3.) **Current Account Autarky.** No intertemporal trade, but can exchange equal-valued claims across states next period.

Optimal 2nd-period consumption is now

\[P(s)C_2(s) = \Pi(s)[P(1)Y_2(1) + P(2)Y_2(2)] \]

Using this in the Euler eq.,

\[1 + r^{ca} = \frac{U'(Y_1)}{\beta \sum \Pi(s) U'\left[\Pi(s)\left(P(1)Y_2(1) + P(2)Y_2(2) \right) / P(s) \right]} \]

The CA will be balanced if \(r^{ca} = r \). In other words, when \(r^{ca} = r \), net capital flows are zero. However, there can still be large two-way, or gross, capital flows.

A country's demand for state-contingent claims can now be written:

\[B_a(1) = C_a(1) - Y_a(1) = \frac{P(2)}{P(1)} \Pi(1) Y_a(1) \left[\frac{P(1)^{A}}{P(1)^{A}} - \frac{P(1)}{P(2)} \right] \]

\[B_a(2) = C_a(2) - Y_a(2) = -\Pi(2) Y_a(1) \left[\frac{P(1)^{A}}{P(1)^{A}} - \frac{P(1)}{P(2)} \right] \]

A country imports the asset with the relatively high autarky price, while exporting the one with the relatively low autarky price. This reflects pure smoothing across states.
A 2-Country Arrow-Debreu Model

Now AD state prices become endogenous.

Basic Idea: Combine FOCs with global market clearing.

Prices/FOCs

\[
\frac{P(s)}{1+r} u'(c_t) = \pi(s) \beta u'(c_{a}(s))
\]

\[
\frac{P(s)}{1+r} u'(c^*_t) = \pi(s) \beta u'(c^*_a(s))
\]

Market-Clearing

\[
c_t + c^*_t = Y_t + Y^*_t = Y^*_w
\]

\[
c_s(s) + c^*_s(s) = Y_s(s) + Y^*_s(s) = Y^*_w(s) \quad s = 1, 2, \ldots, S
\]

Suppose identical CRRA preferences, \(u(c) = \frac{1}{1-\rho} c^{1-\rho} \)

\[
c^*_2(s) = \left[\frac{\beta \pi(s)(1+r)}{P(s)} \right]^{\rho} c_t
\]

\[
c^*_2(s) = \left[\frac{\beta \pi(s)(1+r)}{P(s)} \right]^{\rho} c^*_t
\]

Add and impose market-clearing,

\[
Y^*_w(s) = \left[\frac{\beta \pi(s)(1+r)}{P(s)} \right]^{\rho} Y^*_w
\]

\[\Rightarrow \quad \frac{P(s)}{1+r} = \beta \pi(s) \left[\frac{Y^*_w(s)}{Y^*_w} \right]^{\rho}\]
Take ratios across states,

\[
P(s) = \frac{\pi(s)}{\pi(s')} \left[\frac{Y^w(s)}{Y^w(s')} \right]^{-\rho}
\]

Note,
1.) Full insurance not feasible with aggregate uncertainty
2.) States where aggregate output is relatively abundant have low AD prices.

Using the no arbitrage condition, \(\Sigma P(s) = 1 \), we can solve separately for \(P(s) \) and \(1 + \rho \)

\[
P(s') = 1 - \sum_{s \neq s'} P(s) = 1 - P(s') \sum_{s \neq s'} \frac{P(s)}{P(s')}
\]

\[
\Rightarrow P(s') = \frac{\pi(s') [Y^w(s')]^{-\rho}}{\sum_{s \neq s'} \pi(s) [Y^w(s)]^{-\rho}}
\]

\[
1 + \rho = \frac{[Y^w]^{-\rho}}{\beta \sum_{s \neq s'} \pi(s) [Y^w(s)]^{-\rho}}
\]

As usual, higher current output lowers real interest rates, while higher future output (in any state) raises real interest rates.
Complete markets implies strong (and testable) restrictions on international consumption data.

