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How Much Would You Pay to Resolve Long-Run Risk? †

By Larry G. Epstein, Emmanuel Farhi, and Tomasz Strzalecki *

Though risk aversion and the elasticity of intertemporal substitution 
have been the subjects of careful scrutiny, the long-run risks literature 
as well as the broader literature using recursive utility to address asset 
pricing puzzles has ignored the full implications of their parameter 
specifications. Recursive utility implies that the temporal resolution 
of risk matters and a quantitative assessment thereof should be part 
of the calibration process. This paper gives a sense of the magnitudes 
of implied timing premia. Its objective is to inject temporal resolution 
of risk into the discussion of the quantitative properties of long-run 
risks and related models. (JEL D81, G11, G12)

The long-run risks model of Bansal and Yaron (2004) has delivered a unified 
explanation of several otherwise puzzling aspects of asset markets.1 Since Mehra 
and Prescott (1985) posed the equity premium puzzle, it has been understood that 
the asset market puzzles are quantitative and that an explanation must be consis-
tent with observations in other markets and also with introspection. Imposing such 
discipline led Mehra and Prescott to exclude rationalization of the observed equity 
premium by levels of risk aversion exceeding their well-known upper bound of ten. 
This bound on risk aversion has been largely respected since, including in  long-run 
risk models (LRR). However, we suggest in this paper that quantitative discipline 
has been lax in another equally important aspect of the long-run risks model.

1 In his opening remarks, Bansal (2007) lists the following puzzles: the level of equity premium; asset price 
volatility; the large cross-sectional differences in average returns across equity portfolios, such as value and growth 
portfolios; and in bond and foreign exchange markets, the violations of the expectations hypothesis and the ensuing 
return predictability that is quantitatively difficult to explain. He then writes: “What risks and investor concerns can 
provide a unified explanation for these asset market facts? One potential explanation of all these anomalies is the 
long-run risks model.” For elaboration and many additional references see Bansal (2007); Piazzesi and Schneider 
(2007); Hansen, Heaton, and Li (2008); Colacito and Croce (2011); and Chen (2010).
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As a representative agent model, LRR has two key components: the endowment 
process and preferences. The former is modeled as having a persistent predictable 
component for consumption growth and its volatility; it will be described more pre-
cisely below. The representative agent has Epstein-Zin preferences (Epstein and Zin 
1989; Weil 1990), which permit a partial disentangling of the elasticity of intertem-
poral substitution (EIS) and the coefficient of relative risk aversion (RRA). Denoting 
time t consumption by  c t , continuation utilities  U t  satisfy the recursion

(1)   U  t  ρ  =  ( 1 − β )   c  t  ρ  + β   [  E t ( U  t+1  α  ) ]  ρ/α 

when ρ ≠ 0, and otherwise

(2)  log  U t  =  ( 1 − β )  log  c t  + β log   [  E t ( U  t+1  α  ) ]  1/α .

We assume that ρ < 1, 0 ≠ α < 1, and 0 < β < 1. The utility of a deterministic 
consumption path is in the constant elasticity of substitution (CES) class with the 
elasticity of intertemporal substitution

  EIS =   1 _ 
1 − ρ

  .

Epstein and Zin (1989) show that 1 − α is the measure of relative risk aversion for 
timeless wealth gambles and also for suitable gambles in consumption where all risk 
is resolved at a single instant, justifying thereby the identification

  RRA = 1 − α.

The noted disentangling is possible because a decrease in α increases risk aver-
sion without affecting the attitude toward consumption smoothing over time 
given certainty, unlike in the standard additive power utility model where ρ = α.  
With these interpretations of ρ and α, parameter values in the LRR literature are 
specified with due care paid to evidence about the elasticity of substitution and the 
degree of risk aversion. However, as is clear from the theoretical literature, ρ and 
α affect also another aspect of preference in addition to the EIS and RRA. Clearly, 
judging the plausibility of parameter values requires that one consider their full 
quantitative implications for all dimensions of preference.

The above model of utility belongs to the recursive class developed by Kreps 
and Porteus (1978) in order to model nonindifference to the way in which a given 
risk resolves over time. For a simple example, suppose that consumption is fixed 
and certain in periods 0 and 1, and that it will be constant thereafter either at a 
high level or at a low level, depending on the outcome of the toss of an unbiased 
coin. Do you care whether the coin is tossed at t = 1 or at t = 2? We emphasize 
that it is risk about consumption—and not income—that is at issue, so that there 
is no apparent planning advantage to having the coin tossed early. According to 
the standard additive power utility model (ρ = α), the time of resolution of the 
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given risk is a matter of indifference. But not so more generally for recursive utility.  
For the  specification (1)–(2), it is well known that early resolution of a given risk 
(here tossing the coin at t = 1) is always preferable if and only if

(3)  1 − α = RRA >   1 _ 
EIS

   = 1 − ρ.

This condition is satisfied by the parameter values typically used in LRR models 
where both EIS and RRA are typically taken to exceed 1. Moreover, there is clear 
intuition that nonindifference to temporal resolution of risk might matter in match-
ing asset market data: because long-run risks are not resolved until much later, 
they are treated differently, and penalized more heavily than are current risks, thus 
permitting a large risk premium to emerge even when shocks to current consump-
tion are small. This begs the question whether the differential treatment required to 
match asset returns data is plausible, which is obviously a quantitative question and 
calls for evidence about the attitude toward temporal resolution.

