Programming Assignment 2

(Due October 29)

- 1. This question asks you to replicate some of the calculations in Hansen, Sargent, and Tallarini (1999). Consider the simplified Robust Permanent Income model discussed in Chapter 2 of the *Robustness* monograph (pages 44-50), which features a univariate dividend process and no habit persistence. With one exception, assume the same parameter values: $\beta = .9971$, $R = 1/\beta$, $\rho_d = .9992$, b = 32, $\mu_d = 13.6$. The one exception is c_d , the standard deviation of dividend innovations. Instead of $c_d = 5.5819$ set $c_d = 0.23$ (this is done to be consistent with the units used in the paper and in Chapt. 10).
 - (a) Use the Quantecon class LQ to solve the nonrobust Permanent Income model. Use the LQ method stationary_values to compute the optimal policy function. Verify that consumption follows a random walk. (Hints: Assume $b c_t$ is the control, and augment the R matrix to incorporate a small state cost to k_t^2).
 - (b) Following the discussion in class and in Chapter 13 of *Robustness*, compute the model's implied unconditional 'price of risk'. To do this, use the LQ method **compute_sequence** to generate a long sequence of the control process, which serves as the marginal utility of consumption. Set $(k_0, d_0) = (100, \mu_d)$ when generating the time path for $b c_t$). How does your answer compare to data from the US stock market? (Remember, the units here are quarterly).
 - (c) Now use the Quantecon class RBLQ to solve the Robust Permanent Income model. Begin by verifying that for $\theta > 10^7$, the robust policy approximately matches the nonrobust policy computed in part (a). (Note: the underlying python code implements the 'Simple Algorithm' outlined on pages 43-44 of the *Robustness* monograph. By default, it uses a doubling algorithm to accelerate the iterations).
 - (d) Verify that for $\theta < 10^7$, the robust policy features a form of precautionary saving, How does the robust innovation variance of consumption compare to the nonrobust innovation variance? Explain.
 - (d) Using the monte carlo simulation strategy outlined in Chapter 9 of *Robustness*, compute the Detection Error Probabilities associated with values of $\theta < 10^7$. For what value of θ is the detection error probability approximately equal to 10%? Given this value of θ , what is the implied market price of risk? Is the model now consistent with the data? What is the implied 'Market Price of Model Uncertainty'? [Note: When computing the robust price of risk, exploit the observational equivalence formula (10.3.18) on p. 231 of *Robustness* to adjust the value of β so that the allocations in the robust economy remain the same as in the nonrobust economy].
 - (e) Finally, see if you can reproduce Figure 10.8.1 on page 246 of *Robustness*, which illustrates the potential benefits from using a robust policy in the event the benchmark model is misspecified.