Complete mkt. \implies Equal MRS across countries (state-by-state and date-by-date)

Intertemporal

1) \[\frac{\Pi(s) \beta u'(c_2(s))}{u'(c_1)} = \frac{\Pi(s)}{1+r} = \frac{\Pi(s) \beta u'(c_2^*(s))}{u'(c_1^*)} \]

Across States

2) \[\frac{\Pi(s) u'(c_2(s))}{\Pi(s') u'(c_2(s'))} = \frac{\Pi(s)}{\Pi(s')} = \frac{\Pi(s) u'(c_2^*(s))}{\Pi(s') u'(c_2^*(s'))} \]

Suppose \(U = U^* = \frac{1}{1-c} c^{1-c} \). The (2.) implies

\[\frac{c_2(s)}{c_2(s')} = \frac{y_2^w(s)}{y_2^w(s')} = \frac{c_2^*(s)}{c_2^*(s')} \]

And (1.) implies

\[\frac{c_2(s)}{c_1} = \frac{y_2^w(s)}{y_1^w} = \frac{c_2^*(s)}{c_1^*} \]
Note that (3) implies,
\[
\frac{C_2(s)}{Y_2(s)} = \frac{C_2(s')}{Y_2(s')} \quad \text{and} \quad \frac{C_2^*(s)}{Y_2^*(s)} = \frac{C_2^*(s')}{Y_2^*(s')}
\] \text{constant shares across states}

And from (4)
\[
\frac{C_1}{Y_1} = \frac{C_2(s)}{Y_2(s)} \quad \text{and} \quad \frac{C_1^*}{Y_1^*} = \frac{C_2^*(s)}{Y_2^*(s)}
\] \text{constant shares across dates}

Suppose \(\frac{C}{Y} = \mu \) and \(\frac{C^*}{Y^*} = 1 - \mu \)

Then \(\mu \) is constant, and determined by individual budget constraints.

\(\mu \) = Share of Country H's wealth evaluated at the equilibrium AD prices.

Empirically, if we assume CRRA and differentials the Euler eqs. we get the testable equation:
\[
\log \left[\frac{C_2^*(s)}{C_1^*} \right] = \left(\frac{P_m}{P_n} \right) \log \left[\frac{C_2(s)}{C_1}\right] + \frac{1}{P_n} \log \left(\frac{P_n}{P_m}\right)
\]

Note, individual country consumption can vary, as a reflection of aggregate risk and differential risk aversion, but cross-country consumptions should be perfectly correlated.
<table>
<thead>
<tr>
<th>Country</th>
<th>corr(C,Cw)</th>
<th>corr(y,yw)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td>.56</td>
<td>.70</td>
</tr>
<tr>
<td>USA</td>
<td>.52</td>
<td>.68</td>
</tr>
<tr>
<td>UK</td>
<td>.63</td>
<td>.62</td>
</tr>
<tr>
<td>France</td>
<td>.45</td>
<td>.60</td>
</tr>
<tr>
<td>Germany</td>
<td>.63</td>
<td>.70</td>
</tr>
<tr>
<td>Italy</td>
<td>.27</td>
<td>.51</td>
</tr>
<tr>
<td>Japan</td>
<td>.38</td>
<td>.46</td>
</tr>
<tr>
<td>OECD Avg.</td>
<td>.43</td>
<td>.52</td>
</tr>
<tr>
<td>Developing Country Avg.</td>
<td>- .10</td>
<td>.05</td>
</tr>
</tbody>
</table>

Hence, this prediction of complete markets is rejected
Risk-Sharing

With complete markets, the 2nd Welfare Theorem applies, and we can interpret a competitive equilibrium as the outcome of Pareto (or social planning) problem. This is a useful perspective when studying risk sharing.

