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INTRODUCTION

The Merton model of individual portfolio choice is a partial equilibrium
model. Asset prices are exogenous.

The obvious next step is to aggregate, impose market-clearing, and
derive equilibrium prices.

We do this following Lucas (1978) and Breeden (1979). They study
endowment economies. Instead of taking prices as exogenous, they
take consumption as exogenous. Hence, these models are also partial
equilibrium. Still, they are useful in characterizing the equilibrium
relationship between consumption and asset prices. If a model’s FOCs
are violated, it is unlikely that adding additional structure will improve it.
Later, we examine how production and endogenous consumption can
be incorporated.

In this lecture we assume throughout that agents have Rational
Expectations and their preferences are time-additive, CRRA. Later we
extend the analysis to incorporate learning, ambiguity, and recursive
preferences.
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A FIRST STEP

Last time we derived the optimal portfolio policy π = µ−r
γσ2 , where π is the share of

wealth invested in the risky asset, and µ is its expected rate of return.

In equilibrium, someone has to hold the risky asset. Likewise, for every borrower there
must be a lender. Hence, if the riskless asset is in zero net supply, agents have identical
CRRA preferences, and there are no nontradeable sources of wealth, it must be the
case that π = 1 in equilibrium. After imposing this market-clearing condition, we can
then interpret the portfolio policy as determining the equilibrium rate of return on the
risky asset

µ = r + γσ2

There are a few problems with this strategy:
1 The derivation assumed that µ is constant. How do we know this is true?
2 The Merton model assumes that σ2 is both the volatility of invested wealth and

the volatility of consumption. This is wildly counterfactual.
3 Where does the risk-free rate, r, come from?

Still, this strategy has some merit. We shall see that if expected consumption growth is
constant, and we intepret σ2 as the variance of consumption growth, then the above
expression for the equilibrium risk premium is valid.
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THE LUCAS/BREEDEN MODEL

A common misconception is that the CCAPM presumes complete markets and that
everyone has the same preferences.

The CCAPM is really just a statement of an individual’s Euler equation. It does not
require complete markets or identical preferences. All it really presumes is the ability to
freely trade assets in a competitive market. However, given the lack of reliable panel
data on individual consumption, tests of the CCAPM often impose these additional
assumptions in order to derive restrictions on aggregate consumption data.

Still, the empirical deficiencies of the complete markets/identical CRRA preferences
CCAPM model has motivated most of the work in macro finance during the past few
decades, so it’s a useful benchmark to start with.

So suppose the unique SDF process is given by

Mt = e−δt(Ct/C0)
−γ

where Ct is aggregate (per capita) consumption.

This consumption represents the (nonstorable) ‘fruit’ produced by a ‘tree’. We want to
price an equity claim to the dividends, D, yielded by this tree. In equilibrium, C = D.

KASA ECON 2021 - FINANCIAL ECONOMICS I



Consumption (and dividends) follow the diffusion process,

dC

C
= µdt+ σdB

implying that consumption growth is lognormal i.i.d. This is a surprisingly accurate
description of aggregate consumption data. However, much recent work explores subtle
departures from it (e.g., rare disasters, stochastic volatility, and low frequency drift in µ).

Applying Ito’s lemma to Mt using this process for Ct yields,

dM

M
=

[
−δ − µγ +

1

2
σ2γ(1 + γ)

]
dt− σγdB

From the previous lecture we know that the riskless rate is the (negative) drift of
dM/M . Hence,

r = δ + µγ −
1

2
σ2γ(1 + γ)

The price of the Lucas tree can be calculated by evaluating the following integral

P0 = E0

∫ ∞
0

MsDsds = D0E0

∫ ∞
0

e
−(r+1

2
γ2σ2)s−γσBse(µ−

1
2
σ2)s+σBsds

=
D0

r+γσ2−µ
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Therefore, the ex-dividend price follows the same diffusion as D -
dP/P = µdt+ σdB, and the dividend reinvested price is given by

dS

S
=
Ddt+ dP

P
= [r + γσ2 − µ]dt+ µdt+ σdB = (r + γσ2)dt+ σdB

Note that this is consistent with our result from last time,

(µS − r)dt = −
(
dM

M

)(
dS

S

)
= (σγ)(σ)dt

The Equity Premium and Risk-Free Rate puzzles refer to the fact that given empirically
plausible values of (δ, µ, σ2), the model does not generate empirically plausible values
of r and/or µS without extremely large values of γ. The following figure shows this using
δ = .01, µ = .02, and σ2 = (.02)2.