We are not aware of any market-based or experimental evidence that might help 
with a quantitative assessment.2 In principle, the attitude toward the temporal reso-
lution of risk may underlie behavior in many multiperiod settings. However, it is not 
clear how to disentangle the attitude toward the psychic benefit of early resolution of 
consumption risk, which is the issue at hand, from either the instrumental benefit 
of early resolution of income risk—which is plausibly more directly observable at 
the micro level—or the pricing of consumption risk which is observable from asset 
market data.3 Of course, the approach of the long-run risk literature yields informa-
tion about the former under the assumption of Epstein-Zin utility and a suitable 
endowment process. However, our objective is to judge whether this approach is 
a good one. To do so, we suggest a simple thought experiment that through intro-
spection may help to judge plausibility of the parameter values used in the LRR 
literature. Thought experiments and introspection play a role also in assessing risk 
aversion parameters (see, for example, Kandel and Stambaugh 1990, 1991; Mankiw 
and Zeldes 1991; and Rabin 2000). In the latter context one considers questions of 
the form, “How much would you pay for the following hypothetical gamble?” Here 
we ask instead, “What fraction of your consumption stream would you give up in 
order for all risk to be resolved next month?” We call this fraction the timing pre-
mium and study its dependence on the parameters of the model.

2 The small experimental literature that we are aware of (see, e.g., Ahlbrecht and Weber 1996; Brown and Kim 
forthcoming, and references therein) focuses on whether individuals prefer early or late resolution, not on the 
strength of this preference. Our paper may provide stimulus for more work along these lines; an important question 
is how to extrapolate from the experimentally feasible risks and time intervals. There is also some evidence from 
field experiments that many individuals choose not to learn their test results for various diseases (see, e.g., Thornton 
2008; and Oster, Shoulson, and Dorsey 2013); given the clear instrumental value of information, this implies that 
the psychic benefit of early resolution is negative. However, it seems even harder to extrapolate from health out-
comes that those studies focus on to consumption outcomes that are relevant here.

3 There is a literature that seeks to understand risk pricing across maturities (see e.g., Hansen, Heaton, and 
Li 2008; and Hansen and Scheinkman 2009). In particular, Binsbergen, Brandt, and Koijen (2012) use data on 
dividend strips prices to show that the long-run risks model (as well as other classic models) have counterfactual 
predictions for the pricing of securities with varying maturities. Since there seem to be no parameterizations of these 
models which can resolve these puzzles and simultaneously match the moments addressed by Bansal and Yaron 
(2004), the work of Binsbergen, Brandt, and Koijen (2012) is complementary to ours in that it provides motivation 
for search for alternative (endowment and/or preference) models.
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A picture that seems to emerge is that models which assume high persistence of 
the consumption process (as in Bansal and Yaron 2004) tend to imply a timing pre-
mium of the order of 25–30 percent, much higher than in an i.i.d. model where it is 
of the order of 7–10 percent. The intuition that persistence inflates the timing pre-
mium is corroborated with the rare disaster model; assuming high persistence of  
the jump process (as in Wachter 2013) implies a timing premium of the order 
of 40 percent, much higher than in the i.i.d. model of Barro (2009), where it is 
around 20 percent.

Section I presents our theoretical and numerical results for the LRR model. 
Section II offers an extended discussion of the results framed as answers to the fol-
lowing series of questions: Why pay a premium for early resolution? Is introspec-
tion possible/useful? How is the premium for early resolution related to the welfare 
cost of risk (Lucas 1987)? What is the effect of modifying the endowment process 
to be i.i.d., or to correspond to rare disasters (Barro 2006, 2009) or persistent rare 
disasters (Wachter 2013)? What if a nonexpected utility model of risk preferences is 
adopted? Section III concludes and includes a brief comparison with related papers 
by Ai (2007) and D’Addona and Brevik (2011).

I. How Much Would You Pay?

The LRR Consumption Process.—Consider a consumption process of the follow-
ing form:

(4)  log   
 c t+1 

 _  c t    = m +  x t  +  σ t  W c, t+1 

   x t+1  = a x t  + φ σ t  W x, t+1 

   σ  t+1  2
   =  σ 2  + ν( σ  t  2  −  σ 2  ) +  σ w  W w, t+1 ,

where 0 < a < 1 and  W c, t ,  W x, t , and  W w, t  are standard Gaussian innovations, mutu-
ally independent and i.i.d. over time.

Here  x t  is a persistently varying predictable component of the drift in consumption 
growth. Though φ should be thought of as much smaller than unity, small innova-
tions to  x t  are important because they affect not only consumption prospects in the 
short run but also consumption for the indefinite future. The parameter a determines 
persistence of the expected growth rate process.

The volatility of consumption growth, represented by  σ t , is time-varying with 
unconditional variance given by  σ  2 . The empirical importance of stochastic vola-
tility is emphasized by Bansal, Kiku, and Yaron (2012) and Beeler and Campbell 
(2012). Setting ν = 0 =  σ w  turns off stochastic volatility and leads to a process with 
a constant variance of consumption growth; Bansal and Yaron refer to this model as 
Case I and to the model with stochastic volatility as Case II.

