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Abstract
Robust control theory is a tool for assessing decision rules when a decision maker distrusts either the
specificationof transition lawsor thedistributionof hidden state variables or both. Specificationdoubts
inspire the decision maker to want a decision rule to work well for a ; of models surrounding his
approximating stochastic model. We relate robust control theory to the so-called multiplier and
constraint preferences that have been used to express ambiguity aversion. Detection error
probabilities can be used to discipline empirically plausible amounts of robustness. We describe
applications to asset pricing uncertainty premia and design of robust macroeconomic policies.
JEL classification: C11, C14, D9, D81, E61, G12
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1. INTRODUCTION

1.1 Foundations
Mathematical foundations created by von Neumann and Morgenstern (1944), Savage

(1954), and Muth (1961) have been used by applied economists to construct quantitative

dynamic models for policymaking. These foundations give modern dynamic models an
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internal coherence that leads to sharp empirical predictions. When we acknowledge that

models are approximations, logical problems emerge that unsettle those foundations.

Because the rational expectations assumption works the presumption of a correct specifi-

cation particularly hard, admitting model misspecification raises especially interesting

problems about how to extend rational expectations models.1

A model is a probability distribution over a sequence. The rational expectations

hypothesis delivers empirical power by imposing a “communism” of models: the peo-

ple being modeled, the econometrician, and nature share the same model, that is, the

same probability distribution over sequences of outcomes. This communism is used

both in solving a rational expectations model and when a law of large numbers is

appealed to when justifying generalized method of moments (GMM) or maximum

likelihood estimation of model parameters. Imposition of a common model removes

economic agents’ models as objects that require separate specification. The rational

expectations hypothesis converts agents’ beliefs from model inputs to model outputs.

The idea that models are approximations puts more models in play than the rational

expectations equilibrium concept handles. To say that a model is an approximation is to

say that it approximates another model. Viewing models as approximations requires

somehow reforming the common model requirements imposed by rational expectations.

The consistency of models imposed by rational expectations has profound implica-

tions about the design and impact of macroeconomic policymaking, for example, see

Lucas (1976) and Sargent and Wallace (1975). There is relatively little work studying

how those implications would be modified within a setting that explicitly acknowl-

edges decisionmakers’ fear of model misspecification.2

Thus, the idea that models are approximations conflicts with the von Neumann-

Morgenstern-Savage foundations for expected utility and with the supplementary equi-

librium concept of rational expectations that underpins modern dynamic models. In view

of those foundations, treating models as approximations raises three questions. What stan-

dards should be imposed when testing or evaluating dynamic models? How should private

decisionmakers be modeled? How should macroeconomic policymakers use misspecified

models? This essay focuses primarily on the latter two questions. But in addressing these

questions we are compelled to say something about testing and evaluation.

This chapter describes an approach in the same spirit but differs in many details

from Epstein and Wang (1994). We follow Epstein and Wang by using the Ellsberg

paradox to motivate a decision theory for dynamic contexts based on the minimax the-

ory with multiple priors of Gilboa and Schmeidler (1989). We differ from Epstein and
1 Applied dynamic economists readily accept that their models are tractable approximations. Sometimes we express this

by saying that our models are abstractions or idealizations. Other times we convey it by focusing a model only on

“stylized facts.”
2 See Karantounias et al. (2009), Woodford (2010), Hansen and Sargent (2008b, Chaps. 15 and 16), and Orlik and

Presno (2009).
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Wang (1994) in drawing our formal models from recent work in control theory. This

choice leads to many interesting technical differences in the particular class of models

against which our decisionmaker prefers robust decisions. Like Epstein and Wang

(1994), we are intrigued by a passage from Keynes (1936):
3 S
A conventional valuation which is established as the outcome of the mass psychology of a
large number of ignorant individuals is liable to change violently as the result of a sudden fluc-
tuation in opinion due to factors which do not really make much difference to the prospective
yield; since there will be no strong roots of conviction to hold it steady.
Epstein andWang (1994) provided a model of asset price indeterminacy that might explain

the sudden fluctuations in opinion that Keynes mentions. In Hansen and Sargent (2008a),

we offered a model of sudden fluctuations in opinion coming from a representative agent’s

difficulty in distinguishing between two models of consumption growth that differ mainly

in their implications about hard-to-detect low frequency components of consumption

growth. We describe this force for sudden changes in beliefs in Section 5.5.
2. KNIGHT, SAVAGE, ELLSBERG, GILBOA-SCHMEIDLER, AND FRIEDMAN

In Risk, Uncertainty and Profit, Frank Knight (1921) envisioned profit-hunting entrepre-

neurs who confront a form of uncertainty not captured by a probability model.3

He distinguished between risk and uncertainty, and reserved the term risk for ventures

with outcomes described by known probabilities. Knight thought that probabilities of

returns were not known for many physical investment decisions. Knight used the term

uncertainty to refer to such unknown outcomes.

After Knight (1921), Savage (1954) contributed an axiomatic treatment of decision

making in which preferences over gambles could be represented by maximizing expected

utility under subjective probabilities. Savage’s work extended the earlier justification of

expected utility by vonNeumann andMorgenstern (1944) that had assumed known objec-

tive probabilities. Savage’s axioms justify subjective assignments of probabilities. Even when

accurate probabilities, such as the 50–50put on the sides of a fair coin, are not available, deci-

sionmakers conforming to Savage’s axioms behave as if they form probabilities subjectively.

Savage’s axioms seem to undermine Knight’s distinction between risk and uncertainty.

2.1 Savage and model misspecification
Savage’s decision theory is both elegant and tractable. Furthermore, it provides a pos-

sible recipe for approaching concerns about model misspecification by putting a set of

models on the table and averaging over them. For instance, think of a model as being a

probability specification for the state of the world y tomorrow given the current state x

and a decision or collection of decisions d: f(yjx, d). If the conditional density f is
ee Epstein and Wang (1994) for a discussion containing many of the ideas summarized here.
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unknown, then we can think about replacing f by a family of densities g(yjx, d, a)
indexed by parameters a. By averaging over the array of candidate models using a prior

(subjective) distribution, say p, we can form a “hyper model” that we regard as cor-

rectly specified. That is we can form:

f ðyjx; dÞ ¼
ð
gðyjx; d; aÞdpðaÞ:

In this way, specifying the family of potential models and assigning a subjective proba-

bility distribution to them removes model misspecification.

Early examples of this so-called Bayesian approach to the analysis of policymaking

in models with random coefficients are Friedman (1953) and Brainard (1967).

The coefficient randomness can be viewed in terms of a subjective prior distribution.

Recent developments in computational statistics have made this approach viable for a

potentially rich class of candidate models.

This approach encapsulates specification concerns by formulating (1) a setof specific pos-

sible models and (2) a prior distribution over those models. Below we raise questions about

the extent to which these steps can really fully capture our concerns about model misspeci-

fication. Concerning (1), a hunch that a model is wrong might occur in a vague form that

“some other good fitting model actually governs the data” and that might not so readily

translate into a well-enumerated set of explicit and well-formulated alternative models g

(yjx, d, a). Concerning (2), even when we can specify a manageable set of well-defined

alternative models, we might struggle to assign a unique prior p(a) to them. Hansen and

Sargent (2007) addressed both of these concerns. They used a risk-sensitivity operator T1

as an alternative to (1) by taking each approximating model g(yjx, d, a), one for each a,
and effectively surrounding each one with a cloud of models specified only in terms of

how close they approximate the conditional density g(yjx, d, a) statistically. Then they use

a second risk-sensitivity operator T2 to surround a given prior p(a) with a set of priors that
again are statistically close to the baseline p.We describe an application to amacroeconomic

policy problem in Section 5.4.