Gamma
0 10 20 30 40 50 60 70 80 90 100

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Equity Premium & Risk-Free Rate Puzzle

7 - r

r

KASA ECON 2021 - FINANCIAL ECONOMICS I



Remember, the mean risk-free rate is about 1%, and the mean Equity
Premium is in the range 5-8%. Evidently, we need γ ≈ 100 before the
model generates values close to these. At this point, a very strong
precautionary saving motive is nearly offsetting a very strong aversion
to intertemporal substitution. Such a high degree of risk aversion is not
observed in other realms of risk-taking. Either the model is wrong, or
there is something different about stock market investing.

Another way to see the problem is to look at prices, rather than rates of
return. The mean P/D ratio has been trending up, due to changes in
dividend policy, (that’s why Shiller deflates by earnings), but a
reasonable value is in the range 20-30. The model’s implied P/D ratio
is (r + γσ2 − µ)−1. Plugging in r = .01, µ = .02, and σ2 = (.02)2

implies that γ ≈ (85, 150). Even worse, the model predicts the P/D
ratio is constant. In the data, P/D ratios exhibit large and persistent
fluctuations around the long-run mean. This discrepancy is sometimes
called the ‘Volatility Puzzle’.

KASA ECON 2021 - FINANCIAL ECONOMICS I



BUBBLES

Perhaps the most common explanation of the Volatility Puzzle is to blame bubbles.
Bubbles are not (necessarily) irrational. They can be perfectly rational in a world where
current outcomes depend on expectations of future outcomes.

One persuasive counterargument to bubbles is that they rely on an implausible degree of
expectations coordination. How do they get started in the first place?

Models of ‘intrinsic bubbles’ address this critique. They are based solely on a model’s
fundamentals. An intrinsic bubble simply represents a solution of the homogeneous part
of the HJB equation describing an asset’s value.

Here’s a simple example. Suppose dividends follow the usual geometric Brownian
motion dD

D
= µdt+ σdB. The ex-dividend price satisfies

Pt = D
γ
t Et

∫ ∞
t

e−δsD1−γ
s ds

Let V (D) be the value of the integral. A recursive representation of V (D) is given by
the following HJB eq.

δV (D) = D1−γ + µDV ′(D) +
1

2
σ2D2V ′′(D)
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As usual, a solution can be obtained by the method of undetermined coefficients. If we
guess V (D) = AD1−γ , we find that A = [δ − µ(1− γ) + 1

2
σ2γ(1− γ)]−1.

Substituting out δ using our previous expression for r, we find the same ex-dividend
price as before (as we should!)

P =
D

r + γσ2 − µ

This is called the ‘fundamentals solution’. It is the unique solution satisfying the
transversality condition, limT→∞ Et

[
MT
Mt

PT

]
= 0.

However, if we do not impose the TVC, we can find other solutions. These satisfy the
homogeneous equation, δV = µDV ′ + 1

2
σ2D2V ′′. They are called (intrinsic)

bubbles. Employing the method of undetermined coefficients, one can verify that in this
case they take the form, V b(D) = BDλ, where λ is the positive root of the quadratic

1

2
σ2λ(λ− 1) + µλ− δ = 0

Hence, we get the generalized pricing equation

P =
D

r + γσ2 − µ
+BDλ+γ

where B is a free parameter. This fits the data better.
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PROBLEMS WITH RATIONAL BUBBLES

Transversality conditions sometimes rule them out (e.g., finite number
of infinitely lived agents with complete markets and common
knowledge of common priors).

How do they start?

Why do they end?

Trading Volume

Given these problems, later we develop an alternative theory of
bubbles based on heterogeneous beliefs and resale option values.
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INCOMPLETE MARKETS & HETEROGENEITY

Another common suspect in the failure of the complete markets CCAPM is the absence
of complete markets. In fact, this was the original conjecture of Mehra & Prescott (1985).
It seems promising because individual consumption is more volatile than aggregate
consumption, and it’s the smoothness of consumption growth relative to stock returns
that is the underlying source of the Equity Premium Puzzle.

However, early attempts to explain the failure with incomplete markets seemed trapped

by 2 facts:
1 Pure idiosyncratic risk won’t affect asset prices

µ− r
σS

= ρ∆c · γσ∆c

and σ∆c ↑ ⇒ ρ∆c ↓.
2 Unless idiosyncratic income shocks are permanent, individuals can use asset

markets to smooth their effects on consumption.

Constantinides & Duffie (1996) show how persistent idiosyncratic labor income risk can
explain the Equity Premium Puzzle.
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CONSTANTINIDES & DUFFIE (1996)
CD work in discrete time. This is actually important. In continuous-time, second
moments evolve deterministically, which kills off the CD argument. (See below).

