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MOTIVATION

Observed risk premia and return volatility require volatile SDFs. In traditional models,
SDF = Mt ∼ e−δtU ′(Ct) = e−δtC−γt .

When discussing the CCAPM we showed that a volatile SDF could be generated by
making Ct volatile. This required a particular sort of idiosyncratic consumption/labor
income risk. Last week we generated a volatile SDF by introducing state variables that
index an agent’s beliefs, which fluctuate due to learning.

Today we explore another possibility. We abstract from incomplete markets and learning,
and instead relax the assumption of time-separability, so marginal utility, U ′(C),
depends on things besides current consumption. This allows U ′(C) to be much more
volatile than C. With additive preferences, the only way to achieve this is to make risk
aversion large.

There are 2 basic strategies for doing this:
1 Habit Persistence. MU depends on past consumption.
2 Recursive Preferences. MU depends on expected future consumption.

Today we study the 2nd strategy, recursive preferences.
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DRAWBACKS OF TIME-ADDITIVE PREFS

The assumption of time-additive preferences has no compelling theoretical justification.
Its widespread use is based solely on mathematical convenience.

Unfortunately, this convenience comes at a cost. Time-additive/Expected Utility

preferences impose several restrictions:
1 It implies that the Elasticity of Intertemporal Substitution (EIS) is the reciprocal of

the Coefficient of Relative Risk Aversion (RRA). Consider the following 2-period
example

U(C0, C1) =
1

1− γ
C

1−γ
0 + δE0

[
1

1− γ
C̃

1−γ
1

]
We already know RRA = −CU ′′/U ′ = γ. The EIS is just the percentage
change in consumption growth in response to a 1 percent change in the (riskless)
rate of return:

EIS =
d ln(C1/C0)

d ln(1 + r)
=

d ln(C1/C0)

d ln(U ′(C0)/U ′(C1))
=

1

γ

This is an arbitrary restriction. Why should the willingness to substitute across
dates be related to the willingness to substitute across states? This restriction is
the fundamental cause of the Equity Premium/Risk-Free Rate Puzzle. We need a
high γ to explain the mean return on risky assets, but then this implies a very low
EIS, which generates a very high risk-free rate.
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2 Time-additive/Expected Utility preferences imply an indifference to the timing of the
resolution of uncertainty. Consider the following 2 lotteries

(I) At time 0 a single coin is tossed. If it’s Heads, then Ct = H for all t. If
it’s Tails, then Ct = T for all t.

(II) At each date t a coin will be tossed. If it’s Heads then Ct = H. If
Tails, then Ct = T .

An agent with time-additive/expected-utility preferences will be indifferent to these 2
lotteries, since the expected utility of both is

∞∑
t=1

δt
[

1

2
U(H) +

1

2
U(T )

]

Is this reasonable? Maybe. But maybe not. In the first lottery, uncertainty is resolved
earlier. A basic axiom of expected utility theory is that agents reduce compound
lotteries. This has always been a questionable assumption, but it is especially doubtful in
a dynamic setting. A preference for early/late resolution reflects an unwillingness to
reduce (intertemporal) compound lotteries. The recursive preferences we study impose
expected utility w.r.t. to atemporal lotteries, but relax the expected utility axioms w.r.t.
intertemporal lotteries.

3 As extended by Savage (1954) to the case of subjective probabilites, expected utility
admits no distinction between risk and uncertainty. Many have argued (e.g., Knight &
Keynes) that this distinction is especially important in financial markets. Next week we
shall see that recursive preferences can be reinterpreted in a way that allows this
distinction to be operationalized.
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RECURSIVE PREFERENCES

Despite these drawbacks, time-additive CRRA utility does have a couple of desirable

features, which we want to retain:
1 Dynamic Consistency: This allows us to use DP to characterize optimal behavior.
2 Scale Invariance: CRRA utility has the attractive property that interest rates and

risk premia are stationary in the presence of growth.