Risk-sharing is usually analyzed with HARA utility functions, since they deliver linear sharing rules. [Wilson (1968) - "The Theory of Syndicates"]

\[
\text{HARA: } U(c) = \alpha \frac{c}{1-\gamma} \left(\beta + \frac{c}{1-\gamma} \right)^{1-\gamma}
\]

1.) \(\lim_{\gamma \to \infty} \Rightarrow U(c) = -\beta e^{-\gamma p} \)
\(\beta \geq 0 \)
\(\gamma < 1 \)
\(\gamma \geq 1 \)

2.) \(\beta = 0 \Rightarrow U(c) = \frac{c}{1-\gamma} \)
\(\beta \geq 0 \)
\(\gamma < 1 \)
\(\gamma > 1 \)

3.) \(\gamma = 1 \Rightarrow U(c) = -\frac{1}{2} (\beta - c)^2 \)
\(\beta \geq c \)
\(\beta < c \)

The HARA class is useful since it features linear risk tolerance \([\text{Risk Tolerance} = -\frac{U'(c)}{U''(c)}]\)
Examples of Sharing Rules

Define \(Y^w(s) = \sum_{i=1}^{N} y_i(s) \)

\[\text{Total world endowment in State } s \text{ (} N \text{ countries)} \]

\[\text{Pareto Weights} \]

\[\text{Pareto Problem: } \max_{C_i(s)} \sum_{i=1}^{N} \lambda_i \{ \sum_{s \in S} \pi(s) U(C_i(s)) \} \]
subject to \(\sum_{i=1}^{N} C_i(s) = Y^w(s) \) for all states

1) 2 countries, Identical exponential, \(u = -\frac{1}{2} e^{-c} \)

\[C_1(s) = \frac{1}{2} Y^w(s) + \frac{1}{2} \frac{1}{2} \log \left(\frac{\lambda_1}{\lambda_2} \right) \]
\[C_2(s) = \frac{1}{2} Y^w(s) - \frac{1}{2} \frac{1}{2} \log \left(\frac{\lambda_1}{\lambda_2} \right) \]

2) Identical CRRA, \(u = \frac{1}{1-c} C^{1-c} \)

\[C_1(s) = \varphi Y^w(s) \]
\[C_2(s) = (1 - \varphi) Y^w(s) \]

where \(\varphi = \frac{\lambda_1 \nu e}{\lambda_1 \nu e + \lambda_2 \nu e} \)
Adding Production + Investment

- So far, we have only considered endowment economies. Now let's assume 2nd-period output is produced by competitive firms. The important new feature now is that investment returns are risky, i.e., they are state-contingent.

- Assume home & foreign production functions are:
 \[Y_a(s) = A(s)F(K_a) \quad Y_x(s) = A^*(s)F(K_x^*) \]

- For simplicity, suppose \(K_1 = 0 \), so \(I = K_2 \)

- As usual, firms maximize the PDV of profits, but note that now profits are valued at AD prices.

Objective Function

\[
\max_{K_2} \sum_{s=1}^{S} \frac{\rho(s)}{1+r} \left[A(s)F(K_a) + K_e \right] - K_2
\]

First-Order Conditions

\[
\sum_{s=1}^{S} \frac{\rho(s)}{1+r} \left[A(s)F'(K_a) + 1 \right] = 1
\]

\[
\sum \rho(s)A(s)F'(K_a) = r = \sum \rho(s)A^*(s)F''(K_x^*)
\]
From Euler,

\[U'(c_i) = \sum_{s} \pi(s) \beta U'(c_{s|i}) [A(s)F'(K_s) + 1] \]

\[= \sum_{s} \pi(s) \beta U'(c_{z|i}) [A(s)F''(K_z) + 1] \]

Individuals are indifferent between investing at home or in foreign.

- Same risk-sharing implications as before, but with world output defined as net of the efficient investment decisions.

- Note that in this complete markets environment, the ownership of firms is completely irrelevant. Firms make the same investment decisions regardless of who owns them. That's because H and F residents have exactly the same cross-date and cross-state MRS.