Suppose there are a large number of agents who receive idiosyncratic labor income
shocks. CD construct a process for these shocks such that agents are content to
consume their labor income. There is no asset trade, and the Fund. Eq. of asset pricing
holds by construction. As a corollary, there is no Equity Premium Puzzle.

Each agent has preferences, E
∑
t e
−δtC1−γ

it , i = 1, 2, · · ·H. Each agent’s labor
income (and consumption) follows the process

log

(
Ci,t+1

Ci,t

)
= ηi,t+1yt+1 −

1

2
y2
t+1 ηit ∼ N(0, 1)

where ηit is an idiosyncractic shock, and yt is the standard deviation of the
cross-sectional distribution of consumption growth. Therefore, conditional on yt+1, we
have

log

(
Ci,t+1

Ci,t

)
∼ N

(
−

1

2
y2
t+1, y

2
t+1

)

Note, this implies each agent’s consumption follows a martingale: E(Ci,t+1) = Cit
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Now, the essence of the CD model is to reverse engineer a specification for yt+1 that
satisfies each agent’s Euler equation evaluated at his own endowment. It is crucial that
the cross-sectional variance depend on the market return. In particular, suppose

yt+1 =

√
2

γ(1 + γ)
·
√
δ − log(Rt+1)

Notice, when the market return declines, the cross-sectional variance increases.

From each agent’s Euler eq. we have

1 = Et

[
e−δ

(
Ci,t+1

Ci,t

)−γ
Rt+1

]

= Et

[
e−δ

(
e
ηi,t+1yt+1− 1

2
y2
t+1

)−γ
Rt+1

]

= Et

[
e
−δ−γηi,t+1yt+1+ 1

2
γy2
t+1+log(Rt+1)

]

To evaluate this expectation, we can first condition on yt+1

E
[
e−γηi,t+1yt+1 |yt+1

]
= e

1
2
γ2y2

t+1
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Therefore,

1 = Et

[
e
−δ+ 1

2
γ2y2

t+1+ 1
2
γy2
t+1+log(Rt+1)

]
= Et

[
e
−δ+ 1

2
γ(1+γ) 2

γ(1+γ)
(δ−log(Rt+1)+log(Rt+1)

]
= e0

Although the CD model shows how idiosyncratic labor income risk can in principle
account for the Equity Premium Puzzle, it still raises empirical questions, e.g., whether
its assumptions about the cyclical properties of the cross-sectional distribution of labor
income are accurate. It particular, it implies that for modest degrees of risk aversion, the
cross-sectional variance has to be strongly countercyclical
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HETEROGENEITY IN CONTINUOUS-TIME

A classic paper by Grossman & Shiller (1982) pointed out that the CCAPM does not rely
on complete markets, identical preferences, or even identical information sets. However,
it also suggested that heterogeneity will not significantly influence risk premia.

With heterogeneous preferences and incomplete markets each agent has his own SDF
process, Mit = e−δt[U ′(Ci,t)/U

′(Ci,0)].

If agents can freely trade the same risk free asset, the drift of their Mit processes will
be identical (and equal to−rdt), but their diffusion coefficients will generally differ. To
prevent arbitrage, asset prices must be martingales with respect to each agent’s SDF
process. As usual, this implies

(µ− r)dt = −
(
dS

S

)(
dMi

Mi

)
= αi

(
dS

S

)
dCi

where αi = −U ′′(Ci)/U ′(Ci) is agent-i’s coefficient of absolute risk aversion.
Since the l.h.s. is the same for everyone, notice that agents with relatively high risk
aversion have smaller consumption fluctuations. This is accomplished by holding fewer
risky assets.
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Dividing both sides by αi and summing across agents gives

(∑
i

1

αi

)
(µ− r)dt =

(
dS

S

)
dCa

where Ca =
∑
i Ci is aggregate consumption. Note that we can write 1

αi
= Ci

γi
,

where γi is each agent’s coefficient of relative risk aversion. Hence, if we divide both
sides by Ca we have

(∑
i

ωi,tγ
−1
i

)
(µ− r)dt =

(
dS

S

)(
dCa

Ca

)

where ωi = Ci/C
a is agent-i’s consumption share. This could be time-varying due to

uninsured consumption risks.