2.2 Savage and rational expectations
Rational expectations theory withdrew freedom from Savage’s (1954) decision theory

by imposing equality between agents’ subjective probabilities and the probabilities

emerging from the economic model containing those agents. Equating objective and

subjective probability distributions removes all parameters that summarize agents’ sub-

jective distributions, and by doing so creates the powerful cross-equation restrictions

characteristic of rational expectations empirical work.4 However, by insisting that
4 For example, see Sargent (1981).
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subjective probabilities agree with objective ones, rational expectations make it much

more difficult to dispose of Knight’s (1921) distinction between risk and uncertainty

by appealing to Savage’s Bayesian interpretation of probabilities. Indeed, by equating

objective and subjective probability distributions, the rational expectations hypothesis

precludes a self-contained analysis of model misspecification. Because it abandons

Savage’s personal theory of probability, it can be argued that rational expectations indi-

rectly increase the appeal of Knight’s distinction between risk and uncertainty. Epstein

and Wang (1994) argued that the Ellsberg paradox should make us rethink the founda-

tion of rational expectations models.
2.3 The Ellsberg paradox
Ellsberg (1961) expressed doubts about the Savage approach by refining an example origi-

nally put forward byKnight (1921). Consider the two urns depicted in Figure 1. InUrnA it

is known that there are exactly ten red balls and ten black balls. In Urn B there are twenty

balls, some red and some black. A ball from each urn is to be drawn at random. Free of

charge, a person can choose one of the two urns and then place a bet on the color of the ball

that is drawn. If he or she correctly guesses the color, the prize is 1 million dollars, while the

prize is zero dollars if the guess is incorrect. According to the Savage theory of decision

making, Urn B should be chosen even though the fraction of balls is not known. Probabil-

ities can be formed subjectively, and a bet placed on the (subjectively)most likely ball color.

If subjective probabilities are not 50–50, a bet on Urn B will be strictly preferred to one on

Urn A. If the subjective probabilities are precisely 50–50, then the decisionmaker will be

indifferent. Ellsberg (1961) argued that a strict preference for Urn A is plausible because

the probability of drawing a red or black ball is known in advance. He surveyed the
Urn A:
10 red balls

10 black balls

Urn B:
unknown fraction of
red and black balls

Ellsberg defended a preference for Urn A

Figure 1 The Ellsberg Urn.
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preferences of an elite group of economists to lend support to this position.5 This example,

called theEllsberg paradox, challenges the appropriateness of the full array of Savage axioms.6

2.4 Multiple priors
Motivated in part by the Ellsberg (1961) paradox, Gilboa and Schmeidler (1989) provided a

weaker set of axioms that included a notion of uncertainty aversion. Uncertainty aversion

represents a preference for knowing probabilities over having to form them subjectively

based on little information. Consider a choice between two gambles between which you

are indifferent. Imagine forming a new bet that mixes the two original gambles with known

probabilities. In contrast to von Neumann and Morgenstern (1944) and Savage (1954),

Gilboa and Schmeidler (1989) did not require indifference to the mixture probability.

Under aversion to uncertainty, mixingwith known probabilities can only improve the welfare

of the decisionmaker. Thus, Gilboa and Schmeidler (1989) required that the decisionmaker

at least weakly prefer the mixture of gambles to either of the original gambles.

The resulting generalized decision theory implies a family of priors and a decision-

maker who uses the worst case among this family to evaluate future prospects. Assign-

ing a family of beliefs or probabilities instead of a unique prior belief renders Knight’s

(1921) distinction between risk and uncertainty operational. After a decision has been

made, the family of priors underlying it can typically be reduced to a unique prior

by averaging using subjective probabilities from Gilboa and Schmeidler (1989). How-

ever, the prior that would be discovered by that procedure depends on the decision

considered and is an artifact of a decision-making process designed to make a conser-

vative assessment. In the case of the Knight-Ellsberg urn example, a range of priors is

assigned to red balls, for example 0.45 to 0.55, and similarly to black balls in Urn B.

The conservative assignment of 0.45 to red balls when evaluating a red ball bet and

0.45 to black balls when making a black ball bet implies a preference for Urn A. A

bet on either ball color from Urn A has a 0.5 probability of success.

A product of the Gilboa-Schmeidler axioms is a decision theory that can be forma-

lized as a two-player game. For every action of one maximizing player, a second mini-

mizing player selects associated beliefs. The second player chooses those beliefs in a way

that balances the first player’s wish to make good forecasts against his doubts about

model specification.7
5 Subsequent researchers have collected more evidence to substantiate this type of behavior. See Camerer (1999, Table

3.2, p. 57), and also Harlevy (2007).
6 In contrast to Ellsberg, Knight’s second urn contained seventy-five red balls and twenty-five black balls (see Knight

(1921, p. 219). While Knight contrasted bets on the two urns made by different people, he conceded that if an action

was to be taken involving the first urn, the decisionmaker would act under “the supposition that the chances are

equal.” He did not explore decisions involving comparisons of urns like that envisioned by Ellsberg.
7 The theory of zero-sum games gives a natural way to make a concern about robustness algorithmic. Zero-sum games

were used in this way in both statistical decision theory and robust control theory long before Gilboa and Schmeidler

(1989) supplied their axiomatic justification. See Blackwell and Girshick (1954), Ferguson (1967), and Jacobson (1973).
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Just as the Savage axioms do not tell a model builder how to specify the subjective

beliefs of decisionmakers for a given application, the Gilboa-Schmeidler axioms do not

tell a model builder the family of potential beliefs. The axioms only clarify the sense in

which rational decision making may require multiple priors along with a fictitious sec-

ond agent who selects beliefs in a pessimistic fashion. Restrictions on beliefs must come

from outside.8
2.5 Ellsberg and Friedman
The Knight-Ellsberg urn example might look far removed from the dynamic models

used in macroeconomics, but a fascinating chapter in the history of macroeconomics

centers on Milton Friedman’s ambivalence about expected utility theory. Although

Friedman embraced the expected utility theory of von Neumann and Morgenstern

(1944) in some work (Friedman & Savage, 1948), he chose not to use it9 when discuss-

ing the conduct of monetary policy. Instead, Friedman (1959) emphasized that model

misspecification is a decisive consideration for monetary and fiscal policy. Discussing

the relation between money and prices, Friedman concluded that:
8 T

(
9 U

10 H

e

If the link between the stock of money and the price level were direct and rigid, or if indirect and
variable, fully understood, this would be a distinction without a difference; the control of one
would imply the control of the other; . . . But the link is not direct and rigid, nor is it fully under-
stood. While the stock of money is systematically related to the price level on the average, there
is much variation in the relation over short periods of time . . . Even the variability in the relation
between money and prices would not be decisive if the link, though variable, were synchronous
so that current changes in the stock of money had their full effect on economic conditions and
on the price level instantaneously or with only a short lag. . . . In fact, however, there is much
evidence that monetary changes have their effect only after a considerable lag and over a long
period and that lag is rather variable.
Friedman thought that misspecification of the dynamic link between money and prices

should concern proponents of activist policies. Despite Friedman and Savage (1948),

his treatise on monetary policy (Friedman. 1959) did not advocate forming prior beliefs

over alternative specifications of the dynamic models in response to this concern about

model misspecification.10 His argument reveals a preference not to use Savage’s

decision theory for the practical purpose of designing monetary policy.
hat, of course, was why restriction-hungry macroeconomists and econometricians seized on the ideas of Muth

1961) in the first place.

nlike Lucas (1976) and Sargent and Wallace (1975).

owever, Friedman (1953) conducted an explicitly stochastic analysis of macroeconomic policy and introduces

lements of the analysis of Brainard (1967).
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3. FORMALIZING A TASTE FOR ROBUSTNESS

The multiple prior formulations provide a way to think about model misspecification.

Like Epstein and Wang (1994) and Friedman (1959), we are specifically interested in

decision making in dynamic environments. We draw our inspiration from a line of

research in control theory. Robust control theorists challenged and reconstructed ear-

lier versions of control theory because it had ignored model-approximation error in

designing policy rules. They suspected that their models had misspecified the dynamic

responses of target variables to controls. To confront that concern, they added a speci-

fication error process to their models and sought decision rules that would work well

across a set of such error processes. That led them to a two-player zero-sum game

and a conservative-case analysis much in the spirit of Gilboa and Schmeidler (1989).

In this section, we describe the modifications of modern control theory made by the

robust control theorists. While we feature linear/quadratic Gaussian control, many of

the results that we discuss have direct extensions to more general decision environ-

ments. For instance, Hansen, Sargent, Turmuhambetova, and Williams (2006)

considered robust decision problems in Markov diffusion environments.