Kreps & Porteus (1978) show that dynamic consistency can be preserved while relaxing
time-additivity. They define current utility recursively, using two distinct functions:

Ut = W (Ct,Rt(Ut+1))

The Certainty Equivalent operator,Rt(Ut+1), translates random future utility into
consumption units. The Time Aggregator, W (·), combines current consumption and the
certainty equivalent of future utility into a measure of current utility. The Certainty
Equivalent operator captures risk aversion, while the Time Aggregator captures
intertemporal substitution.

KP show that attitudes toward the timing of the resolution of uncertainty are captured by
the curvature of W w.r.t. to its second argument. If it is convex (W22 > 0) then the
agent prefers early resolution of uncertainty. If it is concave, then the agent prefers late
resolution. This follows from Jensen’s inequality.

Of course, additive preferences are recursive too, and are a special case, i.e, when the
aggregator and certainty equivalent are linear, W (x, y) = U(x) + δy and
Rt(Ut+1) = Et(Ut+1)
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EPSTEIN-ZIN PREFERENCES

Epstein & Zin (1989) develop a special case of Kreps-Porteus preferences, where both
the Time Aggregator and Certainty Equivalent are CES functions

W (x, y) = [(1−δ)x1−ρ+δy1−ρ]1/(1−ρ) Rt(Ut+1) =
[
Et
(
Ut+1

)1−γ]1/(1−γ)

Combining, we can then write EZ preferences as follows:

Ut =

{
(1− δ)C1−ρ

t + δ
[
Et
(
Ut+1

)1−γ](1−ρ)/(1−γ)
}1/(1−ρ)

Note that by design EZ preferences are homothetic, and therefore, scale invariant.

Also note the EZ separates risk aversion from intertemporal substitution: RRA = γ
and EIS = ρ−1. In the special case where ρ = γ we get

U1−γ
t = (1− δ)C1−γ

t + δ
[
Et
(
Ut+1

)1−γ]
After the ordinally equivalent transformation, V = 1

1−γU
1−γ , we get the usual time

additive preferences, Vt = (1− δ) 1
1−γC

1−γ
t + δEtVt+1.

With a tedious application of the chain rule, one can verify that Ut is convex in its second
argument if and only if γ > ρ. Hence, the agent will prefer early resolution of
uncertainty if either (or both) of RRA and EIS are sufficiently large.
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VISUAL SUMMARY

Let ψ = ρ−1 denote the EIS. The above figure shows the sense in which time additive/power
utility is special, i.e., it is a 1-dimensional manifold in a 2-dimensional parameter space, defined
by the hyperbola γψ = 1. EZ preferences allow us to consider separately the special cases of
myopic (horizon independent) portfolio choice (γ = 1) and a constant Consumption/Wealth
ratio (ψ = 1). With power utility, if you want one you must accept the other, which implies log
utility. Note that along the power utility manifold γψ = 1 the agent is indifferent to the
resolution of uncertainty. Above it he prefers early resolution.

KASA ECON 2021 - FINANCIAL ECONOMICS I



THE SDF WITH EZ PREFERENCES

Given our interest in asset pricing, we want to know what EZ preferences imply about
the SDF.

EZ show that it is a combination of the CCAPM SDF, based on consumption growth, and
the classical Sharpe-Lintner SDF, based on the return on the market portfolio.

With EZ prefs we can write the Euler equation as

W1(t) = W2(t)Et[W1(t+ 1)Rt+1]

where subscripts denote partial derivatives of the time aggregator.

In words, giving up a unit of consumption today costs you W1(t) utils. At an optimum,
this should equal the expected utility value of the future payoff, Et[W1(t+ 1)Rt+1],
expressed in units of time-t utility, W2(t)Et[W1(t+ 1)Rt+1].

