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Each of the following questions is worth 10 points.

1. Stochastic Volatility. In class we solved the Merton problem when the ‘investment opportunity set’

was constant (ie., µ and σ we constants). This question asks you to consider the case where volatility

is stochastic. There is strong empirical evidence to support this. Hence, now suppose the risky asset

price follows the process
dS

S
= µdt + σtdB

where σt also follows a geometric Brownian motion process

dσt = σtdBσ

For simplicity, suppose dB and dBσ are uncorrelated. Finally, continue to assume the investor has

time-additive CRRA preferences

V (W, σ) = max
c,π

E0

∫

∞

0

C1−γ

1− γ
e−δtdt

subject to dW = [(r + π(µ − r))W − C]dt + πσtWdB.

(a) Write down the investor’s stationary HJB equation.

The HJB eq is

δV = max
c,π

{

1

1 − γ
C1−γ + [(r + π(µ − r))W − C]Vw +

1

2
π2σ2

t W 2Vww +
1

2
σ2

t Vσσ

}

(b) Verify that a solution is of the form V (W, σ) = f(σ)W 1−γ .

Given the posited functional form for V = f(σ)W 1−γ we find (note, we are implicitly assuming

γ 6= 1)

C = [(1 − γ)f ]−1/γW π =
µ − r

γσ2
t

Subbing these back into the HJB eq we find that the terms involving C and W cancel out.

(c) Derive a 2nd-order ODE for f(σ). Can you solve it? Under what parameter restrictions do you

get an economically sensible result?

After cancelling out C and W we are left with the following ODE for f(σ)

(δ − r)f(σ) =
(µ − r)2(1 + γ)

2γσ2
f(σ) +

1

2
σ2f ′′(σ)

This has an ‘analytic’ solution in terms of the Bessel function, but it is not very illuminating. In

practice, it would be more useful to solve it numerically, or to approximate the solution using a

series expansion (note the equation is linear). From the solution for C, note that f must be of

the form (1 − γ)−1f̃(σ).
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(d) Is the investor’s optimal portfolio still time invariant? Why or why not?

The investor’s portfolio, πt = µ−r
γσ2

t

, is no longer time invariant. It changes as σt changes.

When volatility increases, the share invested in risky assets decreases (since volatility shifts are

persistent).

2. Time-Varying Expected Returns. In class we solved the Merton problem when the ‘investment

opportunity set’ was constant (ie., µ and σ we constants). This question asks you to consider the case

where the mean return is stochastic. There is strong empirical evidence to support this. Hence, now

suppose the risky asset price follows the process

dS

S
= µtdt + σdB

where µt follows a mean-reverting Ornstein-Uhlenbeck process

dµt = α(µ̄ − µt)dt + σdBµ

For simplicity, suppose dB and dBµ are uncorrelated. Finally, continue to assume the investor has

time-additive CRRA preferences

V (W, µ) = max
c,π

E0

∫

∞

0

C1−γ

1− γ
e−δtdt

subject to dW = [(r + π(µt − r))W − C]dt + πσWdB.

(a) Write down the investor’s stationary HJB equation.

The HJB eq is

δV = max
c,π

{

1

1 − γ
C1−γ + [(r + π(µ − r))W − C]Vw +

1

2
π2σ2W 2Vww + [α(µ̄ − µt)]Vµ +

1

2
σ2

µVµµ

}

(b) Verify that a solution is of the form V (W, µ) = g(µ)W 1−γ .

Given the posited functional form for V = g(µ)W 1−γ we find (note, we are implicitly assuming

γ 6= 1)

C = [(1 − γ)g]−1/γW π =
µt − r

γσ2

Subbing these back into the HJB eq we find that the terms involving C and W cancel out.

(c) Derive a 2nd-order ODE for g(µ). Can you solve it? Under what parameter restrictions do you

get an economically sensible result?

After cancelling out C and W we are left with the following ODE for g(µ)

(δ − r)g(µ) =
(µt − r)2(1 + γ)

2γσ2
g(µ) + α(µ̄ − µ)g′(µ) +

1

2
σ2

µg′′(µ)

This has an ‘analytic’ solution in terms of the confluent hypergeometric function, but it is not

very illuminating. In practice, it would be more useful to solve it numerically, or to approximate

the solution using a series expansion (note the equation is linear). From the solution for C, note

that g must be of the form (1 − γ)−1g̃(µ).

(d) Is the investor’s optimal portfolio still time invariant? Why or why not?

The investor’s portfolio, πt = µt−r
γσ2 , is no longer time invariant. It changes as µt changes. When

expected returns increase, the share invested in risky assets increases (since mean return shifts are

persistent)
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3. Girsanov’s Theorem and the Gordon Growth Model. Consider an asset paying dividends D

over an infinite horizon. Assume D follows a geometric Brownian motion,

dD

D
= µdt + σdB

where µ and σ are constant. Also assume the instantaneous riskless rate, r, is constant, and that there

is an SDF process M such that
(

dD

D

) (

dM

M

)

= −σλdt

where λ is constant, and µ − σλ < r.

