SIMON FRASER UNIVERSITY
 Department of Economics

Econ 815

Prof. Kasa
Financial Economics, I
Fall 2020

PROBLEM SET 2 - Options

(Due November 4)

1. (10 points). Part of the appeal of options is that they can be combined to form very flexible payoff profiles. A couple examples were discussed in class. Here you are asked to consider a few more. For each, illustrate the expiration date payoff and profit from the position.
(a) A bullish vertical spread, which is created by buying a call option with strike price K_{1}, and simultaneously selling a call option (on the same stock) with strike price $K_{2}>K_{1}$. Why is it called a 'bullish' spread? (Hint: Remember that, all else equal, call options with lower strike prices are more expensive).
(b) A strangle, which involves buying out-of-the-money call and puts on the same underlying stock (for the same expiration date). That is, if the current stock price is S, the call has strike price $K_{c}>S$ and the put has strike price $K_{p}<S$. (Hint: This is similar to a straddle, but is cheaper, since the options are purchased out-of-the-money).
(c) A collar, which involves holding the underlying stock, while simultaneously buying an out-of-the-money put and selling/writing an out-of-the-money call. Why might this strategy be attractive? How does it compare to a bullish vertical spread?
2. (10 points). Consider a stock which has a price that follows the following geometric Brownian motion process:

$$
\frac{d S}{S}=\mu d t+\sigma d W
$$

where $\mu=.12$ and $\sigma=.20$. Suppose the current stock price is $\$ 42$, and suppose we are interested in the value of a 6 -month (European) call option on this stock. Assume the riskfree rate is constant, and equal to 10%.
(a) Suppose the 'strike price' of the option is $K=40$. Use the Black-Scholes formula derived in class to compute the value of the option. (Hint 1: Note that the time unit here is a year, so that for a 6 -month option we have $T-t=0.5$. Hint 2 : Is μ a relevant parameter? Why, or why not?).
(b) Now suppose you trust computers more than math. Write a simple program (using the software of your choice) to numerically calculate the value of the option. Do you get the same answer as in part (a)?