Hence we can write

Mt+1

Mt
= W2(t)

W1(t+ 1)

W1(t)
=

∂Ut
∂Ut+1

· ∂Ut+1

∂Ct+1

∂Ut
∂Ct
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From the EZ aggregator we get

∂Ut
∂Ct

= (1− δ)C−ρt U
ρ
t

∂Ut
∂Ut+1

= δUρt [Rt(Ut+1)]−ρU−γt+1[Rt(Ut+1)]γ

Hence, we can write the EZ SDF as follows

Mt+1

Mt
=

(1− δ)C−ρt+1U
ρ
t+1δU

ρ
t [Rt(Ut+1)]−ρU−γt+1[Rt(Ut+1)]γ

(1− δ)C−ρt U
ρ
t

= δ

(
Ct+1

Ct

)−ρ [ Ut+1

Rt(Ut+1)

]ρ−γ
EZ SDF

As usual, the SDF increases in response to contemporaneous reductions in
consumption growth. However, notice that when γ > ρ it also increases in response to
negative innovations in anticipated future utility. This injects an additional source of
volatility into the SDF, which helps the model fit the data.

Also note that when γ = ρ the SDF collapses to the standard time-additive SDF.

KASA ECON 2021 - FINANCIAL ECONOMICS I



Remember that a key advantage of the complete markets Lucas/Breeden CCAPM is
that it is based on observable data (albeit of dubious quality). In contrast, the ICAPM
model of Merton (1973) required observable proxies for the marginal value of wealth.

In a sense, the EZ model combines the CCAPM and ICAPM models. When ρ 6= γ we

must find observable proxies for innovations in continuation utility, Ut+1/Rt(Ut+1).

There are 2 approaches:
1 Relate Ut+1/Rt(Ut+1) to the return on the ‘market portfolio’, defined as an

asset that pays aggregate consumption as its dividend. This is the approach
followed by EZ.

2 Use a homoskedastic/log-linear approximation to express the return on the market
portfolio in terms of revisions in expected future aggregate consumption growth.
This has been the approach followed more recently in the long-run risks literature.

For both strategies we need to relate returns on the market portfolio to continuation
utility. To do this, note that the EZ recursion is homogeneous of degree 1 in current
consumption and continuation utility. Hence, if we let MCt ≡ ∂Ut/∂Ct and
MUt+1 = ∂Ut/∂Ut+1 we can use Euler’s Theorem to write:

Ut = MCt · Ct + Et[MUt+1 · Ut+1]

which we can rewrite as
Ut
MCt

= Ct + Et

[
MUt+1MCt+1

MCt
·
Ut+1

MCt+1

]
= Ct + Et

[
Mt+1

Mt
·
Ut+1

MCt+1

]
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Now notice that Ut/MCt can be interpreted as an agent’s wealth. To see this,
remember from our previous discussion of the Martingale Method that optimally
managed wealth can be viewed as an asset that pays consumption as its dividend. If we
let Jt = wealth = Ut/MCt, that’s exactly what the above equation says,

Jt = Ct + Et

[
Mt+1

Mt
· Jt+1

]
where (as always) we use the SDF to discount future payoffs.

By definition, the return on this asset is

Rw,t+1 =
Jt+1

Jt − Ct

Luckily, we’ve already computed MCt, so we can easily compute Jt = Ut/MCt

Jt =
1

1− δ
C
ρ
t (Ut)1−ρ

Therefore, using the EZ recursion, we can write

Jt − Ct =

(
Ct

1− δ

)[(
Ut
Ct

)1−ρ
− (1− δ)

]
=

(
Ct

1− δ

)
δ

[Rt(Ut+1)

Ct

]1−ρ
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Hence, we get the following expression for the return on the market portfolio

Rw,t+1 =
1

δ

(
Ct+1

Ct

)ρ [ Ut+1

Rt(Ut+1)

]1−ρ

This means that if we can observe the return on the market portfolio, we can infer the
innovation in continuation utility (assuming we can also observe consumption growth). In
particular, we can use this expression to substitute out for Ut+1/Rt(Ut+1) in our
previous expression for the SDF

Mt+1

Mt
= δθ

(
Ct+1

Ct

)−ρθ
R
θ−1
w,t+1 θ =

1− γ
1− ρ

Notice when ρ = γ, then θ = 1, and we get back the time-additive SDF.