3.1 Control with a correct model
First, we briefly review standard control theory, which does not admit misspecified

dynamics. For pedagogical simplicity, consider the following state evolution and target

equations for a decisionmaker:

xtþ1 ¼ Axt þ But þ Cwtþ1 ð1Þ
zt ¼ Hxt þ Jut ð2Þ

where xt is a state vector, ut is a control vector, and zt is a target vector, all at date t. In

addition, suppose that {wtþ1} is a sequence of vectors of independent and identically

and normally distributed shocks with mean zero and covariance matrix given by I.

The target vector is used to define preferences via:

� 1

2

X1
t¼0

btEz0tzt ð3Þ

where 0 < b < 1 is a discount factor and E is the mathematical expectation operator.

The aim of the decisionmaker is to maximize this objective function by choice of con-

trol law ut ¼ �Fxt. The linear form of this decision rule for ut is not a restriction but is

an implication of optimality.

The explicit, stochastic, recursive structure makes it tractable to solve the control

problem via dynamic programming:
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Problem 1. (Recursive Control)

Dynamic programming reduces this infinite-horizon control problem to the following fixed-

point problem in the matrix O in the following functional equation:

� 1

2
x0Ox� o ¼ max

u
� 1

2
z0z� b

2
Ex�0Ox� � bo

� �
ð4Þ

subject to

x� ¼ Axþ BuþCw�

where w* has mean zero and covariance matrix I.11 Here * superscripts denote next-period values.

The solution of the ordinary linear quadratic optimization problem has a special

property called certainty equivalence that asserts that the decision rule F is independent

of the volatility matrix C. We state this formally in the following claim:

Claim 2. (Certainty Equivalence Principle)

For the linear-quadratic control problem, the matrix O and the optimal control law F do not

depend on the volatility matrix C. Thus, the optimal control law does not depend on the matrix C.

The certainty equivalence principle comes from the quadratic nature of the objec-

tive, the linear form of the transition law, and the specification that the shock w* is inde-

pendent of the current state x. Robust control theorists challenge this solution because

of their experience that it is vulnerable to model misspecification. Seeking control rules

that will do a good job for a class of models induces them to focus on alternative possi-

ble shock processes.

Can a temporally independent shock process wtþ1 represent the kinds of misspeci-

fication decisionmakers fear? Control theorists think not, because they fear misspecified

dynamics, that is, misspecifications that affect the impulse response functions of target

variables to shocks and controls. For this reason, they formulate misspecification

in terms of shock processes that can feed back on the state variables, something that

i.i.d. shocks cannot do. As we will see, allowing the shock to feed back on current

and past states will modify the certainty equivalence property.

3.2 Model misspecification
To capture misspecification in the dynamic system, suppose that the i.i.d. shock sequence

is replaced by unstructured model specification errors. We temporarily replace the stochas-

tic shock process {wtþ1} with a deterministic sequence {vt} of model approximation

errors of limited magnitude. As in Gilboa and Schmeidler (1989), a two-person, zero-

sum game can be used to represent a preference for decisions that are robust with respect

to v. We have temporarily suppressed randomness, so now the game is dynamic and
11 There are considerably more computationally efficient solution methods for this problem. See Anderson, Hansen,

McGrattan, and Sargent (1996) for a survey.
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deterministic.12 As we know from the dynamic programming formulation of the single-

agent decision problem, it is easier to think of this problem recursively. A value function

conveniently encodes the impact of current decisions on future outcomes.

Game 3. (Robust Control)

To represent a preference for robustness, we replace the single-agent maximization problem

(4) by the two-person dynamic game:

� 1

2
x0Ox ¼ max

u
min
v

� 1

2
z0zþ y

2
v0v � b

2
x�0Ox� ð5Þ

subject to

x� ¼ Axþ Buþ Cv

where y > 0 is a parameter measuring a preference for robustness. Again we have formulated this

as a fixed-point problem in the value function: V ðxÞ ¼ � 1
2
x0Ox� o.

Notice that a malevolent agent has entered the analysis. This agent, or alter ego,

aims to minimize the objective, but in doing so is penalized by a term y
2
v0v that

is added to the objective function. Thus, the theory of dynamic games can be

applied to study robust decision making, a point emphasized by Basar and Bernhard

(1995).

The fictitious second agent puts context-specific pessimism into the control law.

Pessimism is context specific and endogenous because it depends on the details of

the original decision problem, including the one-period return function and the state

evolution equation. The robustness parameter or multiplier y restrains the magnitude

of the pessimistic distortion. Large values of y keep the degree of pessimism (the

magnitude of v) small. By making y arbitrarily large, we approximate the certainty-

equivalent solution to the single-agent decision problem.

3.3 Types of misspecifications captured
In formulation (5), the solutionmakes v a function of x and u a function of x alone. Associated

with the solution to the two-player game is a worst-case choice of v. The dependence of the

“worst-case” model shock v on the control u and the state x is used to promote robustness.

This worst case corresponds to a particular (A{,B{), which is a device to acquire a robust rule.

If we substitute the value-function fixed point into the right side of Eq. (5) and solve the inner

minimization problem, we obtain the following formula for the worst-case error:

v{ ¼ ðyI � bC0OCÞ�1
C0OðAxþ BuÞ: ð6Þ

Notice that this v{ depends on both the current period control vector u and state

vector x. Thus, the misspecified model used to promote robustness has:
12 See the appendix in this chapter for an equivalent but more basic stochastic formulation of the following robust

control problem.



1108 Lars Peter Hansen and Thomas J. Sargent
A{ ¼ Aþ CðyI � bC0OCÞ�1
C0OA

B{ ¼ Bþ CðyI � bC0OCÞ�1
C0OB:

Notice that the resulting distorted model is context specific and depends on the matri-

ces A, B, C, the matrix O used to represent the value function, and the robustness

parameter y.
The matrix O is typically positive semidefinite, which allows us to exchange the

maximization and minimization operations:

� 1

2
x0O x ¼ min

v
max
u

� 1

2
z0zþ y

2
v0v � b

2
x�0Ox� ð7Þ

We obtain the same value function even though now u is chosen as a function of v and

x while v depends only on x. For this solution:

u{ ¼ �ðJ 0J þ B0OBÞ�1
J 0½Hxþ OðAxþCvÞ�

The equilibrium v that emerges in this alternative formulation gives an alternative

dynamic evolution equation for the state vector x. The robust control u is a best

response to this alternative evolution equation (given O). In particular, abusing nota-

tion, the alternative evolution is:

x� ¼ Axþ CvðxÞ þ Bu

The equilibrium outcomes from zero-sum games (5) and (7) in which both v and u are

represented as functions of x alone coincide.

This construction of a worst-case model by exchanging orders of minimization and

maximization may sometimes be hard to interpret as a plausible alternative model.

Moreover, the construction depends on the matrix O from the recursive solution to

the robust control problem and hence includes a contribution from the penalty term.

As an illustration of this problem, suppose that one of the components of the state vec-

tor is exogenous, by which we mean a state vector that cannot be influenced by the

choice of the control vector. But under the alternative model this component may fail

to be exogenous. The alternative model formed from the worst-case shock v(x) as

described above may thus include a form of endogeneity that is hard to interpret.

Hansen and Sargent (2008b) described ways to circumvent this annoying apparent endo-

geneity by an appropriate application of the macroeconomist’s “Big K, little k” trick.13

What legitimizes the exchange of minimization and maximization in the recursive

formulation is something referred to as a Bellman-Isaacs condition. When this condi-

tion is satisfied, we can exchange orders in the date-zero problem. This turns out to

give us an alternative construction of a worst-case model that can avoid any unintended
13 See Ljungqvist and Sargent (2004, p. 384).
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endogeneity of the worst-case model. In addition, the Bellman-Issacs condition is cen-

tral in justifying the use of recursive methods for solving date-zero robust control pro-

blems. See the discussions in Fleming and Souganidis (1989), Hansen, Sargent et al.

(2006), and Hansen and Sargent (2008b).

What was originally the volatility exposure matrix C now also becomes an impact

matrix for misspecification. It contributes to the solution of the robust control problem,

while for the ordinary control problem, it did not by virtue of certainty equivalence.

We summarize the dependence of F on C in the following, which is fruitfully com-

pared and contrasted with claim 2:

Claim 4. (Breaking Certainty Equivalence)

For y < þ1, the robust control u ¼ �Fx that solves game (3) depends on the volatility

matrix C.