The LRR literature also distinguishes between consumption and dividends and 
specifies a suitable process for the latter. But it is the consumption process as a 
whole—and not its components—that is important here in trying to understand the 
nature of preferences.
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In LRR models, a consumption process similar to the above is the endowment 
of a representative agent in a Lucas-style exchange economy. It is well known 
that there is limited theoretical justification for the assumption of a represen-
tative agent; here it requires that everyone have identical Epstein-Zin (hence 
homothetic) preferences. Regardless, we treat the representative agent as a real 
individual when introspecting about her preferences. The infinite horizon can be 
understood as arising from a bequest motive, or as a rough approximation to a 
long but finitely lived individual.

Definition of the Timing Premium.—Here is the thought experiment. You are 
facing consumption described by (4) for t = 0, 1, … In particular, the riski-
ness of consumption resolves only gradually over time ( c t  and  x t  are realized 
only at time t). How much would you pay at time 0 to have all risk resolved next 
period? More precisely, you are offered the option of having all risk resolved at 
time 1. The cost is that you would have to relinquish the fraction π of both cur-
rent consumption and of the consumption that is subsequently realized for every 
later period. What is the maximum value  π ∗  for which you would be willing to 
accept this offer? Call  π ∗  the timing premium for the consumption process in 
(4). Formally, let  U 0  be the utility of the consumption process in (4) with risk 
resolved gradually, and let  U  0  ∗  be the utility of the alternative process where all 
risk is resolved at time 1. Then4

   π ∗  = 1 −   
 U 0  _ 
 U  0  ∗ 

  .

Theoretical Derivation for EIS = 1.—The magnitude of EIS, particularly whether 
it is less than or greater than 1, is a source of debate. Bansal and Yaron argue for an 
elasticity larger than 1 (in fact, EIS > 1 is important for the empirical performance 
of their model). Because closed-form solutions are not available for EIS ≠ 1, we 
compute values of the timing premium numerically below. However, first we derive 
a closed-form expression for the timing premium under the assumption of a unitary 
elasticity of substitution and restricting attention to the case of constant volatility for 
consumption growth.

Continuation utilities of the consumption process in (4), with risk resolved gradu-
ally, solve a recursive relation. Guess and verify that utility is given by

 log  U 0  = log  c 0  +   
β
 _ 

1 − β a
    x 0  +   

β
 _ 

1 − β
   m +   α _ 

2
     

β  σ 2 
 _ 

1 − β
    ( 1 +   

 φ 2   β  2 
 _  

  ( 1 − β a )  2 
   ) .

4 Utility admits an interpretation in terms of consumption perpetuities. For any consumption process c, its utility 
as defined in (1)–(2) equals that level of consumption which if received in every period and state would be indiffer-
ent to c. Thus  π ∗  can be described as the fraction of the consumption perpetuity that if relinquished would just offset 
the benefit of early resolution of risk.



2685EpstEin Et Al.: How MucH would You pAY to rEsolvE long-run risk?vol. 104 no. 9

Denote by  U  0  ∗  the utility of the alternative process where all risk is resolved at time 1. 
Then the continuation utility  U  1  ∗  at time 1 is given by

  log  U  1  ∗  =  ( 1 − β )  [ log  c 1  + β log  c 2  +  β  2  log  c 3  + ⋯  ] 

  = log  c 0  +  Σ  t=1  ∞   β  t−1  log  (  c t / c t−1  ) .

Therefore, from the time 0 perspective, log  U  1  ∗  is normally distributed with mean  

log  c 0  +   m _ 
1 − β   +   a _ 

1 − βa
    x 0  and variance    σ  2  _ 

1 −  β  2 
    ( 1 +   

 φ  2 
 _ 

  ( 1 − βa )  2 
   ) . Conclude that

 log  U  0  ∗  =  ( 1 − β )  log  c 0  + β log   (  E 0   (  U  1  ∗  )  α  )  1/α 

  = log  c 0  +   
β
 _ 

1 − βa
    x 0  +   

β
 _ 

1 − β
   m +   α _ 

2
     

β σ 2 
 _ 

1 −  β 2 
    ( 1 +   

 φ 2  β  2 
 _ 

  ( 1 − βa )  2 
   ) .

Accordingly, one arrives at the following expression for the timing premium:

   π ∗  = 1 − exp  [    α _ 
2
     

 β  2  σ  2 
 _ 

1 −  β  2 
    ( 1 +   

 φ 2  β  2 
 _ 

  ( 1 − βa )  2 
   )  ] .

The premium is positive (i.e., early resolution is preferred) if and only if α < 0, 
consistent with (3). In that case, the premium is increasing in RRA,  σ  2 , φ, β, and 
a, as one would expect. The first column of Table 1 gives a sense of the quantita-
tive meaning of this formula for the parameter values (other than EIS) specified in 
Bansal and Yaron (2004) for a monthly frequency. (The risk premium described 
in the last row is defined in Section II.)

Numerical Results.—For values of EIS different than 1, we rely on numerical 
methods. To obtain the value of  U 0  we note that the value function U in (1) can 
be written as U(c, x, σ) = cH(x, σ), where H : 핉 ×  핉 +  →  핉 +  is a solution to the 
functional equation

(5)  H(x, σ) =   { 1 − β + β e ρ ( m + x +   α σ   2  _ 2   )   E x, σ  H( x′ , σ′ α )    
ρ
 _ α    }    1 _ ρ   .

