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MOTIVATION

Thus far we have assumed that the only uncertainty agents confront is the future
realization of asset returns. More specifically, we’ve assumed agents know the
equations generating these processes. Only the realizations of future exogenous shocks
are unknown. For example, they may not not what the future return will be, but they
know that it is lognormally distributed with a particular mean and variance.

Although these models work well qualitatively, they suffer from several quantitative

shortcomings. For example,
1 Prices are more volatile than predicted.
2 Spreads between risky and safe asset returns are larger than predicted.
3 Investors hold fewer risky assets than predicted.

A natural suspect in these failures is the assumption that investors know the distribution
of future returns. The usual defense for this kind of assumption is history, i.e., agents
have already undergone a process of adaptive learning.

But people don’t live forever, they may trust their own experiences more than their
ancestors’, and the world may be constantly changing. So what if this learning process
hasn’t finished yet, or what if it is perpetually ongoing?
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We shall see that learning provides a plausible explanation of excess volatility and low
market participation. It is somewhat less successful in explaining Sharpe ratios and the
Equity Premium Puzzle.

However, there are many ways to introduce learning into asset pricing models, and today
we only study the simplest. We continue to assume agents have identical time-additive
CRRA preferences, and although learning is a natural source of heterogeneous beliefs,
today we continue to assume a representative agent. We also continue to assume
agents ‘know the model’. They just don’t know one or more of its parameters. We study
model uncertainty, heterogenous beliefs, and recursive preferences in future lectures.

Beliefs about the parameters are assumed to be updated using Bayes Rule. Although
Bayesians have staked out the high moral ground by calling this ‘Rational Learning’,
there is an active literature exploring the implications of other types of learning. These
alternative learning strategies are only ‘irrational’ relative to a (questionable) set of
axioms.

Conceptually, our job is straightforward. All we need to do is replace objective
probabilities with subjective beliefs. In continuous-time, this reduces to a simple
Girsanov transformation, which alters a model’s drift process. Parameters describing an
agent’s beliefs now become (hedgeable) state variables. We’ve already encountered this
sort of thing.

The only new tool we need is to figure out how to keep track of the evolution of beliefs.
That is, we need to derive the law of motion for these new state variables.
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TWO WORKHORSE FILTERS

Beliefs are described by a probability distribution. Learning involves updating this
distribution in response to new information. In general, probability distributions are
infinite-dimensional. Updating infinite-dimensional objects isn’t easy.

99% of the Bayesian learning literature in macro-finance uses one of two workhorse
specifications that make this updating process mathematically tractable:

1 Kalman Filter: Gaussian noise corrupted signals of an unobserved
continuous-state Gaussian process.

2 Wonham Filter: Gaussian noise corrupted signals of an unobserved discrete-state
Markov chain with constant transition probabilities.

Perhaps not surprisingly, the Gaussian distribution figures prominently in both. A
Gaussian distribution is fully characterized by only two parameters, the mean and the
variance.

Often it is more natural to assume the hidden state can assume a continuum of values
(e.g., an unknown mean return). This points to the Kalman filter. Unfortunately, the
Kalman filter has the property that uncertainty about parameters monotonically
decreases over time. Hence, the Kalman filter is not useful for modeling events that
cause uncertainty to increase. In contrast, the Wonham filter easily accommodates this
feature, and so has been increasingly used in the macro-finance literature.
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A LIMITATION OF CONTINUOUS-TIME

In continuous-time learning models, at least those based on Brownian motion, we
assume agents only have to learn about drift parameters. Volatility parameters are
assumed known.

This is because continuous observations of returns permit agents to obtain noiseless
estimates of σ, using even an arbitrarily short sample length. This is due to the highly
volatile nature of dB, which is effectively the ‘explanatory variable’ when estimating σ.
(Remember, variation in explanatory variables leads to more precise parameter
estimates).

For example, suppose dSt/St = µdt+ σdBt. Then note that(
dSt
St

)2
= σ2dt+ o(dt). Hence,

1

T

∫ T
0

(
dSt

St

)2

=
1

T

∫ T
0
σ2dt = σ2

and this is true for any T ≥ dt!

