Topics for Today

1.) Empirical Evidence on Real Business Cycle Models

2.) Problems with Simple RBC Models
 - Wages are excessively procyclical
 - Money/output correlations
 - Unemployment
 - Measurement Bias in Technology Shocks
Key Ingredients of the RBC Approach

1.) Market-Clearing (Flexible Prices)

2.) Optimizing Behavior

3.) Strong Aggregation Assumptions
 - Households + Firms are essentially all alike

4.) Technology Shocks Are the Driving Force Behind Fluctuations

5.) Monetary Neutrality
A Prototype RBC Model

Firms

\[
\max_{L_t, K_t} \left\{ y_t - r_t K_t - w_t L_t \right\}
\]

subject to:

\[
y_t = A_t F(K_t, L_t)
\]

\[
A_t = p A_{t-1} + \varepsilon_t
\]

Households

\[
\max_{C_t, L_t} \sum_{j=0}^{\infty} U(C_{t+j}, L_{t+j})
\]

subject to:

\[
C_t + i_t = w_t L_t + r_t K_t
\]

\[
T = L_t + L_t
\]

\[
K_{t+1} = (1 - \delta) K_t + i_t
\]

Solution

\[
C_t = C(K_t, A_t)
\]

\[
i_t = i(K_t, A_t)
\]

\[
L_t = L(K_t, A_t)
\]

\[
w_t = w(K_t, A_t)
\]

\[
y_t = r(K_t, A_t)
\]
Observed Data

Plosser, Journal of Economic Perspectives (1989)

<table>
<thead>
<tr>
<th>Variable</th>
<th>st. dev.</th>
<th>corr. with output</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta \log(Y_t))</td>
<td>2.71</td>
<td>1.00</td>
</tr>
<tr>
<td>(\Delta \log(C_t))</td>
<td>1.27</td>
<td>.78</td>
</tr>
<tr>
<td>(\Delta \log(i_t))</td>
<td>6.09</td>
<td>.92</td>
</tr>
<tr>
<td>(\Delta \log(k_t))</td>
<td>2.18</td>
<td>.81</td>
</tr>
<tr>
<td>(\Delta \log(w_t))</td>
<td>1.80</td>
<td>.59</td>
</tr>
</tbody>
</table>
Simulated from RBC Model

<table>
<thead>
<tr>
<th>Variable</th>
<th>St. dev.</th>
<th>Correl. with output</th>
<th>Correl. with actual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ log(Yₜ)</td>
<td>2.48</td>
<td>1.00</td>
<td>.87</td>
</tr>
<tr>
<td>Δ log(Cₜ)</td>
<td>1.68</td>
<td>.96</td>
<td>.76</td>
</tr>
<tr>
<td>Δ log(iₜ)</td>
<td>4.65</td>
<td>.97</td>
<td>.72</td>
</tr>
<tr>
<td>Δ log(Lₜ)</td>
<td>1.89</td>
<td>.87</td>
<td>.52</td>
</tr>
<tr>
<td>Δ log(Mₜ)</td>
<td>1.76</td>
<td>.97</td>
<td>.65</td>
</tr>
</tbody>
</table>
Fixing the Excessive Procyclicality of Real Wages

Solution: Incorporate demand shocks.

Suppose Govt. Spending Increases Temporarily

Short-run equil. moves from A to B

Note: \(W \downarrow \) and \(Y \uparrow \)

\[\Rightarrow \text{Govt. Spending} \]

\[\Rightarrow \text{and shocks produce counter-cyclical movement in real wages} \]

\[\Rightarrow \text{This reduces the procyclical effect of tech. shocks,} \]
Output / Price Level / Money Correlations

Note: RBC Models Predict a Negative Correlation between Y and P.

Since money is neutral, RBC Models Predict a Zero Correlation between Y and M.

Both predictions are counter-factual. M and P are both procyclical.
Reverse Causation

Suppose the Central Bank tries to target the price level (or the inflation rate).

In response to the positive technology shock, the Central Bank increases the money supply.

Note: $M \uparrow$ and $Y \uparrow$ (M is procyclical)

Reverse Causation: Money responds to output fluctuations but does not cause output fluctuations.
Output/Price Level Correlations

- Although reverse causation could conceivably explain the positive correlation between M and Y, how can the market-clearing approach explain a positive correlation between P and Y? Note, Keynesian models are designed to explain this correlation.
The Lucas Supply Curve

Assumptions
1.) Prices adjust to clear markets
2.) There is imperfect information
 - Firms cannot observe all prices.

As a result, firms partially attribute an increase in the general price level to an increase in their own industry's (relative) price.

\[Y = \bar{Y} + \alpha (P - P^e) \]

\(\bar{Y} \): natural rate of output
\(P \): actual price level
\(P^e \): expected price level
The Lucas Supply Curve

\[Y = \bar{Y} + \alpha (P - P^e) \]

\[Y = \bar{Y} + \alpha (P - P^e) \]
Expectations Augmented Phillips Curve

\[\Pi = \Pi^e - 2\alpha (u - u^*) \]

- \(\Pi \) vs. \(u \)
- \(\Pi^e \) and \(\Pi_2^e \) are horizontal lines.
- \(u^* \) is the vertical axis.
- \(AS_1 \) and \(AS_2 \) are downward sloping curves.
- \(AD \) is an upward sloping curve.
- \(\Pi = \Pi_1^e - 2\alpha (u - u^*) \)
- \(\Pi = \Pi_2^e - 2\alpha (u - u^*) \)
Lucas Supply Curve: Assume imperfect information about the general price level.

\[\text{SRAS: } Y = \bar{Y} + 6(P - P^e) \]

Most unexpected price changes attributed to inflation.

Most unexpected price changes attributed to relative price change.
Key Prediction of the Lucas Supply Curve:

Only unanticipated changes in the money supply affect output.

Unanticipated Increase in M

Initially, economy moves from A to B. Once forecasts are revised, however, P_{e1} and the economy moves to C.
Anticipated Increase in M

If the $M \uparrow$ was anticipated, $p_e \uparrow$ at the same time, which shifts up the SRAS curve.

Economy moves directly to B.
Unemployment in RBC Model

1.) \[U_+ = \frac{5 + 8}{5 + 4} \uparrow \text{Varying natural rate} \]

2.) Introduce fixed cost to working. Produces fluctuations in both the intensive and extensive margins.
Suppose factor utilization varies systematically over the cycle.

\[Y_t = A_t F(U_{kt+1} K_t, U_{lt+1} L_t) \]
\[= A_t (U_{kt+1} K_t) ^ \alpha (U_{lt+1} L_t) ^ {1-\alpha} \]

\(U_{kt} = \text{Utilization Rate of Capital} \)
\(U_{lt} = \text{Utilization Rate of Labor} \)

Measured Solow Residual = \[
\frac{A_t (U_{kt+1} K_t) ^ \alpha (U_{lt+1} L_t) ^ {1-\alpha}}{K_t ^ \alpha L_t ^ {1-\alpha}}
\]
\[= A_t U_{kt+1} U_{lt+1} ^ {1-\alpha} \]

Part of the procyclical movement in \(A_t \) could in fact be procyclical movements in \(U_{kt+1} \) and \(U_{lt+1} \).