In the next section we will remark on how the breaking down of certainty equiva-

lence is attributable to a kind of precautionary motive emanating from fear of model

misspecification. While the certainty equivalent benchmark is special, it points to a

force prevalent in more general settings. Thus, in settings where the presence of ran-

dom shocks does have an impact on decision rules in the absence of a concern about

misspecification, introducing such concerns typically leads to an enhanced precaution-

ary motive.

3.4 Gilboa and Schmeidler again
To relate formulation (3) to that of Gilboa and Schmeidler (1989), we look at a speci-

fication in which we alter the distribution of the shock vector. The idea is to change

the conditional distribution of the shock vector from a multivariate standard normal

that is independent of the current state vector by multiplying this baseline density by

a likelihood ratio (relative to the standardized multivariate normal). This likelihood

ratio can depend on current and past information in a general fashion so that general

forms of misspecified dynamics can be entertained when solving versions of a two-

player, zero-sum game in which the minimizing player chooses the distorting density.

This more general formulation allows misspecifications that include neglected nonli-

nearities, higher order dynamics, and an incorrect shock distribution. As a conse-

quence, this formulation of robustness is called unstructured.14

For the linear-quadratic-Gaussian problem, it suffices to consider only changes in

the conditional mean and the conditional covariance matrix of the shocks. See the

appendix in this chapter for details. The worst-case covariance matrix is independent

of the current state but the worst-case mean will depend on the current state. This con-

clusion extends to continuous-time decision problems that are not linear-quadratic

provided that the underlying shocks can be modeled as diffusion processes. It suffices
14 See Onatski and Stock (1999) for an example of robust decision analysis with structured uncertainty.
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to explore misspecifications that append state-dependent drifts to the underlying Brow-

nian motions. See Hansen et al. (2006) for a discussion. The quadratic penalty 1
2
v0v

becomes a measure of what is called conditional relative entropy in the applied mathemat-

ics literature. It is a discrepancy measure between an alternative conditional density

and, for example, the normal density in a baseline model. Instead of restraining the

alternative densities to reside in some prespecified set, for convenience we penalize

their magnitude directly in the objective function. As discussed in Hansen, Sargent,

and Tallarini (1999), Hansen et al. (2006), and Hansen and Sargent (2008b), we can

think of the robustness parameter y as a Lagrange multiplier on a time 0 constraint

on discounted relative entropy.15
4. CALIBRATING A TASTE FOR ROBUSTNESS

Our model of a robust decisionmaker is formalized as a two-person, zero-sum dynamic

game. The minimizing player, if left unconstrained, can inflict serious damage and sub-

stantially alter the decision rules. It is easy to construct examples in which the induced

conservative behavior is so cautious that it makes the robust decision rule look silly.

Such examples can be used to promote skepticism about the use of minimization over

models rather than the averaging advocated in Bayesian decision theory.

Whether the formulation in terms of the two-person, zero-sum game looks silly or

plausible depends on how the choice set open to the fictitious minimizing player is dis-

ciplined. While an undisciplined malevolent player can wreak havoc, a tightly con-

strained one cannot. Thus, the interesting question is whether it is reasonable as

either a positive or normative model of decision making to make conservative adjust-

ments induced by ambiguity over model specification, and if so, how big these adjust-

ments should be. Some support for making conservative adjustments appears in

experimental evidence (Camerer, 1995) and other support comes from the axiomatic

treatment of Gilboa and Schmeidler (1989). Neither of these sources answers the quan-

titative question of how large the adjustment should be in applied work in economic

dynamics. Here we think that the theory of statistical discrimination can help.

We have parameterized a taste for robustness in terms of a single free parameter, y,
or else implicitly in terms of the associated discounted entropy �0. Let Mt denote the

date t likelihood ratio of an alternative model vis-á-vis the original “approximating”

model. Then {Mt: t ¼ 0, 1, . . .} is a martingale under the original probability law,

and we normalize M0 ¼ 1. The date-zero measure of relative entropy is

EðMt logMtjF 0Þ;
15 See Hansen and Sargent (2001), Hansen et al. (2006), and Hansen and Sargent (2008b, Chap. 7), for discussions of

“multiplier” preferences defined in terms of y and “constraint preferences” that are special cases of preferences

supported by the axioms of Gilboa and Schmeidler (1989).
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which is the expected log-likelihood ratio under the alternative probability measure,

where F 0 is the information set at time 0. For infinite-horizon problems, we find it

convenient to form a geometric average using the subjective discount factor b 2 (0, 1)

to construct the geometric weights,

ð1� bÞ
X1
j¼0

bjEðMj logMjjF 0Þ � �0: ð8Þ

By a simple summation-by-parts argument,

ð1� bÞ
X1
j¼0

bjEðMj logMjjF 0Þ ¼
X1
j¼0

bjEðMj logMj � logMj�1jF 0Þ: ð9Þ

For computational purposes it is useful to use a penalization approach and to solve the

decision problems for alternative choices of y. Associated with each y, we can find a

corresponding value of �0. This seemingly innocuous computational simplification

has subtle implications for the specification of preferences. In defining preferences, it

matters if you hold fixed y (here you get the so-called multiplier preferences) or hold

fixed �0 (and here you get the so-called constraint preferences.) See Hansen et al.

(2006) and Hansen and Sargent (2008b) for discussions. Even when we adopt the mul-

tiplier interpretation of preferences, it is revealing to compute the implied �0’s as sug-
gested by Petersen, James, and Dupuis (2000).

For the purposes of calibration we want to know which values of the parameter y
correspond to reasonable preferences for robustness. To think about this issue, we start

by recalling that the rational expectations notion of equilibrium makes the model that

economic agents use in their decision making the same model that generates the

observed data. A defense of the rational expectations equilibrium concept is that

discrepancies between models should have been detected from sufficient historical data

and then eliminated. In this section, we use a closely related idea to think about reason-

able preferences for robustness. Given historical observations on the state vector, we

use a Bayesian model detection theory originally due to Chernoff (1952). This theory

describes how to discriminate between two models as more data become available.

We use statistical detection to limit the preference for robustness. The decisionmaker

should have noticed easily detected forms of model misspecification from past

time series data and eliminated them. We propose restricting y to admit only alterna-

tive models that are difficult to distinguish statistically from the approximating

model. We do this rather than study a considerably more complicated learning

and control problem. We will discuss relationships between robustness and learning

in Section 5.
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4.1 State evolution
Given a time series of observations on the state vector xt, suppose that we want to

determine the evolution equation for the state vector. Let u ¼ �F{x denote the solu-

tion to the robust control problem. One possible description of the time series is

xtþ1 ¼ ðA� BF{Þxt þ Cwtþ1 ð10Þ

where {wtþ1} is a sequence of i.i.d. normalized Gaussian vectors. In this case, concerns

about model misspecification are just in the head of the decisionmaker: the original model

is actually correctly specified. Here the approximating model actually generates the data.

A worst-case evolution equation is the one associated with the solution to the two-

player, zero-sum game. This changes the distribution of wtþ1 by appending a condi-

tional mean as in Eq. (6)

v{ ¼ �K{x

where

K{ ¼ 1

y
ðI � b

y
C0O�CÞ�1

C0O�ðA� BFTÞ:

and altering the covariance matrix CC 0. The alternative evolution remains Markov and

can be written as:

xtþ1 ¼ ðA� BF{ �CK{Þxt þ Cw
{
tþ1: ð11Þ

where

w
{
tþ1 ¼ �K{xt þ w

{
tþ1

and w
{
tþ1 is normally distributed with mean zero, but a covariance matrix that typically

exceeds the identity matrix. This evolution takes the constrained worst-case model as

the actual law of motion of the state vector, evaluated under the robust decision rule

and the worst-case shock process that the decisionmaker plans against.16 Since the

choice of v by the minimizing player is not meant to be a prediction, only a conserva-

tive adjustment, this evolution equation is not the decisionmaker’s guess about the

most likely model. The decisionmaker considers more general changes in the distribu-

tion for the shock vector wtþ1, but the implied relative entropy (9) is no larger than that

for the model just described. The actual misspecification could take on a more compli-

cated form than the solution to the two-player, zero-sum game. Nevertheless, the two

evolution equations (10) and (11) provide a convenient laboratory for calibrating plau-

sible preferences for robustness.
16 It is the decision rule from the Markov perfect equilibrium of the dynamic game.
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4.2 Classical model detection
The log-likelihood ratio is used for statistical model selection. For simplicity, consider pair-

wise comparisons between models. Let one be the basic approximating model captured by

(A B, C) and a multivariate standard normal shock process {wtþ1}. Suppose another is

indexed by {vt} where vt is the conditional mean of wtþ1. The underlying randomness

masks the model misspecification and allows us to form likelihood functions as a device

for studying how informative data are in revealing which model generates the data.17

Imagine that we observe the state vector for a finite number T of time periods.