This allows us to obtain the following heterogeneous agents CCAPM

(µ− r)dt = γat

(
dS
S

) (
dCa

Ca

)
γat =

[∑
i ωi,tγ

−1
i

]−1

Notice that this has the same form as the Lucas/Breeden complete markets CCAPM.
The only difference is that the market risk aversion coefficient is the weighted harmonic
mean of individual risk aversion, with weights given by consumption shares. Agents with
higher consumption shares exert more influence on market risk premia.
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Notice that in contrast to the CD model, the cross-sectional variance of
consumption growth does not (directly) influence risk premia. In
continuous-time, 2nd-moments evolve deterministically (at least with
Gaussian/Brownian motion information structures).

However, this does not imply heterogeneity is unimportant. Garleanu &
Panageas (JPE, 2015) recently exploited the GS result, and developed
a model in which relative risk aversion differs across agents. They
show that risk aversion heterogeneity naturally generates a
countercyclical price of risk (with identical CRRA it is constant).
Intuitively, market downturns redistribute wealth and consumption from
low risk aversion agents (who hold more risky assets) to high risk
aversion agents (who are less exposed to risky assets). As a result, γa

t

rises, which increases the market risk premium. Effectively, ‘the
market’ endogenously becomes more risk averse during recessions.
(Their model uses recursive preferences, which allows differential
heterogeneity in risk aversion and intertemporal substitution.)
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FAT TAILS

The Gaussian density has ‘thin tails’. The probability of extreme events goes to zero
very fast.

Brownian motion diffusion models are based on Gaussian innovations. Many have
argued that this makes them unsuited to the study of financial markets. It is also the
reason why cross-sectional 2nd moments do not play a role in risk premia in standard
continuous-time finance models.

Martin (RES, 2013) extends the CCAPM by allowing arbitrary distributions of the
innovations to consumption growth.

Our results linking risk premia to covariances with an SDF process are the same as
before, except now we write

dMt

Mt−
= −rdt+ dY ct + dY dt

where dY ct is a continuous local martingale (ie, Brownian motion), and dY dt is a purely
discontinuous local martingale. The canonical example is a (compensated) Poisson
jump process. Every local martingale can be decomposed uniquely in this way. The t−
notation emphasizes the fact that Mt is continuous from the right, and possesses a
left-hand limit.
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Accounting for the influence of higher-order moments is facilitated by the use of
cumulant-generating functions (CGF). Assume (log) consumption growth is an i.i.d.
random variable, g. The CGF of g is

C(θ) = logE exp(θg) =
∞∑
n=1

κnθn

n!

where κ1 = the mean of g, κ2 = the variance, σ2, of g, κ3/σ3 = the skewness of g,
and κ4/σ4 = the excess kurtosis. Note that for a Gaussian/Brownian motion diffusion
model, only κ1 and κ2 are nonzero.

Martin (2013) derives the following expressions for the riskless rate and the equity
premium in terms of the CGF of log consumption growth,

r = δ − C(−γ)

= δ + µγ −
1

2
σ2γ2 +

S

3!
σ3γ3 −

K

4!
σ4γ4 + h.o.t.

µ− r = C(1) + C(−γ)− C(1− γ)

= γσ2 +
S

3!
σ3[1− γ3 − (1− γ)3] +

K

4!
σ4[1 + γ4 − (1− γ)4] + h.o.t.

where γ is the coefficient of relative risk aversion, S = skewness, and K = excess
kurtosis.
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Note that negative skewness (long left tail) and excess kurtosis drive down the riskless
rate, since both promote precautionary saving. Note also that if γ > 1 they increase the
equity premium. Unfortunately, unless either γ or (S,K) are large, the effects are
quantitatively small.

CGFs are a convenient way to understand the Reitz/Barro disaster risk models. If we
suppose disasters have a Poisson arrival rate of λ, and that conditional on arrival
consumption drops are N(m, s2), then

C(θ) = µθ +
1

2
σ2θ2 + λ

[
exp

(
−θm+

1

2
θ2s2

)
− 1

]

This can produce a very convex CGF for ‘reasonable’ parameter values. For example, if
δ = .03, µ = .025, σ = .02, λ = .017, m = .39, s = .25, and γ = 4, the risk free
rate is 1.0% and the equity premium is 5.7%.

Finally, Martin (2013) shows that the results of CD and GS can be reconciled by
incorporating both aggregate and idiosyncratic disasters. If idiosyncratic disasters are
uncorrelated with aggregate disasters then we are back to the Reitz/Barro world, and
idiosyncratic risk doesn’t matter. This echoes the results of GS. However, if aggregate
and idiosyncratic disasters are correlated, then we recover results like those of CD, and
idiosyncratic risk matters.
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THE INTERTEMPORAL CAPM (ICAPM)
Lucas & Breeden were actually responding to previous efforts by Merton (1973) to
endogenize rates of return in his own portfolio model. His ICAPM model is still used as
motivation for empirical multifactor asset pricing models.