The fact that agents know σ creates challenges for continuous-time learning models to
explain things like Sharpe ratios and risk prices, since these depend on volatilities and
covariances.
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JENSEN’S INEQUALITY

We are used to thinking of uncertainty as ‘bad’, with price depressing effects. However,
this isn’t necessarily the case.

When unknown parameters enter valuation formulas nonlinearly, then due to Jensen’s
inequality, uncertainty about parameter estimates influences prices. If the mapping
between prices and parameters is convex, then parameter uncertainty will actually
increase prices.

Suppose dividends follow the process, dD/D = gdt+ σdB, and assume agents are
risk-neutral. If g is known then the price is given by

P =
D

r − g

If g is unknown then

P = E

{
D

r − g

}
>

D

r − E[g]

since P is a convex function of g. Some have argued that this explains the dotcom
boom of the late 1990s, since this was an era of increased growth uncertainty. Pastor &
Veronesi (JF, 2003) argue that this explains why Market/Book ratios decline with firm
age (because there is more uncertainty about young firms).

Of course, with risk aversion, uncertainty is always bad, so the net effect will depend on
a race between Jensen’s inequality and risk aversion. The race is a tie for a log utility
investor.
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A DISCRETE-TIME REFRESHER

The continuous-time Kalman filter is a straightforward generalization of the discrete-time
Kalman filter, which you (hopefully) already know. (The continuous-time version is often
called the ‘Kalman-Bucy filter’).

Suppose you want to estimate an unknown constant, θ, given a sequence of observed
signals, st = θ + εt, where εt i.i.d. N(0, σ2). Assume your prior is N(θ0, σ2

0).

After observing t signals your posterior is N(θ̂t, σ̂2
t ),

θ̂t =

 1
σ2
0

1
σ2
0

+ t
σ2

 θ0 +

 t
σ2

1
σ2
0

+ t
σ2

 s̄ 1

σ̂2
t

=
1

σ2
0

+
t

σ2

where s̄ = t−1
∑t
i=1 si. Hence, your posterior is just a precision-weighted average of

your prior and your new information.

This can be written recursively as follows

θ̂t = θ̂t−1 + γt(st − θ̂t−1)

1

σ̂2
t

=
1

σ̂2
t−1

+
1

σ2
⇒ σ̂2

t = σ̂2
t−1 −

(σ̂2
t−1)2

σ2 + σ̂2
t−1

where γt =
σ̂2
t
σ2 is called the Kalman gain. It is just the signal-to-noise ratio.

The Kalman-Bucy filter generalizes this to the case of diffusion processes. Notice that
σ̂2
t declines monotonically.
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THE KALMAN-BUCY FILTER

Now suppose the underlying hidden state, xt, is time-varying, and it follows a diffusion
process. Also suppose we continuously observe a signal, yt, which also follows a
diffusion process:

dxt = Axtdt+ CdBt

dyt = Dxtdt+GdBt

Notice that we are now chasing a moving target. The previous case of learning an
unknown constant is a special case, where A = C = 0.

Importantly, we assume (A,C,D,G) are known matrices. What is unknown is xt. (If
(A,C,D,G) are also unknown, the problem becomes nonlinear and exact solutions
disappear).

Let Ft = filtration generated by {yt}. Denote x̂t = E[xt|Ft] and
Σt = E[(xt − x̂t)(xt − x̂t)′|Ft]. Hence, Σt captures our uncertainty about xt. We
want to derive equations for x̂t and Σt.

As always, it is useful to consider a discrete approximation. Note that
E[xt+ε|xt] ≈ xt + εAxt. Therefore, E[xt+ε|Ft] ≈ x̂t + εAx̂t. We can then
approximate the innovation in xt as follows

xt+ε − x̂t − εAx̂t ≈ (xt − x̂t) + εA(xt − x̂t) + C(Bt+ε −Bt)
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Similarly, we can approximate the evolution of the signal as follows

yt+ε − yt − εDx̂t ≈ εD(xt − x̂t) +G(Bt+ε −Bt)

Since this is an innovation w.r.t. Ft, we can change measures and write

εD(xt − x̂t) +G(Bt+ε −Bt) ≈ Ḡ(B̄t+ε − B̄t)

where B̄t is a Brownian motion w.r.t. Ft. In continuous-time, we know we must have
ḠḠ′ = GG′.

