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Each of the following questions is worth 10 points.

1. This question asks you to numerically validate the total and quadratic variation properties of Brownian

motion. Simulate a continuous-time Brownian on the unit interval [0, 1] by dividing the interval into N

equal subintervals, ∆t = 1/N . Discretize the path of Brownian motion as follows: Bti
= Bti−1

+εi

√
∆t,

with εi ∼ N(0, 1) and B0 = 0. Perform the simulation for N = 20, 100, 1000.

(a) Plot the paths of Bti
.

(b) For each path, approximate the quadratic variation by calculating the sum of (∆Bti
)2, and confirm

that for large N it converges to 1.

(c) Calculate the total variation by calculating the sum of |∆Bti
|. Confirm that it increases with N .

2. Ito’s Lemma Practice.

(a) Use Ito’s lemma to verify that Xt = X0e
(µ−σ2/2)t+σBt is the solution to SDE dX

X = µdt + σdBt,

where µ and σ are constants.

Defining Xt = X0e
(µ−σ2/2)t+σBt = F (t, B) we have

Ft =

(

µ − 1

2
σ2

)

X FB = σX FBB = σ2X

From Ito’s lemma, dX = Ftdt + FBdB + 1
2FBB(dB)2. Plugging in and simplifying gives dX

X =

µdt + σdBt

(b) Given the SDE dX
X = µdt + σdBt, use Ito’s lemmas to calculate dY for Y = Xα.

Defining Y = Xα = F (X) and applying Ito’s lemma,

dY = FXdX +
1

2
FXX(dX)2

= αXα−1[µXdt + σXdB] +
1

2
α(α− 1)Xα−2σ2X2dt

= αXα[µdt + σdB] +
1

2
α(α− 1)σ2Xαdt

Therefore, we get
dY

Y
=

[

αµ +
1

2
α(α − 1)σ2

]

dt + ασdB

(c) Let Bt be a Brownian motion, and assume Xt = B2
t . Use Ito’s lemma to find a SDE for Xt.

Defining X = B2 = F (B) and applying Ito’s lemma we get

dX = dt + 2BdB
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(d) Let Bt be a Brownian motion, and assume Xt = 2 + t + eBt . Use Ito’s lemma to find a SDE for

Xt.

Defining X = 2 + t + eB = F (t, B) and applying Ito’s lemma we get

dX =

(

1 +
1

2
eB

)

dt + eBdB

(e) Solve the Ornstein-Uhlenbeck SDE, dXt = −µXtdt + σdBt. Use the solution to compute E[Xt]

and var[Xt] = E[(Xt −E[Xt])
2]. (Hint: Multiply both sides by the integrating factor eµt and use

Ito’s lemma to compare with d(eµtXt)).

First, note that d(eµtX) = µeµtXdt + eµtdX. Next, if we multiply both sides of the Ornstein-

Uhlenbeck equation by eµt we get, eµtdX = −µXeµtdt + eµtσdB. Subbing this into the previous

equation gives

d
(

eµtX
)

= eµtσdB

Integrating gives

eµtXt − X0 = σ

∫ t

0

eµsdBs

Rearranging gives the solution of the OU equation,

Xt = X0e
−µt + σ

∫ t

0

e−µ(t−s)dBs

Therefore, E(Xt) = X0e
−µt and

var(Xt) = E[(X − E(X))2 ] = E

[

σ

∫ t

0

e−µ(t−s)dBs

]2

= σ2

∫ t

0

e−2µ(t−s)ds =
σ2

2µ

[

1 − e−2µt
]

3. Martingale Scaling. Assume Xt follows the Ito process, dXt = µtdt+dBt. Define the scaled process

Yt = MtXt, where

Mt = exp

(

−
∫ t

0

µsdBs −
1

2

∫ t

0

µ2
sds

)

Use Ito’s lemma to compute dY and show that it is a (local) martingale. State the conditions that

must be satisfied for Yt to be well defined.

Note that we can write M = eZ , where dZ = −1
2
µ2

tdt − µtdBt. Applying Ito’s lemma

dM

M
= −µtdB

Now apply Ito’s lemma to the Y process

dY = dM · X + M · dX + dM · dX ⇒ dY

M
=

dM

M
X + dX +

dM

M
dX

Substituting in for dM
M and dX we get

dY = M(1 − µtX)dB

This will be a local martingale if the integrand is in L2, i.e.
∫

[Ms(1− µsXs)]
2ds < ∞ w.p.1. It will be

a global martingale if the integrand is in H2.
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4. Betting on a Brownian motion. In class we discussed why ruling out arbitrage in continuous-time

required restrictions on portfolio/betting strategies. This question considers a variant of the doubling

strategy we studied. Let Bt be a Brownian motion, and define the stopping time τ = inf{t ≥ 0 : Bt =

1}. We showed in class that P [τ < ∞] = 1. Given this, consider the simple strategy of betting a fixed

amount until Bt = 1. This also seems like a sure bet. Can you see any difference from the doubling

strategy? Explain your reasoning both intuitively, and more formally using the distinction between

martingales and local martingales. (Hint: Is it still the case here that E0[Bτ∧t] = 1?).