Merton based his analysis on the marginal value of wealth, Vw, rather than the marginal
utility of consumption, U ′(C). From the envelope theorem we know,

Vw(W,X) = U ′(C)

So in some sense, the two approaches are equivalent. However, Vw(W,X) will
depend on any state variables, X, that change the investment opportunity set. In
contrast, consumption will react optimally to these anticipated changes, and so will be a
sufficient statistic for the state variables. Instead of a multifactor model, we get a single
factor model. Lucas/Breeden argued that this was a key advantage of the CCAPM.

To see the relationship between the ICAPM and CCAPM more explicitly, apply Ito’s
lemma to both sides of the envelope condition, and then divide both sides by Vw = U ′.

−
VwwW

Vw

(
dW

W

)
−
VwxX

Vw

(
dX

X

)
+ O(dt) = −

U ′′(C)C

U ′(C)

(
dC

C

)
+ O(dt)

The Lucas/Breeden model uses the r.h.s to price assets. The Merton ICAPM uses the
l.h.s. Clearly, if good consumption data exist, the CCAPM dominates. However, if it
easier to measureX andW than C, there might be practical advantages to the ICAPM.
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INCORPORATING PRODUCTION

At the outset it was noted that the CCAPM, like the Merton model, is a partial equilibrium
model. Consumption is exogenous. However, following Cox, Ingersoll, and Ross (1985),
it is straightforward to transform it into a truly general equilibrium model by incorporating
a production technology.

Suppose output is now produced using a 1-sector, stochastic,
Constant-Returns-to-Scale/AK production function. That is, consumption and capital are
the same good, and capital can be costlessly invested or withdrawn from production,
with the rate of return being independent of the quantity invested. Hence, the price of
capital is pinned down by the price of the numeraire consumption good. Changes in
market capitalization are fully reflected in the quantity of capital, not its price.

For simplicity, suppose markets are complete, agents have identical log preferences,
and there is a single production technology. Equilibrium prices can then be computed by
first solving a planner’s problem for optimal consumption/capital, and then inferring
market-clearing prices using the unique SDF process.

The planner maximizes E
∫∞
0 e−δt log(Ct)dt subject to the aggregate resource

constraint
dK = (AK − C)dt+ σKdB

In a competitive equilibrium wealth equals capital, W = K.
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We’ve already solved this problem. We know C = δK, and that equilibrium prices are
determined by the SDF process using the usual martingale conditions. For example, the
riskfree rate is just (remember γ = 1 here)

rdt = −E
(
dM

M

)
= (δ + µ− σ2)dt

where µ is the (endogenous) growth rate of consumption. Given the above consumption
function, we know µ is also the mean growth rate of capital, which is

µdt = (A− C/K)dt = (A− δ)dt

Hence, the market-clearing interest rate is r = δ + (A− δ)− σ2 = A− σ2. Again
as usual, the equilibrium rate of return on equity claims to the risky technology is the
risk-free rate plus the price of risk, which is just σ2 with log preferences.

µ = r + σ2 = A

In a sense, the CIR model just reverses what’s endogenous and what’s exogenous. The
assumptions on the production technology completely pin down the rate of return to
capital, effectively making asset returns exogenous. Instead, consumption becomes
endogenous. Note that CIR does not resolve the Equity Premium Puzzle. The equity
premium here is just σ2, the variance of consumption growth.

The model becomes somewhat more interesting if we introduce state variables that shift
the investment opportunity set. That is the case CIR focus on.
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For example, suppose productivity depends on an exogenous diffusion process, A(X),
where dX = g(X)dt+ σxdBx.

As discussed last time, this would normally produce a hedging term in the demand
function for risky claims. However, with log utility, we know the hedging term disappears.
The value function depends on X, but it does so separably,

V (X,W ) =
1

δ
log(W ) + f(X)

where f(X) solves a 2nd-order ODE. (See if you can derive it).

Hence, all that matters is the current level of productivity, A(Xt), and we get

rt = A(Xt)− σ2

µt = A(Xt)

CIR use this kind of model to develop a one-factor model of the term structure of interest
rates. Given the exogenous dynamics of Xt we can generate the equilibrium dynamics
of the short-term interest rate, rt. Given this, we can derive long-term bond yields by
evaluating the appropriate expectation. This is especially convenient in continuous-time.

Note that the additional state variable introduces a new source of risk into the economy.
A single equity claim will no longer be sufficient to complete the market. CIR show how
adding (zero net supply) derivative securities can complete the market, thus enabling
our representative agent solution method.
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