/γ
s ds

From Ito’s lemma,

d(logM) = −(r+(1/2)κ2)dt−κdB ⇒ Ms = Mte
−(r+.5κ2)(s−t)−κBs−t

Therefore,

EtM
1−1/γ
s = M

1−1/γ
t e−φ(s−t) φ = (1− 1/γ)

(
r +

1

2γ
κ2

)
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Evaluating the integral we find,

Wt =

(
1

φ+ δ/γ

)
λ−1/γM

−1/γ
t e−(δ/γ)t

If desired, we could use this expression to compute λ as a function of W0 (using the
fact that M0 = 1). However, it turns out we don’t need it.

Instead, we use this expression to derive the following diffusion process for optimally
managed (log) wealth

d(logW ) = −
1

γ
d(logM)−

δ

γ
dt = −

1

γ

[
−r −

1

2
κ2 + δ

]
dt+

κ

γ
dB

This is the wealth process implied by the optimal consumption process. The idea behind
the Martingale Method is to infer the risky portfolio share by matching (by choice of π)
the diffusion coefficient of this process with the diffusion coefficient in the Merton budget
constraint. We can then infer the consumption process by matching the drift coefficients.

The Merton budget constraint can be written

d(logW ) =

[
r + π(µ− r)−

C

W
−

1

2
π2σ2

]
dt+ πσdB
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Matching the diffusion coefficients we find

πσ =
κ

γ
⇒ π =

κ

γσ
=
µ− r
γσ2

This is the same portfolio we computed using dynamic programming and HJB equations!

We could directly find the optimal consumption process by using the FOC along with the
given process for Mt. We just need to apply Ito’s lemma. However, the result would not
be in the form of a policy function, relating consumption to wealth. It would instead be
the diffusion process obtained by substituting the wealth diffusion process into the policy
function. If we want to obtain the C/W ratio directly, we can just match the drift
coefficients in the optimal wealth process and the Merton budget constraint,

1

γ

[
r +

1

2
κ2 − δ

]
=

[
r + π(µ− r)−

C

W
−

1

2
π2σ2

]

Plugging in for κ and π, and then solving for C/W we find

C

W
=

1

γ

{
δ − (1− γ)

[
r +

(µ− r)2

2γσ2

]}

Again, this is the same as before.
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