 E x, σ  is the expectation conditional on x and σ. We discretize x and σ, approximate 
H by a Chebyshev polynomial, and approximate the expectation by a quadrature. 
Thus our approximation to (5) can be written as a system of nonlinear equations. 
We solve this system using AMPL. To compute the value of early resolution  U  0  ∗  we 
run Matlab Monte Carlo simulations with a fixed time horizon T = 2,500 months 
(pasting  U 0  as the continuation value at T ).
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Table 1 reports our numerical results for EIS = 1.5. Figure 1 plots the isoquants of 
the timing and risk premia for the two specifications and a range of preference param-
eters.5 We compute the timing premium and the risk premium for initial values of 
the state variables corresponding to the modal point of the state space  x 0  = 0 and  
σ  0  

2  =  σ 2 . Although we do not report such numbers, it could be interesting to also 
compute the timing premium and the risk premium at other points of the state space 
or perhaps their average over the state space with respect to the ergodic distribution.

II. Discussion and Perspective

Why Pay a Premium?—Would you give up 25 or 30 percent of your lifetime con-
sumption in order to have all risk resolved next month? Keep in mind that it is risk 
about consumption that is at issue rather than risk about income or security returns. 
Thus, early resolution does not have any apparent instrumental value. Kreps and 
Porteus (1978, 1979) suggest that an instrumental value might arise because of an 
unmodeled underlying planning problem. Essentially, there are more primitive pref-
erences defined over deeper variables that are the ultimate source of satisfaction; 
utility defined on consumption is an indirect utility function, and early resolution 
has value for reasons familiar from Spence and Zeckhauser (1972), for example. 
This sounds plausible in theory, but one needs a more concrete story in order to 
believe that it could generate a sizable timing premium.6

At a psychic level, early resolution of risk may reduce anxiety. However, anxiety 
is plausibly more important when risk must be endured for a long time. Therefore, 
the risk premium required for bearing a lottery is greater the longer the time that the 
individual has to live with the anxiety of not knowing how the lottery will be resolved. 
In other words, the willingness to bear a given risk declines as the date of resolution 

5 We limit RRA to be no greater than 10, the upper bound considered reasonable by Mehra and Prescott (1985) 
despite the fact that in the literature many calibrated, as well as estimated (see Chen, Favilukis, and Ludvigson 
2013), parameter values exceed 10. Those parameter values would inflate the timing premium further.

6 Ergin and Sarver (2012) characterize behavior, in terms of choice between “lotteries over sets of lotteries,” that 
indicates (or can be represented via) a hidden planning problem. It remains to see if this work will help in assessing 
the magnitudes of timing premia.

Table 1—Premia in the LRR Model

BY (but EIS = 1) BY (Case I) BY (Case II)

σ 0.0078 0.0078 0.0078
φ 0.044 0.044 0.044
a 0.9790 0.9790 0.9790

 σ w 0 0 0.23 × 1 0 −5 
ν 0 0 0.987
β 0.998 0.998 0.998

RRA 7.5 or 10 7.5 or 10 7.5 or 10
EIS 1 1.5 1.5
Timing premium  π ∗  20% or

27%
23% or
29%

24% or
31%

Risk premium  
_
 π   38% or

48%
48% or
56%

48% or
57%
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approaches, a form of dynamic inconsistency. However, such dynamic inconsistency 
is precluded when utility is recursive and thus anxiety cannot be a rationale for a 
timing premium given the utility functions considered here. (This argument is due 
to Grant, Kajii, and Polak 2000; Caplin and Leahy 2001; and Epstein 2008). To the 
extent that introspection is based in part on considerations of anxiety, stated timing 
premia overstate premia that are consistent with LRR.

For perspective, note that modeling nonindifference to the temporal resolution 
of risk is the objective in the Kreps and Porteus papers. Such nonindifference is 
plausible in theory as a property of “rational” preferences. Further, Epstein and Zin 
(1989) show that permitting a nonzero timing premium has the modeling benefit 
of allowing a partial separation between EIS and RRA. Thus even if one is skepti-
cal about the descriptive importance of a nonzero timing premium, one might view 
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Notes: The gray dots denote the calibrated values of EIS and RRA. Other parameters are as in Table 1.
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its use as a cost of separating EIS and RRA.7 How costly is a quantitative ques-
tion. Similarly, it is a quantitative issue whether nonindifference to timing makes 
sense as an  important component of an empirical model. But applied papers using 
 Epstein-Zin utility have accepted such nonindifference uncritically.

Is Introspection Possible? Useful?—One might question whether introspection is 
possible or reliable given the artificial nature of the question posed in the thought 
experiment: how much would you pay to have your lifetime risk resolved next month, 
keeping in mind that you cannot use that information. But the starkness of the ques-
tion arguably helps introspection. For example, one might feel strongly, as we do, 
“why should I give up 25 percent… just to know earlier, when I can’t even use that 
information?” In fact, it is arguably easier to introspect than if one is allowed to use 
the information to reoptimize, in which case self-assessment of the timing premium 
would involve introspection about all of substitutability, risk aversion, and early 
resolution, as well as about the available financial instruments and more generally 
the collection of all consumption processes in an expected budget set.