Now, exactly as in the discrete Kalman filter, we want to compute a regression of the
hidden state innovation on the signal innovation

xt+ε − x̂t − εAx̂t = Kt(yt+ε − yt − εDx̂t) + ηt+ε

where the regression coefficient is given by the usual least-squares formula,

Kt = E[(xt+ε−x̂t−εAx̂t)(yt+ε−yt−εDx̂t)
′
]·(E[(yt+ε−yt−εDx̂t)(yt+ε−yt−εDx̂t)

′
])
−1

From the above results we can easily evaluate this

Kt = [εCG′+εΣtD
′+ε2AΣtD

′](εGG′+ε2DΣtD
′)−1 → [CG′+ΣtD

′](GG′)−1

Letting ε→ 0 we get the Kalman-Bucy filter

dx̂t = Ax̂t+Kt(dyt−Dx̂tdt) = Ax̂tdt+KtḠdB̄t Kalman-Bucy Filter
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To compute the evolution of the conditional variance, Σt, notice that

xt+ε − x̂t+ε = (I + εA)(xt − x̂t) +C(Bt+ε −Bt)−Kt(yt+ε − yt − εDx̂t)

Using the fact yt+ε − yt − εDx̂t = G(Bt+ε −Bt) + εD(xt − x̂t) we can write
this as

xt+ε − x̂t+ε = (I + εA− εKtD)(xt − x̂t) + (C −KtG)(Bt+ε −Bt)

Now, if we square both sides, take expectations, and then drop O(ε2) terms we get

Σt+1 = Σt + ε(A−KtD)Σt + εΣt(A−KtD)′ + (B −KtG)(B −KtG)′

Finally, letting ε→ 0, and rearranging gives

dΣt

dt
= AΣt + ΣtA

′ + CC′ −KtGG′Kt

Notice that Σt evolves deterministically (ie, independently from the signals), and that it
monotonically decreases. Uncertainty never increases. Also note that as long as
CC′ 6= 0 (ie, the hidden state is always moving), the steady state value of Σt > 0.
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APPLICATION 1: PORTFOLIO CHOICE

As a simple (univariate) example, let’s revisit the Merton portfolio choice problem, but
relax the assumption that the mean return is known. Suppose the risky asset follows the
process

dSt

St
= µdt+ σdBt

but now the investor doesn’t know µ (but he does know it is constant). He must use
observations of St to learn about it.

Letting (mt, Vt) be his conditional mean and variance of µ, the Kalman filter gives us

dmt =
Vt

σ2

(
dSt

St
−mtdt

)
dVt = −

V 2
t

σ2
dt

By defining the innovation,

dB̂t =
1

σ

(
dSt

St
−mtdt

)
= dBt +

(
µ−mt

σ

)
dt

we can write the perceived asset price process in terms of the investor’s observed
filtration,

dSt

St
= mtdt+ σdB̂t
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The problem is now the same as before, except now the time-varying state variables
(mt, Vt) enter the value function. Since Vt is deterministic, it does not create a hedging
demand, and we can capture its influence simply by including t as a state variable.

One can readily verify that the value function is homogeneous in W as before, and has
the functional form

J(W,m, t) =
1

1− γ
W 1−γH(m, t)

After optimizing out C and canceling out W we get the following PDE for the unknown
function H(m, t)

0 = max
α

{
Ht + [(1− γ)(r + α(m− r))−

1

2
γ(1− γ)α2

σ
2
]H + (1− γ)αVtHm

+
1

2

V 2

σ2
Hmm

}

s.t. the boundary condition H(m,T ) = 1. Note: if γ = 1 then H(m, t) = 1 ∀t.

The FOC for the risky portfolio share is

α =
mt − r
γσ2

+
Vt

γσ2

Hm

H
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Observe that learning produces two changes in the portfolio:

1 The myopic/tangency portfolio is now time-varying. The agent engages in a
momentum/trend-chasing strategy, in which higher returns increase share
demand because they increase the estimate of the mean return, mt.