(a) Using the present value relation, Pt = Et

∫

∞

t
MsDsds, show that the asset price is

Pt =
Dt

r + σλ − µ

(Note: we are assuming the absence of bubbles).

From the given information we know

dM

M
= −rdt − λdB

Solving, and normalzing Mt = 1, gives

Ms = e−(r+ 1

2
λ2)(s−t)−λ(Bs−Bt)

From the given dividend process we know

Ds = Dte
(µ− 1

2
σ2)(s−t)+σ(Bs−Bt)

Therefore

Pt = DtEt

∫

∞

t

e−(r+ 1

2
λ2)(s−t)−λ(Bs−Bt)e(µ− 1

2
σ2)(s−t)+σ(Bs−Bt)ds

= Dt

∫

∞

t

e−(r+ 1

2
λ2+ 1

2
σ2

−µ)(s−t)+ 1

2
(σ−λ)2(s−t)ds

=
Dt

r + σλ − µ

(b) Show that the asset’s Sharpe ratio is λ.

From the result in (a) we know
dP

P
=

dD

D
= µdt + σdB

Therefore

µS =
D + dP

P
= r + σλ − µ + µ = r + σλ

We also know

σS = σ

Therefore the Sharpe ratio is

Sharpe =
µS − r

σS
=

σλ

σ
= λ
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(c) Assume that the SDF takes the form Mt = e−δt(Ct/C0)
−γ , where C = D. In this case, what is λ?

We know that λ is (minus) the diffusion coefficient on dM
M , which is (minus) the diffusion co-

efficient on d log(M), which is (minus) the diffusion coefficient on −γd log(Dt), which is just

γσ.

(d) Using Girsanov’s Theorem, show that

dD

D
= (µ − σλ)dt + σdB̃

where B̃ is a Brownian motion under the risk-neutral Q-measure associated with M .

With respect to the risk-neutral Q-measure, we know that

dB̂ = dB + λdt

is a Brownian motion, where λ = the price of risk. Hence, changing measures from P to Q just

involves replace dB with dB̂ − λdt. Making the substitution gives

dD

D
= (µ − σλ)dt + σdB̃

(e) Use the risk-neutral measure to show once again that Pt = Dt/(r + σλ − µ).

Using the risk-neutral Q-measure, the asset price is just the expected discounted value of dividends,

using the risk-free rate to discount

Pt = EQ
t

∫

∞

t

e−r(s−t)Dsds

= Dt

∫

∞

t

e−r(s−t)e(µ−σλ− 1

2
σ2)(s−t)+1

2
σ2(s−t)ds

= Dt

∫

∞

t

e−(r+σλ−µ)(s−t)ds =
Dt

r + σλ − µ

4. Two Trees. Consider an economy with two independent Lucas trees,

dDi

Di
= µidt + σidBi i = 1, 2

where B1 and B2 are uncorrelated, and µi and σi are constant. Aggregate consumption is given by

Ct = D1t + D2t. Assume agents have log preferences, so the SDF process is given by

Mt = e−δt C0

Ct

(a) Define the state variable, Xt = D1t/Ct. Show that the price of an equity claim to the dividends

from Tree-1 is given by

P1t = Et

∫

∞

t

Ms

Mt
D1sds = f(Xt)Ct

for some function f(X).

Note that we have
Ms

Mt
= e−δ(s−t) Ct

Cs

Imposing the market-clearing conditions Ci = Di in the present value formula then gives

P1t

Dt
= Et

∫

∞

t

e−δ(s−t) D1s

D1s + D2s
ds = Et

∫

∞

t

e−δ(s−t)Xsds = f(Xt)

where the last equality follows since X is Markov.
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(b) Derive an ODE that characterizes f(X).

Applying Leibniz’ Rule, note that f satisfies the differential equation

E[df ] = (δf − X)dt

From Ito’s lemma we know

E[df ] = f ′(X)E(dX) +
1

2
f ′′(X)E(dX)2

All that remains is to calculate dX. This again follows from Ito’s lemma. Define X = g(D1 , D2) =

D1/(D1 + D2)

dX = gD1
dD1 + gD2

dD2 +
1

2
gD1D1

(dD1)
2 +

1

2
gD2D2

(dD2)
2

= X(1 − X)[(µ1 − µ2) + (1 − X)σ2
2 − Xσ2

1 ]dt + X(1 − X)[σ1dB1 − σ2dB2]

From this we can easily calculate E(dX) (it’s just the drift of the above expression) and E(dX)2

(it’s just the sum of the squared diffusion coefficients). Subbing these in gives us an ODE for

f(X).

(c) Explain intuitively why expected returns typically display ‘momentum’, and why an asset’s price

might change without any news about its dividends.

With more than one Lucas tree, portfolio rebalancing becomes an issue. When tree 1 experiences a

positive dividend shock, it’s price rises. As a result it becomes a larger part of the market portfolio

and its (absolute) covariance with the SDF process increases. This raises the risk premium on tree

1, which leads to higher expected returns (momentum). Note that the change in the SDF process

will also trigger changes in the price of tree 2, even though there is no news about its dividends.

(For further details, see “Two Trees” by Cochrane, Longstaff, and Santa-Clara (RFS, 2008)).
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