Introspection is at best a matter of opinion and is inherently subjective. While we 
are not arguing that a consensus is possible, we are hoping that our exercise may 
help some people understand the LRR model more fully. The alternative is to leave 
the modeling exercise completely undisciplined, which we find unsatisfactory.

How is the Timing Premium Related to the Welfare Cost of Risk?—Perspective 
on the timing premium is provided by examining also what the representative agent 
would be willing to pay to eliminate risk entirely. Lucas (1987) introduced such a 
calculation into macroeconomics as a way to measure the welfare costs of business 
cycle fluctuations. His conclusion that consumption risk has very small welfare costs 
stimulated many others to see how different model specifications might lead to larger 
costs. Our interest here is less in the total cost of risk per se than in using the latter to 
provide further perspective on the size of the timing premium. Specifically, are the 
timing premia reported in Table 1 large relative to the total welfare cost of risk?

Consider the deterministic consumption process  
_
 c   =  (   _ c   t  )  where, for every t,  

  
_
 c   t  =  E 0   c t , where  E 0  is the expectation starting with  x 0  = 0 and  σ  0  

2  =  σ 2 .
Its utility at time 0 is   

_
 U   0 . Whenever α < 1, risk is costly (  

_
 U   0  >  U 0 ) and the cost 

may be measured by the risk premium  
_
 π  , where8

   _ π   = 1 −  U 0 /  
_
 U   0 .

The last row of Table 1 shows the welfare costs implied by the LRR model. For the 
parameter values used by Bansal and Yaron (2004), an individual giving up roughly 
50 percent of her deterministic consumption   

_
 c   t  in every period would still be no 

worse off than with the long-run risk process in (4).

7 This has always been Epstein’s view.
8 Lucas uses    

_
 π   _ 1 −  _ π     to measure the benefit of eliminating risk rather than  

_
 π   to measure its cost. The difference 

between the two measures parallels the difference between the compensating variation (used here) and the equiva-
lent variation (used by Lucas) of a policy change.
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It can be verified further that, as one would expect,

    
_
 U   0  >  U  0  ∗  >  U 0  if α < 0.

This suggests the following decomposition:

    
 U 0  _ 
  
_
 U   0 
   =   

 U 0  _ 
 U  0  ∗ 

   ·   
 U  0  ∗  _ 
  
_
 U   0 
   ,

whereby the total cost of risk is decomposed into the cost of bearing risk that is 
resolved late (after time 1), and the cost of bearing risk all of which is resolved early 
(at time 1). The relative importance of the first factor is given by

    
 U  0  ∗ / U 0 

 _ 
  
_
 U   0 / U 0 

   =   
 U  0  ∗  _ 
  
_
 U   0 
   =   1 −  _ π   _ 

1 −  π ∗ 
   .

For the parameter values in Table 1, the indicated ratio is between 0.62 and 0.77. 
Thus, between two-thirds and three-quarters of the cost (in constant consumption 
perpetuity) of risk is attributable to the cost of late resolution.

What is the Role of the Endowment Process?—The numbers presented in Table 1 
and Figure 1 depend on the parameters of the endowment process and in particular 
on the degree of persistence.9 To examine the importance of persistence and to offer 
perspective on the improved fit of asset market data provided by the LRR model, 
we compare its timing premia to those implied by the benchmark i.i.d. model.10  
An i.i.d. growth process for consumption is a workhorse model, fits US data well, 
and is hard to distinguish statistically from the LRR process. It is assumed in, for 
example, Campbell and Cochrane (1999); Calvet and Fisher (2007), where divi-
dends are separated from consumption; and in Barberis, Huang, and Santos (2001).

Table 2 assumes β = 0.998, and that  log  (  c t+1 / c t  )  is i.i.d. N ( m,  σ  2  ) , with 
m = 0.0015 and  σ  2  = 0.00007. These latter values are roughly consistent with the 
annual mean (1.8 percent) and standard deviation (2.9 percent) for real per capita 
consumption growth used by Bansal and Yaron (2004) to calibrate their model. 
Comparison with Table 1 shows that timing premia here are considerably smaller 
than for the LRR model.

Rare Disasters.—Another specification of the endowment process that is promi-
nent in the asset pricing literature is based on rare disasters. Barro (2009) also uses 
Epstein-Zin utility but he assumes an i.i.d. consumption process where in every period 

9 Bansal, Kiku, and Yaron (2012) use higher volatility persistence, ν = 0.999. Our algorithm failed to find a 
solution to the value function. Hansen et al. (2007, Section 5.3) study a continuous time model where volatility 
follows a Feller square root process; they find an upper bound on volatility persistence beyond which the value 
function does not exist.

10 The next subsection examines yet another endowment process.
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there is a small probability p of a negative shock that shrinks  consumption by the 
factor  b t .11 Specifically, the consumption process has the following representation:

  log   
 c t+1 

 _  c t    = m + σ W c, t+1  + log (1 −  b t ) W d, t+1 ,

where m is mean consumption growth,  W c, t+1  ∼ N(0, 1),  W d, t+1  ∼ Bernoulli( p), 
and  b t  follows a categorical distribution of disaster sizes obtained from data.12  
All those random variables are mutually independent and i.i.d. over time.