Also note that when γ > ρ and ρ < 1 we get θ < 1, and so declines in the market
portfolio return produce increases in the SDF. This increases the risk premium, and
therefore this has been the parameterization most often used in empirical work.
(Although this parameterization mutes role of consumption growth, this is offset by the
fact that observed proxies for Rw,t+1 are considerably more volatile than aggregate
consumption growth).
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Of course, the major drawback of this approach is that we don’t observe Rw,t+1. EZ
used the return on an equity index as a proxy, but this is a rather narrow definition (e.g.,
in principle, Rw should include the returns to housing and human capital).

In response, in recent years empirical work has been based on homoskedastic log-linear
approximations, which allow observed consumption growth to replace the unobserved
market portfolio return. To see this, first let x̃t+1 = xt+1 − Etxt+1 denote the
innovation in some variable xt+1. Taking logs of the above expression for the SDF,

m̃t+1 = −θρc̃t+1 − (1− θ)r̃w,t+1

Iterating forward the standard Campbell-Shiller linearization of the return innovation

r̃w,t+1 = ∆Et+1

∞∑
j=0

β
j
∆ct+1+j −∆Et+1

∞∑
j=1

β
j
rw,t+1+j

= c̃t+1 + (1− ρ)∆Et+1

∞∑
j=1

β
j
∆ct+1+j

where ∆Et+1 = Et+1 − Et represents innovations in expectations, and β ≡ [1 + exp(c− w)]−1 is a
linearization constant. The second line uses the fact that the risk premium is constant with homoskedasticity, so that
rw,t = constant + ρEt∆ct+1

If we sub this into the above expression for m̃t+1 we get

m̃t+1 = −γc̃t+1 − (γ − ρ)∆Et+1

∞∑
j=1

β
j
∆ct+1+j
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EZ PREFERENCES IN CONTINUOUS-TIME

As usual, moving to the continuous-time limit confers analytical advantages. The
continuous-time version of EZ preferences is known as Stochastic Differential Utility
(Duffie & Epstein (1992)).

Since the Certainty Equivalent,Rt(Ut+1) = [Et(Ut+1)1−γ ]1/(1−γ), is nonlinear,
Ito’s lemma implies that in the continuous-time limit a variance term will appear. DE
show that this variance term can be avoided by using the ordinally equivalent utility index
Vt = 1

1−γU
1−γ
t . The resulting aggregator is then called a Normalized Aggregator.

(Next time, when discussing robust control, the unnormalized aggregator will appear).

In terms of Vt the EZ recursion takes the form

Vt =
1

1− γ

[(
1− e−δ

)
C

1−ρ
t + e−δ((1− γ)EtVt+1)

1−ρ
1−γ

] 1−γ
1−ρ

Instead of a unit time step, consider an arbitrarily small time step, ε. Solving for
Et[Vt+ε] gives

Et[Vt+ε] =
1

1− γ

[
eδε((1− γ)Vt)

1−ρ
1−γ −

(
eδε − 1

)
C

1−ρ
t

] 1−γ
1−ρ
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Now compute the drift of V by taking limits,

lim
ε→0

Et[Vt+ε]− Vt
ε

= lim
ε→0

[
eδε((1− γ)Vt)

1−ρ
1−γ −

(
eδε − 1

)
C

1−ρ
t

] 1−γ
1−ρ

− (1− γ)Vt

ε(1− γ)

=
δ

1− ρ
[(1− γ)Vt]

ρ−γ
1−γ

[
((1− γ)Vt)

1−ρ
1−γ − C1−ρ

t

]
≡ −f(Ct, Vt)

where the second equality follows from L’Hospital’s rule.

