Topics for Today

1.) Trade in Goods + Assets
 - Nominal vs. Real Exchange Rates
 - Uncovered Interest Parity

2.) IS-LM in a Small Open Economy
 (The "Mundell-Fleming Model")
 - Real Exchange Rates + Net Exports
 - Monetary + Fiscal Policies with Flexible Exchange Rates
 - Monetary + Fiscal Policies with Fixed Exchange Rates
• We are now going to extend the IS-LM model to an open economy, i.e., one that trades goods and assets with other countries.

• There are 2 key new variables:

 1.) The nominal exchange rate = The value of one currency in terms of another.

We will define the nominal exchange rate as the value of domestic currency

\[e = \frac{\text{foreign currency}}{\text{domestic currency}} \]

Thus, \(e \uparrow \Rightarrow \text{domestic currency appreciates} \)

\(e \downarrow \Rightarrow \text{domestic currency depreciates} \)
2.) What matters for people's spending decisions is the real exchange rate, i.e., how many foreign goods can be acquired per unit of domestic goods?

\[e = \frac{eP}{p^*} \]

\[= \frac{\text{for. curr.}}{\text{dom. goods}} \]

\[= \frac{\text{for. curr.}}{\text{for. goods}} \]

\[= \frac{\text{foreign goods}}{\text{domestic goods}} \]

\[e \uparrow \Rightarrow \text{Real Ex. Rate Appreciation} \]

\[e \downarrow \Rightarrow \text{Real Ex. Rate Depreciation} \]
Uncovered Interest Parity

- In addition to trading goods, countries also exchange assets (borrow and lend).
- With open, integrated capital markets, assets denominated in different currencies must offer the same expected rate of return, when expressed in common currency units.
- This equality is called "Uncovered Interest Parity". If \(r \) is the domestic interest rate and \(r^* \) is the foreign interest rate, it says:
 \[
 r = r^* + (\text{expected rate of depreciation of the domestic currency})
 \]
- For example, if the domestic currency is expected to depreciate, then the only way you can get people to hold domestic assets is if they offer a higher interest rate.
- Following the original Mundell-Fleming model, we will usually assume no expected change in the exchange rate, so \(r = r^* \).
Open Economy IS-LM (The Mundell-Fleming Model)

\[E = \text{Nominal Exchange Rate} \]

\[e = \text{Real Exchange Rate} \]

\[e = \frac{e}{P} \]

In the short-run, with prices sticky, \(e \) is proportional to \(E \).

\[Y = C(Y-T) + I(r) + G + NX(e) \]
$\delta \uparrow \Rightarrow NX \downarrow \Rightarrow IS$ shifts left

$\delta > \delta_1$

$\delta \downarrow \Rightarrow NX \uparrow \Rightarrow IS$ shifts right

$\delta < \delta_1$
Flexible Exchange Rates

Fiscal Policy
- At B, $r > r_w$
- \Rightarrow capital inflow
- \Rightarrow Currency Appreciation
- \Rightarrow $NX \downarrow$
- \Rightarrow IS shifts left
- \Rightarrow Return to A

Monetary Policy
- At B, $r < r_w$
- \Rightarrow capital outflow
- \Rightarrow Currency Depreciation
- \Rightarrow $NX \uparrow$
- \Rightarrow IS shifts right
- \Rightarrow Go to C
Fixed Exchange Rates

Fiscal Policy

At B, $r > r_w$

\Rightarrow capital inflow

\Rightarrow Pressure for currency to Appreciate

\Rightarrow Central Bank increases the Money Supply (buys Foreign Exchange)

\Rightarrow LM shifts right

\Rightarrow Go to C

Monetary Policy

At B, $r < r_w$

\Rightarrow Capital Outflow

\Rightarrow Pressure for currency to Depreciate

\Rightarrow Central Bank Must decrease the Money Supply (sell FX).

\Rightarrow LM shifts left

\Rightarrow Return to A
Flexible Ex. Rates

IS Shocks

LM shocks

Flex. rates insulates economy from IS shocks

Flex. rates accentuate the economy's response to LM shocks
Fixed Ex. Rates

IS shocks

Fixed rates accentuate the economy's response to IS shocks.

Fixed rates insulate the economy from LM shocks.