Wachter introduces persistence into this model by assuming that the disaster 
probability varies over time. Specifically, she assumes that  W d, t+1  ∼ Bernoulli(  p t ), 
where  p t  = 1 −  e − λ t   and that λ follows the square root process

   λ t+1  = (1 − κ) λ t  + κ 
_
 λ   +  σ λ  √ 

_
  λ t     ϵ t+1 ,

where  
_
 λ   is the mean value of λ, κ measures persistence, and  σ λ  measures the stan-

dard deviation.13

The parameter values used by Barro (2009) are for an annual frequency: 
RRA = 4, EIS = 2, p = 0.017, m = 0.025, σ = 0.02, and β = 0.951. The distri-
bution of  b t  has mean 0.29, minimum 0.15, maximum 0.73, and was obtained from 
the author. With these parameter values (and T = 200 for the Monte Carlo simula-
tion) the computed value of the timing premium is 18 percent and the risk premium 
is 29 percent.14

We discretize the parameter values used by Wachter (2013): RRA = 3, EIS = 1,  _
 λ   = 0.0355, κ = 0.08,  σ λ  = 0.067, m = 0.0252, σ = 0.02, and β = 0.988. The 

categorical distribution of  b t  has mean 0.22, minimum 0.1, maximum 0.68, and was 
obtained from the author. With these parameter values (and T = 200 for the Monte 
Carlo simulation) the computed value of the timing premium is 42 percent and the 

11 He follows Barro (2006) and Rietz (1988).
12 See also Barro and Jin (2011) who fit power laws to the distribution of disaster sizes; and Tsai and Wachter 

(2013), who allow for rare booms as well as rare disasters.
13 Wachter’s model is in continuous time. We use a discretized version of her process.
14 For comparison, we also computed the values for the monthly parametrization and they are close: 19 percent 

and 29 percent, respectively.

Table 2—Timing Premia for i.i.d. Growth Rate

RRA\EIS 1.5 1 0.2 0.1

10 9.5% 7.8% 1.0% 0.0%
7.5 6.8% 5.6% 0.4% −0.5%
5 4.3% 3.5% 0.0% −0.8%
2 1.2% 0.9% −0.9% −1.1%
1 0.4% 0.0% −1.0% −1.2%
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risk premium is 65 percent.15,16 It is instructive to compare these premium values 
to those obtained in the model without persistence: setting  σ λ  = 0 and κ = 1 yields 
the timing premium of 22 percent and the risk premium of 46 percent.17 Thus allow-
ing for long-run shocks to the probability of disasters heavily inflates both premia.

What about Other Preference Parameter Values?—Are there parameter values 
that allow for sensible values of the timing premium and at the same time provide a 
good fit of the asset pricing data? Surely, setting EIS in the vicinity of the reciprocal 
of RRA leads to a small timing premium. With a high RRA needed to accommo-
date a high equity premium, this would require that EIS be significantly below 1. 
However, Bansal and Yaron (2004) point out that in their model EIS below 1 would 
lead to excessive levels and/or volatility for the risk-free rate. This is also true in the 
variable rare disaster model of Wachter (2013). In addition, Barro (2009) points out 
that EIS below 1 leads to the counterfactual prediction that an increase in economic 
uncertainty would lead to an increase in price-dividend ratios. It is possible that 
there exists a model of the endowment process that fits asset pricing data well with 
EIS smaller than 1; however, we are not aware of such a process.

More General Risk Preferences.—In (1)–(2) and in the Kreps-Porteus model more 
generally, risk preferences are in the vNM class. Epstein and Zin (1989) describe a 
more general class of recursive utility functions in which risk preferences that are 
consistent with the Allais paradox are also permitted. Some of these specifications 
have been used to address the equity premium and related puzzles (references are 
given below). Therefore, we explore briefly the quantitative implications of such 
generalizations for timing premia.

To preserve simplicity while generalizing preferences, as well as for the conve-
nience of closed forms and for the clarity of intuition delivered thereby, we sim-
plify the endowment process and assume that the (log) growth rate is i.i.d. with  
log  (  c t+1 / c t  )  distributed as N ( m,  σ  2  ) . Generalize (2) and consider utility defined by:

(6)  log  U t  =  ( 1 − β )  log  c t  + β log μ( U t+1 ).

Here μ ( · )  is the certainty equivalent of random future utility using its conditional 
distribution at time t.18 Assume that μ ( x )  = x for any deterministic random variable 
x, that μ respects first-order and second-order stochastic dominance, and that μ is 
linearly homogeneous (constant relative risk aversion).

It is convenient to use the renormalized certainty equivalent  μ ∗ , where for any 
positive random variable X and associated distribution,  μ ∗  ( log X )  ≡ log μ ( X  ) . 

15 As in our LRR calculations, we compute the value of the timing premium and the risk premium for an initial 
value of the state variable corresponding to the modal point of the state space  λ 0  =  

_
 λ  .

16 As in the case of the Bansal-Yaron model, we compute the value of early resolution by Monte Carlo simula-
tions. To compute the value of gradual resolution we use value iteration.

17 The difference between these numbers and those that we obtain for Barro’s specification can be accounted for 
by the different preference parameters and slightly different empirical distributions of disaster sizes.

