NEW YORK UNIVERSITY

Department of Economics

PROBLEM SET 2

(Due October 15)

Each of the following questions is worth 10 points.

1. This question asks you to numerically validate the total and quadratic variation properties of Brownian motion. Simulate a continuous-time Brownian on the unit interval $[0,1]$ by dividing the interval into N equal subintervals, $\Delta t=1 / N$. Discretize the path of Brownian motion as follows: $B_{t_{i}}=B_{t_{i-1}}+\varepsilon_{i} \sqrt{\Delta t}$, with $\varepsilon_{i} \sim N(0,1)$ and $B_{0}=0$. Perform the simulation for $N=20,100,1000$.
(a) Plot the paths of $B_{t_{i}}$.
(b) For each path, approximate the quadratic variation by calculating the sum of $\left(\Delta B_{t_{i}}\right)^{2}$, and confirm that for large N it converges to 1 .
(c) Calculate the total variation by calculating the sum of $\left|\Delta B_{t_{i}}\right|$. Confirm that it increases with N.

2. Ito's Lemma Practice.

(a) Use Ito's lemma to verify that $X_{t}=X_{0} e^{\left(\mu-\sigma^{2} / 2\right) t+\sigma B_{t}}$ is the solution to $\operatorname{SDE} \frac{d X}{X}=\mu d t+\sigma d B_{t}$, where μ and σ are constants.
(b) Given the $\operatorname{SDE} \frac{d X}{X}=\mu d t+\sigma d B_{t}$, use Ito's lemmas to calculate $d Y$ for $Y=X^{\alpha}$.
(c) Let B_{t} be a Brownian motion, and assume $X_{t}=B_{t}^{2}$. Use Ito's lemma to find a SDE for X_{t}.
(d) Let B_{t} be a Brownian motion, and assume $X_{t}=2+t+e^{B_{t}}$. Use Ito's lemma to find a SDE for X_{t}.
(e) Solve the Ornstein-Uhlenbeck $\mathrm{SDE}, d X_{t}=-\mu X_{t} d t+\sigma d B_{t}$. Use the solution to compute $E\left[X_{t}\right]$ and $\operatorname{var}\left[X_{t}\right]=E\left[\left(X_{t}-E\left[X_{t}\right]\right)^{2}\right]$. (Hint: Multiply both sides by the integrating factor $e^{\mu t}$ and use Ito's lemma to compare with $\left.d\left(e^{\mu t} X_{t}\right)\right)$.
3. Martingale Scaling. Assume X_{t} follows the Ito process, $d X_{t}=\mu_{t} d t+d B_{t}$. Define the scaled process $Y_{t}=M_{t} X_{t}$, where

$$
M_{t}=\exp \left(-\int_{0}^{t} \mu_{s} d B_{s}-\frac{1}{2} \int_{0}^{t} \mu_{s}^{2} d s\right)
$$

Use Ito's lemma to compute $d Y$ and show that it is a (local) martingale. State the conditions that must be satisfied for Y_{t} to be well defined.
4. Betting on a Brownian motion. In class we discussed why ruling out arbitrage in continuous-time required restrictions on portfolio/betting strategies. This question considers a variant of the doubling strategy we studied. Let B_{t} be a Brownian motion, and define the stopping time $\tau=\inf \left\{t \geq 0: B_{t}=\right.$ $1\}$. We showed in class that $P[\tau<\infty]=1$. Given this, consider the simple strategy of betting a fixed amount until $B_{t}=1$. This also seems like a sure bet. Can you see any difference from the doubling strategy? Explain your reasoning both intuitively, and more formally using the distinction between martingales and local martingales. (Hint: Is it still the case here that $E_{0}\left[B_{\tau \wedge t}\right]=1$?).
5. The Feynman-Kac Formula. There is a close relationship between 2nd-order partial differential equations and conditional expectations of diffusion processes. This relationship is revealed by the Feynman-Kac formula. The FK formula is widely used in financial economics.

Consider the scalar diffusion process

$$
d X_{t}=\mu\left(X_{t}, t\right) d t+\sigma\left(X_{t}, t\right) d B_{t}
$$

Suppose we want to compute the expected terminal payoff $G\left(X_{T}\right)$ at some future date T, given the current value of the process (e.g., we want to value an option)

$$
g(x, t)=E\left[G\left(X_{T}\right) \mid X_{t}=x\right]
$$

Prove that g can be obtained by solving the following 2nd-order (linear) PDE

$$
0=g_{t}(x, t)+g_{x}(x, t) \mu(x, t)+\frac{1}{2} g_{x x}(x, t) \sigma^{2}(x, t)
$$

with boundary condition, $g(x, T)=G(x)$.
(Hint: Use the law of iterated expectations to write

$$
\begin{aligned}
g(x, t) & =E\left[E\left[G\left(X_{T}\right) \mid X_{t+d t}\right] \mid X_{t}=x\right] \\
& =E\left[g\left(X_{t+d t}, t+d t\right) \mid X_{t}=x\right]
\end{aligned}
$$

and then use Ito's lemma to write $g\left(X_{t+d t}, t+d t\right)$ in terms of $g(x, t)$ and its derivatives).
6. Stochastic Growth with CARA utility. In class we solved a stochastic growth model with CRRA utility. This problem asks you to solve a stochastic growth model with CARA preferences.

Consider an agent who wants to solve the following problem

$$
\max _{c} E \int_{0}^{\infty} e^{-\rho t} u(c) d t \quad \text { where } \quad u(c)=\frac{-1}{\gamma} e^{-\gamma c}
$$

where the parameter γ is the coefficient of absolute risk aversion. The capital stock, k, evolves according to the following stochastic differential equation

$$
d k=(\mu k-c) \cdot d t+\sigma d B
$$

where $d B$ is an increment to a Brownian motion process, and μ and σ are constant parameters.
(a) Write down the agent's (stationary) HJB equation.
(b) Use a guess-and-verify strategy to solve the HJB equation. (Hint: Try the guess $V(k)=-\gamma^{-1} e^{A k+B}$ where A and B are undetermined coefficients).
(c) Given your answer to part (b), write down the agent's optimal consumption/savings policy. Interpret your answer in terms of intertemporal substitution and precautionary saving.