Thus, we have x1, x2, . . ., xT. Form the log likelihood ratio between these two models.

Since the {wtþ1} sequence is independent and identically normally distributed, the date

t contribution to the log likelihood ratio is

wtþ1�v̂t �
1

2
v̂t�v̂t

where v̂ t is the modeled version of vt. For instance, we might have that v̂t ¼ f(xt, xt�1,

. . ., xt�k). When the approximating model is correct, vt ¼ 0 and the predictable

contribution to the (log) likelihood function is negative: � 1
2
v̂t�v̂t. When the alternative

v̂t model is correct, the predictable contribution is 1
2
v̂t�v̂t. Thus, the term 1

2
v̂t�v̂t is the

average (conditioned on current information) time t contribution to a log-likelihood

ratio. When this term is large, model discrimination is easy, but it is difficult when this

term is small. This motivates our use of the quadratic form 1
2
v̂t�v̂t as a statistical measure

of model misspecification. Of course, the v̂t’s depend on the state xt, so that to simulate

them requires simulating a particular law of motion (11).

Use of 1
2
v̂t�v̂t as a measure of discrepancy is based implicitly on a classical notion of

statistical discrimination. Classical statistical practice typically holds fixed the type I

error of rejecting a given null model when the null model is true. For instance, the null

model might be the benchmark v̂t model. As we increase the amount of available data,

the type II error of accepting the null model when it is false decays to zero as the sam-

ple size increases, typically at an exponential rate. The likelihood-based measure of

model discrimination gives a lower bound on the rate (per unit observation) at which

the type II error probability decays to zero.

4.3 Bayesian model detection
Chernoff (1952) studied a Bayesian model discrimination problem. Suppose we aver-

age over both the type I and II errors by assigning prior probabilities of say one half
17 Here, for pedagogical convenience we explore only a special stochastic departure from the approximating model.

As emphasized by Anderson et al. (2003), statistical detection theory leads us to consider only model departures that

are absolutely continuous with respect to the benchmark or approximating model. The departures considered here

are the discrete-time counterparts to the departures admitted by absolute continuity when the state vector evolves

according to a possible nonlinear diffusion model.
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to each model. Now additional information at date t allows improvement to the model

discrimination by shrinking both type I and type II errors. This gives rise to a discrimi-

nation rate (the deterioration of log probabilities of making a classification error per

unit time) equal to 1
8
v̂t�v̂t for the Gaussian model with only differences in means,

although Chernoff entropy is defined much more generally. This rate is known as

Chernoff entropy. When the Chernoff entropy is small, models are hard to tell apart

statistically. When Chernoff entropy is large, statistical detection is easy. The scaling

by 1
8
instead of 1

2
reflects the trade-off between type I and type II errors. Type I errors

are no longer held constant. Notice that the penalty term that we added to the control

problem to enforce robustness is a scaled version of Chernoff entropy, provided that

the model misspecification is appropriately disguised by Gaussian randomness. Thus,

when thinking about statistical detection, it is imperative that we include some actual

randomness, which though absent in many formulations of robust control theory, is

present in virtually all macroeconomic applications.

In a model generating data that are independent and identically distributed, we can

accumulate the Chernoff entropies over the observation indices to form a detection

error probability bound for finite samples. In dynamic contexts, more is required than

just this accumulation, but it is still true that Chernoff entropy acts as a short-term dis-

count rate in the construction of the probability bound.18

We believe that the model detection problem confronted by a decisionmaker is

actually more complicated than the pairwise statistical discrimination problem we just

described. A decisionmaker will most likely be concerned about a wide array of more

complicated models, many of which may be more difficult to formulate and solve than

the ones considered here. Nevertheless, this highly stylized framework for statistical

discrimination illustrates one way to think about a plausible preference for robustness.

For any given y, we can compute the implied worst-case process v
{
t

n o
and

consider only those values of y for which the v
{
t

n o
model is hard to distinguish from

the vt ¼ 0 model. From a statistical standpoint, it is more convenient to think about the

magnitude of the v
{
t ’s than of the y’s that underlie them. This suggests solving robust

control problems for a set of y’s and exploring the resulting v
{
t ’s. Indeed, Anderson,

Hansen, and Sargent (2003) established a close connection between v
{
t �v{t and (a bound

on) a detection error probability.

4.3.1 Detection probabilities: An example
Here is how we construct detection error probabilities in practice. Consider two alterna-

tive models with equal prior probabilities. Model A is the approximating model and

model B is the worst-case model associated with an alternative distribution for the shock
18 See Anderson et al. (2003).
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process for a particular positive y. Consider a fixed sample of T observations on xt. Let Li
be the likelihood of that sample for model i for i ¼ A, B. Define the likelihood ratio

‘ ¼ logLA � logLB

We can draw a sample value of this log-likelihood ratio by generating a simulation of

length T for xt under model i. The Bayesian detection error probability averages prob-

abilities of two kinds of errors. First, assume that model A generates the data and calculate

pA ¼ Prob ðerrorjAÞ ¼ freq ð‘ � 0jAÞ:

Next, assume that model B generates the data and calculate

pB ¼ Prob ðerrorjBÞ ¼ freq ð‘ � 0jBÞ:

Since the prior equally weights the two models, the probability of a detection error is

pðyÞ ¼ 1

2
ðpA þ pBÞ:

Our idea is to set p(y) at a plausible value, then to invert p(y) to find a plausible value

for the preference-for-robustness parameter y. We can approximate the values of pA,pB
composing p(y) by simulating a large number N of realizations of samples of xt of

length T. In the next example, we simulated 20,000 samples. See Hansen, Sargent,

and Wang (2002) for more details about computing detection error probabilities.

We now illustrate the use of detection error probabilities to discipline the choice of

y in the context of the simple dynamic model that Ball (1999) designed to study

alternative rules by which a monetary policy authority might set an interest rate.19

Ball’s model is a “backward-looking” macro model with the structure

yt ¼ �brt�1 � det�1 þ et ð12Þ

pt ¼ pt�1 þ ayt�1 � gðet�1 � et�2Þ þ �t ð13Þ

et ¼ yrt þ vt; ð14Þ

where y is the logarithm of real output; r is the real interest rate; e is the logarithm of

the real exchange rate; p is the inflation rate; and e, �, n are serially uncorrelated and

mutually orthogonal disturbances. As an objective, Ball (1999) assumed that a monetary

authority wants to maximize

�Eðp2t þ y2t Þ:
19 See Sargent (1999a) for further discussion of Ball’s (1999) model from the perspective of robust decision theory.

See Hansen and Sargent (2008b, Chap. 16 for how to treat robustness in “forward-looking” models.
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The monetary authority sets the interest rate rt as a function of the current state, which

Ball (1999) showed can be reduced to yt, et.

Ball motivates Eq. (12) as an open-economy IS curve and Eq. (13) as an open-econ-

omy Phillips curve; he uses Eq. (14) to capture effects of the interest rate on the exchange

rate. Ball set the parameters g, y, b, and d to the values 0.2, 2, 0.6, and 0.2. Following Ball,
we set the innovation shock standard deviations equal to 1, 1,

ffiffiffi
2

p
, respectively.