The function f(Ct, Vt) is the continuous-time (normalized) aggregator. Assuming the
transversality condition limT→∞ Et[VT ] = 0 holds, we can integrate dV forward to
get the following expression for the value function,

Vt = Et

∫ ∞
t

f(Cs, Vs)ds

Again, in the special case ρ = γ, the nonlinearity disappears and the aggregator
becomes f(C, V ) = δ

[
1

1−γC
1−γ − V

]
, which gives us the usual time separable

preferences

Vt = δEt

∫ ∞
t

1

1− γ
C1−γ
s e−δ(s−t)ds

KASA ECON 2021 - FINANCIAL ECONOMICS I



Because SDU preferences are recursive, we can use DP as usual to characterize
optimal consumption/portfolio decisions. In fact, the only change we need to make to our
previous analysis of the Merton problem is to replace U(C) with f(C, V ) in the HJB
equation! [Exercise: Show that if µ, r, and σ are constant, recursive preferences still
produce the myopic optimal portfolio, α = (µ− r)/γσ2. Hence, when the investment
opportunity set is constant, portfolio choice is independent of the EIS. Is this still true in
general equilibrium? How would the EIS influence r? How would it change µ?]

Although the previous analysis implicitly assumed ρ 6= 1 and γ 6= 1, by subtracting
appropriate scaled constants from the utility function, the analysis can be extended to
these cases as well. One that is often used in practice is the EIS = 1 case, pertaining
to ρ = 1. One can readily verify that in this case the (normalized) aggregator becomes

f(C, V ) = δ(1− γ)V

[
log(C)−

1

1− γ
log((1− γ)V )

]

In this case the consumption/wealth ratio is constant (C = δW ), for all values of the
risk aversion coefficient, γ. Hence, we can use γ to influence the portfolio/risk premium,
without disturbing the savings rate (which remains constant when ρ = 1).

For asset pricing we need to compute the SDF. Although we could take continuous-time
limits of the previously derived discrete-time SDF, it is easier and more illuminating to
consider a classic perturbation/variational argument.
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As always, we can think of the equilibrium price of an asset as the change in the
expected present value of utility that buying or selling the asset enables

Pt = Et[(βU
′(Ct+1)/U ′(Ct)) ·Xt+1]

To extend this intuition to continuous time with nonseparable preferences, consider the
following perturbed value function

V
η
t = Et

[∫ ∞
t

f(Cs + ηXs, V
η
s )ds

]

where η is the perturbation parameter.

Next, define the ‘utility gradient’ as the following limit

dVt = lim
η→0

V
η
t − Vt
η

= lim
η→0

Et

[∫ ∞
t

1

η
[f(Cs + ηXs, V

η
s )− f(Cs, Vs)]ds

]
= Et

[∫ ∞
t

[fc(Cs, Vs)Xs + fv(Cs, Vs)dVs]ds

]

where subscripts denote partial derivatives.
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Solving this equation gives us

dVt = Et

[∫ ∞
t

exp

(∫ s
t
fv(Cu, Vu)du

)
fc(Cs, Vs)Xsds

]
Note that this is just an asset pricing equation, with Xs as the payoff stream and the
following expression as the SDF

Mt = exp

[∫ t
0
fv(Cs, Vs)ds

]
fc(Ct, Vt)

In the special time-additive case, where ρ = γ, we know f(C, V ) = U(C)− δV , so
that fv = −δ and fc = U ′(C). Thus, we get back our old friend,
Mt = e−δtU ′(C). Note that in the more general nonlinear case, the partial derivative
of the aggregator w.r.t. continuation utility plays the role of the rate of time preference.
This goes back all the way to Koopmans (1960).