18 In general it depends on the information at t, but with the i.i.d. assumption such time dependence can be 
safely suppressed.
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Then (see the Appendix) the timing premium is given in closed-form by  π ∗  = 1 − 
exp  ( −βΔ ) , where

(7)  Δ ≡  μ ∗  (  Σ  0  ∞  β  t  log  (  c t+1 / c t  )  )  −   ( 1 − β )  −1  μ ∗  ( log( c 1 / c 0 ) ) .

For the expected utility-based certainty equivalent,  μ ∗  ( log X )  =   1 _ α   log E( X  t+1  α  ), 
and one obtains the Epstein-Zin implied timing premium; denote the corresponding 
Δ by  Δ EZ .

As an alternative, consider the following disappointment aversion certainty 
equivalent:19 Fix 0 < γ ≤ 1, and for any positive random variable X (with distribu-
tion P), define  μ da  ( X )  implicitly by

  log  μ da  ( X )  = E log  ( X )  −  (  γ −1  − 1 )   ∫  
x ≤  μ da  (X)

  
 
  (log  μ da (X) − log x) dP(x),

or equivalently, (let Y = log X and Q its induced distribution),

(8)   μ  da  ∗   ( Y  )  = EY −  (  γ −1  − 1 )   ∫  
y≤ μ  da  

∗  (Y )
  

 
  ( μ  da  ∗   ( Y  )  − y) dQ(y).

The interpretation is that outcomes of X that are disappointing because they fall 
below the certainty equivalent are penalized relative to E log  ( X ) . If γ = 1, then 
μ ( X )  = E log  ( X )  and, when substituted into (6), one obtains the expected util-
ity model where RRA = EIS = 1. Accordingly, nonindifference to timing arises 
herein only from the disappointment factor when γ < 1. Because the latter adds to 
risk aversion, the effective degree of risk aversion is greater than 1. We compare this 
way of increasing risk aversion to using Epstein-Zin utility with α < 0.

We show in the Appendix that the difference Δ in (7), written now  Δ da , can be 
expressed in the form

(9)   Δ da  =   
m −  μ  da  ∗   ( log  (  c 1 / c 0  )  ) 

  __  
1 − β

    ( 1 −   [   1 − β
 _ 

1 + β
   ]  1/2

  )  ,
which expression involves the certainty equivalent of the single-period gamble 
only. Compare  Δ EZ  and  Δ da  to see the differing implications for timing premia of 
the expected utility versus disappointment aversion risk preferences. A meaning-
ful comparison requires that the respective parameters α and γ be suitably related.  
For example, suppose that the two certainty equivalents assign the same value to the 

19 The model is due to Gul (1991). For applications to finance, see Epstein and Zin (2001); and Ang, Bekaert, 
and Liu (2005). Routledge and Zin (2010) present and apply a generalization, which is investigated further empiri-
cally by Bonomo et al. (2011). See also Epstein and Zin (1990); and Bekaert, Hodrick, and Marshall (1997).
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distribution of  log  (  c 1 / c 0  ) . Then substitute  μ  da  ∗   ( log( c 1 / c 0 ) )  = m +   1 _ 2   α ·  σ  2  into 
(9) to deduce that

(10)   Δ da  =  ( 1 −   [   1 − β
 _ 

1 + β
   ]  1/2

  )    1 + β
 _ 

β
    Δ EZ  ≃ 2 Δ EZ  .

Roughly, disappointment aversion implies timing premia twice as large as those 
reported in Table 2 when γ is calibrated as described to α = −9, −4, −1.

An alternative calibration is to assume that the two certainty equivalents assign 
the same value to the distribution of  Σ  0  ∞  β  t  log  (  c t+1 / c t  ) . Then similar reasoning 
leads to the relation

(11)   Δ da  =   1 _ 
β
    (   [   1 + β

 _ 
1 − β

   ]  1/2

  − 1 )   Δ EZ  ≃ 30 Δ EZ  ,

and hence to much larger timing premia under disappointment aversion. (For exam-
ple, the timing premium for γ that corresponds to α = −1 is about 23 percent.) 
Thus with either calibration, timing premia are larger than with Epstein-Zin utility.

The Appendix shows that (10) and (11) are valid for a broader class of risk 
preferences.

III. Concluding Remarks

Though risk aversion and the elasticity of intertemporal substitution have been the 
subjects of careful scrutiny when calibrating preferences, the long-run risks litera-
ture and the broader literature using recursive utility to address asset pricing puzzles 
have ignored the full implications of their parameter specifications. Recursive utility 
implies that the temporal resolution of risk matters and a quantitative assessment 
of how much it matters should be part of the calibration process. This paper is not 
intended to provide an exhaustive or definitive assessment of parameters used in the 
literature. Its objective is to give a sense of the magnitudes of implied timing premia 
and to inject temporal resolution of risk into the discussion of the quantitative prop-
erties of LRR and related models.

Timing premia depend on both the parameters of preference and on the nature 
of the endowment process. In the latter connection, we have demonstrated that, 
given Epstein-Zin utility, high persistence of the consumption process—as assumed 
in the LRR literature or in a version of the rare disaster model (Wachter 2013)—
inflates timing premia to levels that seem implausible to us based on introspection 
(20–30 percent in the former case and 40 percent in the latter case). Though some 
may disagree with this admittedly subjective judgement, we believe that we have 
at least alerted readers to the need to be more cautious when calibrating asset pric-
ing models that rely on nonindifference to temporal resolution as a key component. 
There are endowment and parameter specifications that imply much smaller tim-
ing premia, but while they can account for some asset pricing moments, they yield 
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counterfactual predictions for others. Another alternative is to seek a different model 
of  preference. In Epstein-Zin utility (1) and (2), the two parameters α and ρ govern 
three seemingly distinct aspects of preference, with the result that setting them to 
match values for EIS and RRA yields timing premia that are beyond direct control 
of the analyst. This limitation has been recognized from the start in Epstein and Zin 
(1989), but this paper may provide renewed impetus to the search for a more flexible 
model of preference.