To discipline the choice of the parameter expressing a preference for robustness, we

calculated the detection error probabilities for distinguishing Ball’s (1999) model from

the worst-case models associated with various values of s � �y�1. We calculated these

taking Ball’s parameter values as the approximating model and assuming that T ¼ 142

observations are available, which corresponds to 35.5 years of annual data for Ball’s

quarterly model. Figure 2 shows these detection error probabilities p(s) as a function
of s. Notice that the detection error probability is 0.5 for s ¼ 0, as it should be,

because then the approximating model and the worst-case model are identical. The

detection error probability falls to 0.1 for s 	 �0.085. If we think that a reasonable

preference for robustness is to design rules that work well for alternative models whose

detection error probabilities are 0.1 or greater, then s ¼ �0.085 is a reasonable choice

of this parameter. Later, we will compute a robust decision rule for Ball’s (1999) model

with s ¼ �0.085 and compare its performance to the s ¼ 0 rule that expresses no

preference for robustness.
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Figure 2 Detection error probability (coordinate axis) as a function of s ¼ �y�1 for Ball's (1999)
model.
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4.3.2 Reservations and extensions
Our formulation treats misspecification of all of the state-evolution equations symmet-

rically and admits all misspecification that can be disguised by the shock vector wtþ1.

Our hypothetical statistical discrimination problem assumes historical data sets of a

common length on the entire state vector process. We might instead imagine that there

are differing amounts of confidence in state equations not captured by the perturbation

Cvt and quadratic penalty y vt � vt. For instance, to imitate aspects of Ellsberg’s two urns

we might imagine that misspecification is constrained to be of the form C
v1t
0

� �
with

corresponding penalty yv1t �v1t . The rationale for the restricted perturbation would be

that there is more confidence in some aspects of the model than others. More gener-

ally, multiple penalty terms could be included with different weighting. A cost of this

generalization is a greater burden on the calibrator. More penalty parameters would

need to be selected to model a robust decisionmaker.

The preceding use of the theory of statistical discrimination conceivably helps to

excuse a decision not to model active learning about model misspecification, but some-

times that excuse might not be convincing. For that reason, we next explore ways of

incorporating learning.
5. LEARNING

The robust control model previously outlined allows decisions to be made via a

two-stage process:

1. There is an initial learning-model-specification period during which data are stud-

ied and an approximating model is specified. This process is taken for granted and

not analyzed. However, afterwards, learning ceases, although doubts surround the

model specification.

2. Given the approximating model, a single fixed decision rule is chosen and used

forever. Although the decision rule is designed to guard against model misspecifica-

tion, no attempt is made to use the data to narrow the model ambiguity during the

control period.

The defense for this two-stage process is that somehow the first stage discovers an

approximating model and a set of surrounding models that are difficult to distinguish

from the data available in stage 1 and that are likely to be available in stage 2 only after

a long time has passed.

This section considers approaches to model ambiguity coming from literature on

adaptation and that do not temporally separate learning from control as in the two-step

process just described. Instead, they assume continuous learning about the model and

continuous adjustment of decision rules.
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5.1 Bayesian models
For a low-dimensional specification of model uncertainty, an explicit Bayesian formu-

lation might be an attractive alternative to our robust formulation. We could think of

matrices A and B in the state evolution (Eq. 1) as being random and specify a prior dis-

tribution for this randomness. One possibility is that there is only some initial random-

ness to represent the situation that A and B are unknown but fixed in time. In this case,

observations of the state would convey information about the realized A and B. Given

that the controller does not observe A and B, and must make inference about these

matrices as time evolves, this problem is not easy to solve. Nevertheless, numerical

methods may be employed to approximate solutions; for example, see Wieland

(1996) and Cogley, Colacito, and Sargent (2007).

We will use a setting of Cogley et al. (2007) first to illustrate purely Bayesian pro-

cedures for approaching model uncertainty, then to show how to adapt these to put

robustness into decision rules. A decisionmaker wants to maximize the following func-

tion of states st and controls vt:

E0

X1
t¼0

btrðst; vtÞ: ð15Þ

The observable and unobservable components of the state vector, st and zt, respec-

tively, evolve according to a law of motion

stþ1 ¼ gðst; vt; zt; etþ1Þ; ð16Þ

stþ1 ¼ zt; ð17Þ

where etþ1 is an i.i.d. vector of shocks and zt 2 {1, 2} is a hidden state variable that

indexes submodels. Since the state variable zt is time invariant, specification (16)–(17)

states that one of the two submodels governs the data for all periods. But zt is unknown

to the decisionmaker. The decisionmaker has a prior probability Prob(z ¼ 1) ¼ p0.
Given history st ¼ [st, st�1, . . ., s0], the decisionmaker recursively computes pt ¼
Prob(z ¼ 1jst) by applying Bayes’ law:

ptþ1 ¼ Bðpt; gðst; vt; zt; etþ1ÞÞ: ð18Þ

For example, Cogley, Colacito, Hansen, and Sargent (2008) took one of the submodels

to be a Keynesian model of a Phillips curve while the other is a new classical model.

The decisionmaker must decide while he learns.

Because he does not know zt, the policymaker’s prior probability pt becomes a state

variable in a Bellman equation that captures his incentive to experiment. Let asterisks

denote next-period values and express the Bellman equation as
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V ðs; pÞ ¼ max
v

rðs; vÞ þ Ez Es�;p�ðbV ðs�; p�Þjs; v;p; zÞjs; v;p
� �	 


; ð19Þ

subject to

s� ¼ gðs; v; z; e�Þ; ð20Þ

p� ¼ Bðp; gðs; v; z; e�ÞÞ: ð21Þ

Ez denotes integration with respect to the distribution of the hidden state z that

indexes submodels, and Es�;p� denotes integration with respect to the joint distribution

of (s*, p*) conditional on (s, v, p, z).

5.2 Experimentation with specification doubts
The Bellman equation (19) expresses the motivation that a decisionmaker has to experi-

ment, that is, to take into account how his decision affects future values of the component

of the state p*.We describe howHansen and Sargent (2007) andCogley et al. (2008) adjust

Bayesian learning and decision making to account for fears of model misspecification.

The Bellman equation (19) invites us to consider two types of misspecification of the sto-

chastic structure: misspecification of the distribution of (s*, p*) conditional on (s, v, p, z),
and misspecification of the probability p over submodels z. Following Hansen and Sargent

(2007), we introduce two “risk-sensitivity” operators that can help a decisionmaker con-

struct a decision rule that is robust to these types ofmisspecification.While we refer to them

as risk-sensitivity operators, it is actually their dual interpretations that interest us. Under

these dual interpretations, a risk-sensitivity adjustment is an outcome of a minimization

problem that assigns worst-case probabilities subject to a penalty on relative entropy. Thus,

we view the operators as adjusting probabilities in cautious ways that assist the decision-

maker design robust policies.

5.3 Two risk-sensitivity operators
5.3.1 T1 operator
The risk-sensitivity operator T1 helps the decisionmaker guard against misspecification

of a submodel.20 Let W (s*, p*) be a measurable function of (s*, p*). In our application,

W will be a continuation value function. Instead of taking conditional expectations of

W, Cogley et al. (2008) and Hansen and Sargent (2007) apply the operator:

T1ðW ðs�;p�ÞÞ ðs;p; v; z; y1Þ ¼ �y1 logEs�;p� exp
�W ðs�; p�Þ

y1

� �




 s;p; v; zÞð ð22Þ
20 See the appendix in this chapter for more discussion on how to derive and interpret the risk-sensitivity operator T.
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where Es�;p� denotes a mathematical expectation with respect to the conditional distri-

bution of s*, p*. This operator yields the indirect utility function for a problem in

which the minimizing agent chooses a worst-case distortion to the conditional distribu-

tion for (s*, p*) to minimize the expected value of a value function W plus an entropy

penalty. That penalty limits the set of alternative models against which the decision-

maker guards. The size of that set is constrained by the parameter y1 and is decreasing

in y1, with y1 ¼ þ1 signifying the absence of a concern for robustness. The solution

to this minimization problem implies a multiplicative distortion to the Bayesian condi-

tional distribution over (s*, p*). The worst-case distortion is proportional to

exp
�W ðs�;p�Þ

y1

� �
; ð23Þ

where the factor of proportionality is chosen to make this non-negative random vari-

able have conditional expectation equal to unity. Notice that the scaling factor and the

outcome of applying the T1 operator depends on the state z indexing submodels even

though W does not. A likelihood ratio proportional to Eq. (23) pessimistically twists

the conditional density of (s*, p*) by upweighting outcomes that have lower continu-

ation values.