As always, pricing is determined by the drift and volatility of Mt,
dM/M = −rtdt− κtdB, where rt is the riskless rate and κt is the price of risk.
From above,

d logMt = fv(Ct, Vt)dt+ d log fc(Ct, Vt)

so that the diffusion coefficient of dM/M , and hence the price of risk, is determined by
the diffusion coefficient of d log fc(Ct, Vt). Notice that this will now depend on the
dynamics of continuation utility, V , and not just consumption. This is where the long-run
risk literature comes in.
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LONG-RUN RISKS

In a very influential paper, Bansal & Yaron (JF, 2004) combined EZ preferences with an
environment featuring ‘long-run risk’, i.e., persistent changes in consumption growth and
stochastic volatility. They discovered that their model could match many features of
observed asset market data.

The innovation in their paper was the interaction between nonseparable preferences and
long-run risk. Previous researchers had applied EZ preferences, but only in i.i.d
environments. The only real benefit was to mitigate the Risk-Free Rate Puzzle, by
separating risk aversion from intertemporal substitution. Very high risk aversion was still
needed to explain risky asset returns. Likewise, previous researchers had studied
environments with changing consumption growth, but always with time-additive CRRA
preferences, where such growth rate risk is unpriced.

To see why it is the interaction that is crucial, let’s return to our previous expression for
the log-linearized SDF

m̃t+1 = −γc̃t+1 − (γ − ρ)∆Et+1

∞∑
j=1

βj∆ct+1+j

Notice that revisions in expectations about future consumption growth are irrelevant with
separable preferences (γ = ρ). At the same time, notice that even if γ 6= ρ, the
implications of the model collapse to those of the additive/CRRA model if consumption
growth is i.i.d., since then beliefs about future consumption growth never change.
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One way to interpret this interaction is in terms of the timing of the resolution of
uncertainty. Note that if revisions about consumption growth are to make assets riskier,
we must have γ > ρ, or in terms of the IES ψ = ρ−1, ψγ > 1. From our earlier
discussion we know that this parameter configuration signals a preference for the early
resolution of uncertainty. Growth rate uncertainty implies risk is resolved slowly, and EZ
agents with γ > ρ don’t like this, and so require a return premium for bearing such risk.

The following four log-linearized equations are the heart of the BY model:

∆ct+1 = µc + xt + σtεc,t+1

xt+1 = ρxt + φxσtεx,t+1

σ2
t+1 = σ̄2 + ν(σ2

t − σ̄2) + σwwt+1

∆dt+1 = µd + φxt + φσtut+1 + πσtεd,t+1

The important variable here is xt, which captures stochastic consumption (and
dividend) growth. To both fit the data and explain asset prices, these growth rate
fluctuations must be persistent. BY set ρ = .98 per month, implying a half-life of
expected consumption growth of 2-3 years.

In order to capture the cyclicality of risk premia and price/dividend ratios, BY find that it
is important to allow stochastic volatility. As with the conditional mean, these volatility
fluctuations must be persistent. BY set ν = .99.
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RESULTS

Of course, the other two important parameters are γ and ρ−1 = EIS. BY find that in
order to match the risk-free rate and the cyclical covariance between volatility and asset
prices, the EIS must exceed unity. They set it to EIS = 1.5. Given this, they see how
large γ must be to approximate the observed equity premium.

The model is solved both numerically and using log-linear approximations. The following
table displays the key results, based on data from the USA for the period 1929-1998.

Variable Data γ = 10/IES = 1.5 γ = 7.5/IES = 1.5

E(rm − rf ) 6.33 6.84 4.01
E(rf ) 0.86 0.93 1.44
σ(rm) 19.42 18.65 17.81
σ(rf ) 0.97 0.57 0.44

E[exp(p− d)] 26.56 19.98 25.02
σ(p− d) 0.29 0.21 0.18
β(3)/R2 −0.37/0.19 −0.47/0.10 —

BY distinguish between consumption and dividends (implicitly allowing for labor income).
The leverage ratio parameter is set to φ = 3. rm refers to the return on the ‘market
portfolio’, defined as a claim to the dividends on the CRSP value-weighted market
portfolio.