2 The 2nd component is a hedge against future changes in expected returns. It
reflects estimation risk. The sign of the hedging component is ambiguous.
Because Jm = 1

1−γW
1−γHm > 0, we know sign(Hm) =sign(1− γ). If the

agent is relatively risk averse (γ > 1), he will reduce his holdings the risky asset.
In this case, changes in expected returns are negatively correlated with the
marginal value of wealth. Low returns not only make you poorer and more
pessimistic about the future, but they also occur when wealth is especially
valuable to you.

Note that the strength of the hedging component depends on the agent’s confidence, as
measured by Vt. If the agent lacks confidence about the mean return and so Vt is large,
then demand for the risky asset can be greatly discouraged if the agent is relatively risk
averse (γ > 1). However, also note that if µ is constant, Vt → 0, and so the hedging
component ultimately disappears. (From the law of large numbers, we also know
mt → µ, so asymptotically the portfolio converges to the Merton portfolio.)

Results like these can perhaps explain why investors seem to invest too little in risky
assets. In fact, the entire ‘financial literacy’ literature can be interpreted as an extension
of this basic insight. Lack of knowledge discourages risk taking. (Of course, this is a
partial equilibrium model. Somebody has to hold the risky asset, so to make this work in
general equilibrium requires the introduction of some heterogeneity).
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APPLICATION 2: EQUILIBRIUM ASSET PRICES

Let’s now reverse what is exogenous and what is endogenous. Following
Lucas/Breeden, assume consumption/dividends following the exogenous process

dDt

Dt
= µdt+ σdBt

However, unlike Lucas/Breeden, let’s suppose agents don’t know µ, and they must learn
about it by observing the realization of dividends. They do this using the Kalman filter,
exactly as before. Our task is to compute equilibrium, market-clearing, asset prices.

Suppose markets are complete and agents have identical CRRA preferences. The
unique SDF is then given by Mt = e−δtD−γt , and equilibrium prices are given by

St =
1

Mt
E

[∫ T
t
MsDsds|Ft

]
= D

γ
t E

[∫ T
t
e−δ(s−t)D1−γ

s ds|Ft
]

With respect to the agent’s own information filtration, Ft, dividends are given by

log(Ds) = log(Dt) +

(
mt −

1

2
σ2

)
(s− t) + σ(B̂s − B̂t)

where as before we’ve replaced the unknown drift, µ, with its current estimate, mt, and
changed probability measures from dB to dB̂.
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From this it follows,

Et log(Ds) = log(Dt) +

(
mt −

1

2
σ2

)
(s− t)

vart[log(Ds)] = σ2(s− t) + Vt(s− t)2

Note that we have used the fact that mt is a martingale under Bayesian updating, so
that Etms = mt.

Using standard properties of the lognormal distribution we then have

EtD
1−γ
s = exp

{
(1− γ)

[
log(Dt) +

(
mt −

1

2
σ

2
)

(s− t)
]
+

1

2
(1− γ)2

[
σ

2
(s− t)

+Vt(s− t)2
]}

Defining ψt ≡ (1− γ)
(
mt − 1

2
γσ2

)
− δ, we can then write the equilibrium price as

St = DtF (mt, t) = Dt

∫ T
t

exp

[
ψt(s− t) +

1

2
(1− γ)2Vt(s− t)2

]
ds
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Applying Ito’s lemma to this we can derive a diffusion process for S,
dS
S

= µs,tdt+ σs,tdB̂t, where

µs,t = mt − ψt −
1

F (mt, t)
+ (1− γ)Vt

Fm(mt, t)

F (mt, t)

σs,t = σ

[
1 +

Vt

σ2

Fm(mt, t)

F (mt, t)

]

where

Fm(mt, t) = (1− γ)

∫ T
t

(s− t) exp

[
ψt(s− t) +

1

2
(1− γ)2Vt(s− t)2

]
ds

so that sign(Fm) =sign(1− γ).