5.3.2 T2 operator
The risk-sensitivity operator T2 helps the decisionmaker evaluate a continuation value

function U that is a measurable function of (s, p, v, z) in a way that guards against

misspecification of his prior p:

T2ð eW ðs; p; v; zÞÞ ðs; p; v; y2Þ ¼ �y2logEz exp
� eW ðs; p; v; zÞ

y2

� �




 s;p; vð Þ ð24Þ

This operator yields the indirect utility function for a problem in which the malevolent

agent chooses a distortion to the Bayesian prior p to minimize the expected value of a

function eW (s, p, v, z) plus an entropy penalty. Once again, that penalty constrains the

set of alternative specifications against which the decisionmaker wants to guard, with

the size of the set decreasing in the parameter y2. The worst-case distortion to the prior

over z is proportional to

exp
� eW ðs;p; v; zÞ

y2

� �
; ð25Þ

where the factor of proportionality is chosen to make this non-negative random vari-

able have mean one. The worst-case density distorts the Bayesian prior by putting

higher probability on outcomes with lower continuation values.
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Our decisionmaker directly distorts the date t posterior distribution over the hidden

state, which in our example indexes the unknown model, subject to a penalty on rela-

tive entropy. The source of this distortion could be a change in a prior distribution at

some initial date or it could be a past distortion in the state dynamics conditioned on

the hidden state or model.21 Rather than being specific about this source of misspeci-

fication and updating all of the potential probability distributions in accordance with

Bayes rule with the altered priors or likelihoods, our decisionmaker directly explores

the impact of changes in the posterior distribution on his objective.

Application of this second risk-sensitivity operator provides a response to Levin and

Williams (2003) and Onatski and Williams (2003). Levin and Williams (2003) explored

multiple benchmark models. Uncertainty across such models can be expressed conve-

niently by the T2 operator and a concern for this uncertainty is implemented by

making robust adjustments to model averages based on historical data.22 As is the aim

of Onatski and Williams (2003), the T2 operator can be used to explore the conse-

quences of unknown parameters as a form of “structured” uncertainty that is difficult

to address via application of the T1 operator.23 Finally application of the T2 operation

gives a way to provide a benchmark to which one can compare the Taylor rule and

other simple monetary policy rules.24

5.4 A Bellman equation for inducing robust decision rules
Following Hansen and Sargent (2007), Cogley et al. (2008) induced robust decision

rules by replacing the mathematical expectations in Eq. (19) with risk-sensitivity opera-

tors. In particular, they substituted (T1) (y1) for Es�;p� and replaced Ez with (T2)(y2).
This delivers a Bellman equation

V ðs; pÞ ¼ max
v

frðs; vÞ þ T2½T1ðbV ðs�; p�Þðs; v;p; z; y1ÞÞ� ðs; v;p; y2Þg: ð26Þ

Notice that the parameters y1 and y2 are allowed to differ. The T1 operator explores

the impact of forward-looking distortions in the state dynamics and the T2 operator

explores backward-looking distortions in the outcome of predicting the current hidden

state given current and past information. Cogley et al. (2008) documented how appli-

cations of these two operators have very different ramifications for experimentation in

the context of their extended example that features competing conceptions of the

Phillips curve.25 Activating the T1 operator reduces the value to experimentation
21 A change in the state dynamics would imply a misspecification in the evolution of the state probabilities.
22 In contrast Levin and Williams (2003) did not consider model averaging and implications for learning about which

model fits the data better.
23 See Petersen, James, and Dupuis (2000) for an alternative approach to “structured uncertainty.”
24 See Taylor and Williams (2009) for a robustness comparison across alternative monetary policy rules.
25 When y1 ¼ y2 the two operators applied in conjunction give the recursive formulation of risk sensitivity proposed in

Hansen and Sargent (1995a), appropriately modified for the inclusion of hidden states.
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because of the suspicions about the specifications of each model that are introduced.

Activating the T2 operator enhances the value for experimentation in order to reduce

the ambiguity across models. Thus, the two notions of robustness embedded in these

operators have offsetting impacts on the value of experimentation.
5.5 Sudden changes in beliefs
Hansen and Sargent (2008a) applied the T1 and T2 operators to build a model of sud-

den changes in expectations of long-run consumption growth ignited by news about

consumption growth. Since the model envisions an endowment economy, it is

designed to focus on the impacts of beliefs on asset prices. Because concerns about

robustness make a representative consumer especially averse to persistent uncertainty

in consumption growth, fragile expectations created by model uncertainty transmit

induce what ordinary econometric procedures would measure as high and state-depen-

dent market prices of risk.

Hansen and Sargent (2008a) analyzed a setting inwhich there are two submodels of con-

sumption growth. Let ct be the logarithm of per capita consumption.Model i2 {0, 1} has a

more or less persistent component of consumption growth

ctþ1 � ct ¼ mðiÞ þ zt þ s1ðiÞei;tþ1

ztþ1ðiÞ ¼ rðiÞztðiÞ þ s2ðiÞe2;tþ1

where m(i) is an unknown parameter with prior distribution N (mc(i), sc(i)), et is an i.i.d.

2 
 1 vector process distributed N (0, I), and z0(i) is an unknown scalar distributed as

N (mx(i), sx(i)). Model i ¼ 0 has low r(i) and makes consumption growth nearly i.i.d.,

while model i ¼ 1 has r(i) approaching 1, which, with a small value for s2 (i), gives
consumption growth a highly persistent component of low conditional volatility but

high unconditional volatility.

Bansal and Yaron (2004) told us that these two models are difficult to distinguish

using post-World War II data for the United States. Hansen and Sargent (2008a) put

an initial prior of 0.5 on these two submodels and calibrated the submodels so that that

the Bayesian posterior over the two submodels is 0.5 at the end of the sample. Thus,

the two models are engineered so that the likelihood functions for the two submodels

evaluated for the entire sample are identical. The solid blue line in Figure 3 shows the

Bayesian posterior on the long-run risk i ¼ 1 model constructed in this way. Notice

that while it wanders, it starts and ends at 0.5.

The higher green line shows the worst-case probability that emerges from applying a T2

operator. The worst-case probabilities depicted in Figure 3 indicate that the representative

consumer’s concern for robustness makes him slantmodel selection probabilities toward the

long-run risk model because, relative to the i ¼ 0 model with less persistent consumption

growth, the long-run risk i ¼ 1 model has adverse consequences for discounted utility.
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A cautious investor mixes submodels by slanting probabilities toward the model with the

lower discounted expected utility. Of special interest in Figure 3 are recurrent episodes in

which news expands the gap between the worst-case probability and the Bayesian probabil-

ity pt assigned to the long-run risk model i¼ 1. This provides Hansen and Sargent (2008a)

with away to capture instability of beliefs alluded to byKeynes in the passage quoted earlier.

Hansen and Sargent (2008a) explained how the dynamics of continuation utilities

conditioned on the two submodels contribute to countercyclical market prices of risk.

The representative consumer regards an adverse shock to consumption growth as por-

tending permanent bad news because he increases the worst-case probability p̌t that he

puts on the i ¼ 1 long-run risk model, while he interprets a positive shock to

consumption growth as only temporary good news because he raises the probability

1 � p̌t that he attaches to the i ¼ 0 model that has less persistent consumption growth.

Thus, the representative consumer is pessimistic in interpreting good news as tempo-

rary and bad news as permanent.

5.6 Adaptive models
In principle, the approach of the preceding sections could be applied to our basic lin-

ear-quadratic setting by positing a stochastic process of the A, B matrices so that there is
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a tracking problem. The decisionmaker must learn about a perpetually moving target.

Current and past data must be used to make inferences about the process for the A,

B matrices, but specifying the problem completely now becomes quite demanding,

as the decisionmaker is compelled to take a stand on the stochastic evolution of the

matrices A, B. The solutions are also much more difficult to compute because the deci-

sionmaker at date t must deduce beliefs about the future trajectory of A, B given cur-

rent and past information. The greater demands on model specification may cause

decisionmakers to second guess the reasonableness of the auxiliary assumptions that

render the decision analysis tractable and credible. This leads us to discuss a non-Bayes-

ian approach to tracking problems.