For other thought experiments that reflect on parameter values in the LRR model, 
see D’Addona and Brevik (2011) and Ai (2007). D’Addona and Brevik assert that 
an agent with Epstein-Zin utility achieves higher utility levels if he can commit 
to ignoring information about the state variable  x t  appearing in (4). Though they 
describe their results as concerning information, their analysis does not admit that 
interpretation: instead of changing the information structure of the agent, they 
endow the agent with a different consumption process that does not involve  long-run 
risk (and has the appropriately adjusted unconditional variance). Thus, they de facto 
study aversion to autocorrelation of consumption instead of the (conceptually dis-
tinct) preference for ignoring information or nonindifference to the temporal reso-
lution of risk. In a continuous-time economy with production, Ai (2007) considers 
the preference for early resolution from a quantitative perspective by asking how 
much consumption the agent is willing to forgo to learn perfectly the autocorre-
lated component of the production process instead of having just a noisy signal 
of it. Our starker thought experiment, where early resolution means that all risk is 
fully resolved, and the discrete-time exchange economy setting, arguably permits a 
sharper focus and makes it easier for introspection to operate. (See Section II for our 
related comments on whether introspection is useful.)

An important alternative to models based on recursive utility is the external habits 
model of Campbell and Cochrane (1999). Corresponding scrutiny of that model 
seems in order. Thus far plausibility of the habits formation process assumed for the 
representative agent has been judged solely by how it helps to match asset market 
data. The discipline urged by Mehra and Prescott (1985) suggests that at least one 
should examine also whether it seems plausible based on introspection about the 
quantitative effects of past consumption on current preferences. The difficulty of 
finding market-based evidence concerning external habits, or about timing premia, 
does not justify leaving them as free parameters.

Appendix: Details for More General Risk Preferences

To derive (7), use the fact that utilities are given by

  log  U 0  = log  c 0  + β  [   1 _ 
1 − β

    μ ∗  ( log ( c 1 / c 0 ) )  ] 

  log  U  0  ∗  = log  c 0  + β  [  μ ∗  (  Σ  0  ∞  β  t  log  (  c t+1 / c t  )  )  ]   .
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Let Y = log  (  c 1 / c 0  )  and  Y′  =  Σ  0  ∞  β  t  log  (  c t+1 / c t  ) . They are distributed as  

N ( m,  σ  2  )  and N (   m _ 
1 − β   ,   

 σ  2  _ 
1 −  β  2 

   ) , respectively. Therefore,

  Y″ ≡   ( 1 −  β  2  )  1/2   Y′  − m (   [   1 + β
 _ 

1 − β
   ]  1/2

  − 1 )  is N ( m,  σ  2  ) .

Because  μ da  ( Y″  )  and  μ da  ( Y  )  depend only on the distributions of Y″ and Y, they must 
be equal. Note that  μ  da  ∗   satisfies: for all λ ≥ 0,

(A1)   μ  da  ∗   ( Y + λ )  =  μ  da  ∗   ( Y  )  + λ and  μ  da  ∗   ( λY  )  = λ μ  da  ∗   ( Y  )  ,

that is, it exhibits both CARA (constant absolute risk aversion) and CRRA (constant 
relative risk aversion). Conclude that the two certainty-equivalent values appearing 
in (7) are related by the equation

(A2)    ( 1 −  β  2  )  1/2  μ  da  ∗   (  Σ  0  ∞  β  t  log  (  c t+1 / c t  )  )  −  μ  da  ∗   ( log  (  c 1 / c 0  )  ) 

    = m (   [   1 + β
 _ 

1 − β
   ]  1/2

  − 1 ) .
The preceding, and hence also equations (10) and (11), rely only on lognormal-

ity and on the fact that  μ  da  ∗   satisfies (A1). Thus the comparative analysis of timing 
premia applies to any certainty equivalent function satisfying the latter properties. 
For example, it applies also to the following generalization of (8):

   μ  gda  ∗   ( Y )  = EY −  (  γ −1  − 1 )   ∫   
y ≤ δ μ  gda  ∗  (Y )

  
 
  (δ μ  gda  ∗   ( Y  )  − y) dQ(y),

where 0 < δ ≤ 1. Here outcomes are disappointing if they are smaller than the 
fraction δ of the certainty equivalent. This generalization of disappointment aver-
sion (which corresponds to the special case δ = 1) is in the spirit of that provided 
by Routledge and Zin (2010). (In our setting, their model would take the form 
 μ  RZ  ∗   ( Y  )  = EY −  (  γ −1  − 1 )  ∫  

y ≤ log δ +  μ  R  Z  ∗    (Y )    
  (log δ +  μ  RZ  ∗   ( Y  )  − y) dQ(y), which vio-

lates the second condition in (A1)).
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