The bottom row displays the regression coefficient and R2 from a regression of 3-year
excess returns on the price/dividend ratio.
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CAVEATS

At the time of publication, BY’s results were the most positive yet obtained in the
macro-finance literature. They have been replicated many times.

Still, many have raised questions about the plausibility of the underlying assumptions
(Beeler & Campbell (2012) provide a detailed discussion):

1 Evidence in favor of both stochastic growth and stochastic volatility in aggregate
consumption data is weak. Although the data don’t strongly reject the BY
specification, nor do they strongly support it.

2 The assumption EIS > 1 is crucial to the results, but most other empirical work
(especially with micro data) finds that EIS < 1.

3 In the model, long-term bonds are a good hedge against changes in expected
future consumption growth, since a decrease in expected consumption growth
lowers interest rates and raises bond prices. This produces a downward-sloping
yield curve, which is inconsistent with the data.

4 The model predicts that price/dividend ratios should not only forecast returns, but
should also forecast volatility. There is little evidence for this in the data.
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AN INTERESTING BOUND

Although direct evidence of a persistent growth component is hard to detect in
consumption data, Alvarez & Jermann (2005) argue that long-term bond yields indicate
that such components must be present in SDFs. In fact, they argue that approximately
80% of the innovation variance of Mt is due to innovations in a permanent component.

By definition, the time-t price of T -period zero coupon (real) bond is

Rt(T ) =
Et(Mt+T )

Mt

Hence, long-term bond yields provide information about long-horizon expectations of the
SDF.

Assuming the limit exists, define

pt = lim
T→∞

Et(Mt+T )

Given this we can define the following permanent/transitory decomposition

Mt = ptM
∗
t

From the law-of-iterated expectations, pt is a martingale

dpt

pt
= σ′pdBt

where dB is a vector of underlying shocks.
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The diffusion process for the stationary component can be written

dM∗t
M∗t

= µM∗,tdt+ σ′M∗,tdBt

As always, the drift component of dM/M gives the riskless rate. Applying Ito’s lemma
to M = pM∗ we get

rt = −µM∗,t − σ′p,tσM∗,t and σM,t = σp,t + σM∗,t

Now consider a hypothetical∞-maturity bond. Its price is given by

Rt(∞) = lim
T→∞

1

Mt
Et(Mt+T ) =

pt

Mt
=

1

M∗t

Hence, long-horizon bond yields reveal the stationary component of Mt. Applying Ito’s
lemma, we find σR(∞),t = −σM∗,t. Also, as usual, the risk premium is the
covariance of dM/M and dR(∞)/R(∞)

µR(∞),t − rt = −σ′R(∞),tσM,t
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Using the previous result that σM = σp + σM∗ , we have

1

2
(σ′p,tσp,t) =

1

2
(σM,t − σM∗,t)′(σM,t − σM∗,t)

=
1

2

[
σ′M,tσM,t − 2σ′M∗,tσM,t + σ′M∗,tσM∗,t

]

However, from the continuous-time Hansen-Jagannathan bound we know

σ′M,tσM,t ≥ σ
2
hj,t = (µt − rt · ι)′Σ−1

t (µt − rt · ι)

Finally, using the fact that σ′M∗,tσM,t = µR(∞) − rt and σ′M∗σM∗ = σ2
R(∞)

we
obtain the following bound

1

2
σ′p,tσp,t ≥

1

2
σ2
hj,t −

[
µR(∞), − rt −

1

2
σ2
R(∞)

]

US data suggest σhj,t ≈ .4 for annual returns. At the same time, the premium on
30-year (log) bond returns is about 2%. This implies σp ≥ .346, or about 85% of the
total volatility of dM/M !
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