With a fixed bet size Bτ∧t is not just a local martingale, but a global martingale as well. Hence,

E0[Bτ∧t] = 0. Although the path hits 1 almost surely, its mean hitting time is infinite, so that small

probabilities of very large losses keeps the mean 0. Increasing the size of the bet fights against the law of

large numbers by compressing the effective time it takes to hit the target. Remember, changing the size

of the bet is equivalent to increasing the variance of the process, which is equivalent to a time rescaling.

5. The Feynman-Kac Formula. There is a close relationship between 2nd-order partial differential

equations and conditional expectations of diffusion processes. This relationship is revealed by the

Feynman-Kac formula. The FK formula is widely used in financial economics.

Consider the scalar diffusion process

dXt = µ(Xt, t)dt + σ(Xt, t)dBt

Suppose we want to compute the expected terminal payoff G(XT ) at some future date T , given the

current value of the process (e.g., we want to value an option)

g(x, t) = E[G(XT )|Xt = x]

Prove that g can be obtained by solving the following 2nd-order (linear) PDE

0 = gt(x, t) + gx(x, t)µ(x, t) +
1

2
gxx(x, t)σ2(x, t)

with boundary condition, g(x, T ) = G(x).

(Hint: Use the law of iterated expectations to write

g(x, t) = E[E[G(XT )|Xt+dt]|Xt = x]

= E[g(Xt+dt, t + dt)|Xt = x]

and then use Ito’s lemma to write g(Xt+dt, t + dt) in terms of g(x, t) and its derivatives).

Start with the approximation, g(Xt+dt, t + dt) ≈ g(x, t) + dg. From Ito’s lemma,

dg = gtdt + gxdx +
1

2
σ2gxxdt

= gtdt + gx[µtdt + σtdBt] +
1

2
σ2

t gxxdt

Therefore, E[g(Xt+dt, t+dt)|Xt = x] = g(x, t)+gt(x, t)+gx(x, t)µ(x, t)+ 1
2gxx(x, t)σ2(x, t). Cancelling

the g term from both sides yields the result.

6. Stochastic Growth with CARA utility. In class we solved a stochastic growth model with CRRA

utility. This problem asks you to solve a stochastic growth model with CARA preferences.

Consider an agent who wants to solve the following problem

max
c

E

∫

∞

0

e−ρtu(c)dt where u(c) =
−1

γ
e−γc
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where the parameter γ is the coefficient of absolute risk aversion. The capital stock, k, evolves according

to the following stochastic differential equation

dk = (µk − c) · dt + σdB

where dB is an increment to a Brownian motion process, and µ and σ are constant parameters.

(a) Write down the agent’s (stationary) HJB equation.

The HJB equation is

ρV = max
c

{−1

γ
c−γc + (µk − c) · Vk +

1

2
σ2Vkk

}

(b) Use a guess-and-verify strategy to solve the HJB equation. (Hint: Try the guess V (k) = −γ−1eAk+B

where A and B are undetermined coefficients).

Using our guess, we can write the FOC for c as follows

e−γc = Vk = −A

γ
eAk+B

Solving for c gives

c = − 1

γ
Ak − B

γ
− 1

γ
ln

(−A

γ

)

Substituting in for c in the HJB equation, and cancelling the common eAk+B term gives

−ρ

γ
=

A

γ2
+

[(

µ +
A

γ

)

k +
B

γ
+

1

γ
ln

(−A

γ

)] (−A

γ

)

− 1

2
σ2 A2

γ

The term multiplying k must be zero, which implies A = −γµ. Given this, we then get the following

expression for B

B =
µ − ρ

µ
+

1

2
γµσ2 − ln(µ)

(c) Given your answer to part (b), write down the agent’s optimal consumption/savings policy. Inter-

pret your answer in terms of intertemporal substitution and precautionary saving.

Given our solutions for A and B, we can then derive the following expression for the consumption

policy function

c = µk +
1

γµ

[

ρ − µ − 1

2
σ2γ2µ2

]

The ρ−µ term reflects intertemporal substitution, while the last term reflects precautionary saving.
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