Comments

1 Note that when agents learn, the Price/Dividend ratio [given by the function F (mt, t)]
fluctuates over time, even if the true (unobserved) µ is constant. Also, because mt

mean-reverts, the P/D ratio mean reverts. These are both properties of the data that the
benchmark Lucas/Breeden model cannot explain, so they represent notable successes
of the learning model.
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2 However, note that the sign of the effect of mt on the P/D ratio is ambiguous. If γ < 1,
then we get the intuitive result that optimism about dividend growth increases the P/D
ratio. On the other hand, if γ > 1, then optimism about dividend growth lowers the P/D
ratio. This ambiguity reflects the dual role of dividends in general equilibrium. Higher
dividends increase the cash flows from holding the asset, so by itself, this raises the
value of the asset (the ‘numerator effect’). However, higher dividends raises the
equilibrium discount rate (remember Mt ∼ D−γt ) and so makes those increased cash
flows less valuable (the ‘denominator effect’). If γ > 1 the discount rate effect
dominates. This is sometimes regarded as a problem, since γ > 1 is viewed as the
empirically more relevant case.

3 A similar ambiguity appears in the model’s predicted equity premium. The riskless rate
takes the usual form

rt = δ + γmt −
1

2
γ(1 + γ)σ2

with mt in place of the unobserved µ. Note that it is now time-varying. Given this, we
can derive the following expression for the equity premium

µs,t − rt = γσ2

[
1 +

Vt

σ2

Fm(mt, t)

F (mt, t)

]

Since sign(Fm) =sign(1− γ), if γ > 1 then learning reduces the equity premium.
Likewise, since σs,t = σ

[
1 + Vt

σ2
Fm(mt,t)
F (mt,t)

]
, return volatility is lower with learning

when γ > 1.
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4 Intuitively, when γ > 1 the denominator effect is countervailing the numerator effect in
response to changes in mt. Because stock prices are less volatile, they earn a lower
risk premium.

5 Interestingly, the declines in µs,t and σs,t exactly offset each other, so that the Sharpe
ratio, or ‘price of risk’, remains unchanged in the presence of learning

µs,t − rt = γσ2

[
1 +

Vt

σ2

Fm(mt, t)

F (mt, t)

]
= γσσs,t ⇒

µs,t − rt
σs,t

= γσ

Remember, in continuous-time, learning only affects the conditional mean of
fundamentals, not the volatility. In this representative agent economy, learning does not
affect the quantity of risk the agent must bear, so the price of risk doesn’t change.

6 Finally, note that when µ is constant, the agent eventually learns it (due to the law of
large numbers). All of these effects eventually dissipate as (mt, Vt)→ (µ, 0).
Fortunately, this is easily remedied. All we need to do is assume the true µ is
time-varying. For example, if we assume dµt = σµdB

µ
t , then the only change we

need to make in the Kalman filter is in the update equation for Vt

dVt =

(
σ2
µ −

V 2
t

σ2

)
dt

and so now in the steady state Vt → σσµ. The previous fomulas apply if we simply
modify our expression for vart[log(Ds)]

vart[log(Ds)] = σ2(s− t) + Vt(s− t)2 +
1

3
σ2
µ(s− t)3
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THE WONHAM FILTER

A significant drawback of the Kalman filter is that it does not accommodate ‘black
swans’, i.e., events that increase uncertainty. In the Kalman filter, uncertainty
monotonically decreases.

In response, researchers in macro-finance have increasingly used an alternative
framework, based on noisy observations of an underlying discrete-state Markov Chain.
These are sometimes called ‘regime-switching’ models. In continuous-time, this
produces the Wonham filter.

The Wonham filter is actually easier to work with, since we don’t need to keep track of a
separate conditional variance estimate. With discrete hidden states, current state
probabilities capture both the conditional mean and variance.

As with the Kalman filter we suppose we observe noisy signals of an underlying hidden
state

dyt = xtdt+ σdBt

The only difference is that now xt can only assume one of N values. It is convenient to
define the coordinate vector zt, whose ith element equals 1 if state-i occurs at time-t
and equals 0 otherwise. We can then represent xt as µ · zt, where µ is a 1×N row
vector representing the values that xt takes in each state. Note that ẑt = Et(zt) gives
the vector of conditional state probabilities.
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In continuous-time we write the state transition matrix as exp(εA). The ‘intensity
matrix’ A contains the state transition rates. Its diagonal elements are negative, and its
rows sum to 0.

If we approximate exp(εA) ≈ 1 + εA, and then proceed exactly as before when
deriving the Kalman filter, we obtain the following diffusion process for the conditional
state probabilities

dẑt = A′ẑtdt+K(ẑ)(dyt − µ · ẑtdt)

where, as before, the matrix K(ẑ) is the coefficient matrix from the (local) regression of
the hidden state onto the signal. It is given by

K(ẑ) =
1

σ2
[diag(ẑt)− ẑtẑ′t]µ′

As in the Kalman filter, we can define the change of measure

dB̂t = µ · (zt − ẑt) + dBt

where dB̂t is a Brownian motion with respect to the agent’s filtration. We can then write
the signal process in terms of observables

dyt = µ · ẑtdt+ σdB̂t
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APPLICATION 1: EQUILIBRIUM ASSET PRICES

As an application, let’s revisit the Lucas/Breeden model with an unobserved dividend
growth rate.

dDt

Dt
= µdt+ σdBt

However, now suppose there are only two growth states, µ1 > µ0, so that state 1 is the
‘good’ state. Assume the transition rate from state 1 is λ1, and the transition rate from
state 0 is λ0.

Let z be the indicator for state 1, so that ẑt is the time-t conditional probability of µ1, the
high-growth state. Applying the Wonham filter we get the following diffusion for ẑt

dẑt = −(λ0 + λ1)

[
ẑt −

λ0

λ0 + λ1

]
dt+

µ1 − µ0

σ
ẑt(1− ẑt)dB̂t

Note that λ0/(λ0 + λ1) is the unconditional probability of being in state 1. Hence, the
drift term produces mean reversion to this long-run level. The bigger the transition rates,
the stronger the mean reversion.

The innovation dB̂t is given by

dB̂t =
1

σ

(
dDt

Dt
− [µ1ẑt + µ0(1− ẑt)]

)
so that whenever dividends grow faster than expected, you increase the probability of
state 1.
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The really interesting and novel aspect of this belief revision process is that the
responsiveness to new information depends on the agent’s current state of confidence.

If the agent lacks confidence about the current state, ẑt ≈ 1
2

, and the term ẑt(1− ẑt)
is relatively large. Hence, beliefs will change quickly. Conversely, if the agent is currently
confident about the state, ẑt(1− ẑt) will be small, and it will take many ‘surprises’
before he significantly changes his beliefs.

Since beliefs are constantly fluctuating in response to ongoing fluctuations in µ, we
obtain an endogenous source of stochastic volatility. Learning causes volatility in the
mean to produce volatility in the variance.

As always, the stock price is just the expected value of future dividends, scaled by the
SDF process

St = DtE

[∫ ∞
t

e−δ(s−t)
(
Ds

Dt

)1−γ
ds|Ft

]
Given the time-homogeneous 2-state Markov process for dividend growth, we only need
to evaluate this conditional expectation for two values, depending on whether you’re
currently in state 1 or in state 0.

Let πi = E

[∫∞
t e−δ(s−t)

(
Ds
Dt

)1−γ
ds|zt = i

]
. Note that it is a constant. To

compute these constants we must solve two ODEs. (See if you can derive and solve
them). However, we don’t need to solve them to know that π1 > π0.
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Hence, we obtain the following simple expression for the Price/Dividend ratio

St

Dt
= (1− ẑt)π0 + ẑtπ1

Note that it is time-varying, so again, learning can help us understand fluctuations in
Price/Dividend ratios.

Using our previous update equation for the state probability, dẑt, we get

d

(
St

Dt

)
= (π1−π0)

{
−(λ0 + λ1)

[
ẑt −

λ0

λ0 + λ1

]
dt+

µ1 − µ0

σ
ẑt(1− ẑt)dB̂t

}

Finally, since the volatility of dS/S equals the volatility of dD/D plus D/S times the
volatility of d(S/P ), we get

σs,t = σ +
(π1 − π0)(µ1 − µ0)

σ
·

ẑt(1− ẑt)
(1− ẑt)π0 + ẑtπ1

> σ

Hence, this simple model can account for both excess and stochastic volatility. Since
π1 > π0, note that the denominator is smaller when the conditional probability of being
in the low growth state is relatively high. This is consistent with the observation that
volatility is higher during downturns (sometimes called the ‘leverage effect’).
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