This approach to model uncertainty comes from distinct literatures on adaptive

control and vector autoregressions with random coefficients.26 What is sometimes

called passive adaptive control is occasionally justified as providing robustness against

parameter drift coming from model misspecification.

Thus, a random coefficients model captures doubts about the values of components

of the matrices A, B by specifying that

xtþ1 ¼ Atxt þ Btut þ Cwtþ1

where wtþ1 � N (0, I) and the coefficients are described by

col ðAtþ1Þ
col ðBtþ1Þ

� �
¼ col ðAtÞ

col ðBtÞ

� �
þ �A;tþ1

�B;tþ1

� �
ð27Þ

where now

vtþ1 �
wtþ1

�A;tþ1

�B;tþ1

24 35
is a vector of independently and identically distributed shocks with specified covariance

matrix Q, and col(A) is the vectorization of A. Assuming that the state xt is observed

at t, a decisionmaker could use a tracking algorithm

col ðÂtþ1Þ
col ðB̂tþ1Þ

� �
¼ col ðÂtÞ

col ðB̂tÞ

� �
þ gthðxt; ut; xt�1; col ðÂtÞ; col ðB̂tÞÞ;

where gt is a “gain sequence” and h(�) is a vector of time t values of “sample orthogo-

nality conditions.” For example, a least-squares algorithm for estimating A, B would set

gt ¼ 1
t
. This would be a good algorithm if A, B were not time varying. When they are
26 See Kreps (1998) and Sargent (1999b) for related accounts of this approach. See Marcet and Nicolini (2003), Sargent,

Williams, and Zha (2006, 2009), and Carboni and Ellison (2009) for empirical applications.
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time varying (i.e., some of the components of Q corresponding to A, B are not zero), it

is better to set gt to a constant. This in effect discounts past observations.

Problem 5. (Adaptive Control)

To get what control theorists call an adaptive control model, or what Kreps (1998) called an

anticipated utility model, for each t solve the fixed point problem (4) subject to

x� ¼ Âtxþ B̂tuþCw�: ð28Þ

The solution is a control law ut ¼ �Ftxt that depends on the most recent estimates of A, B

through the solution of the Bellman equation (4).

The adaptive model misuses the Bellman equation (4), which is designed to be used

under the assumption that the A, B matrices in the transition law are time invariant.

Our adaptive controller uses this marred procedure because he wants a workable pro-

cedure for updating his beliefs using past data and also for looking into the future while

making decisions. He is of two minds: when determining the control ut ¼ �Fxt at t, he

pretends that (A, B) ¼ (Ât, B̂t) will remain fixed in the future; but each period when

new data on the state xt are revealed, he updates his estimates. This is not the procedure

of a Bayesian who believes Eq. (27). It is often excused because it is much simpler than

a Bayesian analysis or some loosely defined kind of “bounded rationality.”

5.7 State prediction
Another way to incorporate learning in a tractable manner is to shift the focus from the

transition law to the state. Suppose the decisionmaker is not able to observe the entire

state vector and instead must make inferences about this vector. Since the state vector

evolves over time, we have another variant of a tracking problem.

When a problem can be formulated as learning about an observed piece of the orig-

inal state xt, the construction of decision rules with and without concerns about robust-

ness becomes tractable.27 Suppose that the A, B, C matrices are known a priori but that

some component of the state vector is not observed. Instead, the decisionmaker sees an

observation vector y constructed from x

y ¼ Sx:

While some combinations of x can be directly inferred from y, others cannot. Since the

unobserved components of the state vector process x may be serially correlated, the his-

tory of y can help in making inferences about the current state.

Suppose, for instance, that in a consumption-savings problem, a consumer faces a

stochastic process for labor income. This process might be directly observable, but it

might have two components that cannot be disentangled: a permanent component

and a transitory component. Past labor incomes will convey information about the
27 See Jovanovic (1979) and Jovanovic and Nyarko (1996) for examples of this idea.



5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4
Transitory dt

2 part

5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4
Permanent dt

1 part

5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4
dt

Figure 4 Impulse responses for two components of endowment process and their sum in a model
of Hansen et al. (1999). The top panel is the impulse response of the transitory component d2 to
an innovation in d2; the middle panel, the impulse response of the permanent component d1 to
its innovation; the bottom panel is the impulse response of the sum dt ¼ d1

t þ d2
t to its own

innovation.

1126 Lars Peter Hansen and Thomas J. Sargent
magnitude of each of the components. This past information, however, will typically

not reveal perfectly the permanent and transitory pieces. Figure 4 shows impulse

response functions for the two components of the endowment process estimated by

Hansen et al. (1999). The first two panels display impulse responses for two orthogonal

components of the endowment, one of which, d1, is estimated to resemble a permanent

component, the other of which, d2, is more transitory. The third panel shows the

impulse response for the univariate (Wold) representation for the total endowment

dt ¼ d1t þ d2t .
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Figure 5 depicts the transitory and permanent components to income implied by

the parameter estimates of Hansen et al. (1999). Their model implies that the separate

components, dit, can be recovered ex post from the detrended data on consumption and

investment that they used to estimate the parameters. Figure 6 uses Bayesian updating

(Kalman filtering) to form estimators of d1t , d
2
t assuming that the parameters of the two

endowment processes are known, but that only the history of the total endowment dt is

observed at t. Note that these filtered estimates in Figure 6 are smoother than the actual

components.

Alternatively, consider a stochastic growth model of the type advocated by Brock

and Mirman (1972), but with a twist. Brock and Mirman (1972) studied the efficient

evolution of capital in an environment in which there is a stochastic evolution for

the technology shock. Consider a setup in which the technology shock has two com-

ponents. Small shocks hit repeatedly over time and large technological shifts occur

infrequently. The technology shifts alter the rate of technological progress. Investors
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may not be able to disentangle small repeated shifts from large but infrequent shifts in

technological growth.28 For example, investors may not have perfect information

about the timing of a productivity slowdown that probably occurred in the 1970s. Sup-

pose investors look at the current and past levels of productivity to make inferences

about whether technological growth is high or low. Repeated small shocks disguise

the actual growth rate. Figure 7 reports the technology process extracted from post-

war data and also shows the probabilities of being in a low growth state. Notice that

during the so-called productivity slowdown of the 1970s, even Bayesian learners would

not be particularly confident in this classification for much of the time period. Learning

about technological growth from historical data is potentially important in this setting.
28 It is most convenient to model the growth rate shift as a jump process with a small number of states. See Cagetti et al.

(2002) for an illustration. It is most convenient to formulate this problem in continuous time. The Markov jump

component pushes us out of the realm of the linear models studied here.
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5.8 The Kalman filter
Suppose for the moment that we abstract from concerns about robustness. In models

with hidden state variables, there is a direct and elegant counterpart to the control solu-

tions described earlier. It is called the Kalman filter, and recursively forms Bayesian

forecasts of the current state vector given current and past information. Let x̂ denote

the estimated state. In a stochastic counterpart to a steady state, the estimated state

and the observed y* evolve according to:

x̂� ¼ Ax̂þ BuþGxŵ
� ð29Þ

y� ¼ SAx̂þ SBuþGyŵ
� ð30Þ
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where Gy is nonsingular. While the matrices A and B are the same, the shocks are dif-

ferent, reflecting the smaller information set available to the decisionmaker. The non-

singularity of Gy guarantees that the new shock ŵ can be recovered from next-period’s

data y* via the formula

ŵ ¼ ðGyÞ�1ðy� � SAx̂� SBuÞ: ð31Þ

However, the original w* cannot generally be recovered from y*. The Kalman filter

delivers a new information state that is matched to the information set of a decision-

maker. In particular, it produces the matrices Gx and Gy.
29

In many decision problems confronted by macroeconomists, the target depends

only on the observable component of the state, and thus:30

z ¼ Hx̂þ Ju; ð32Þ

5.9 Ordinary filtering and control
With no preference for robustness, Bayesian learning has a modest impact on the deci-

sion problem (1).

Problem 6. (Combined Control and Prediction)

The steady-state Kalman filter produces a new state vector, state evolution equation (29) and

target equation (32). These replace the original state evolution equation (1) and target equation

(2). The Gx matrix replaces the C matrix, but because of certainty equivalence, this has no

impact on the decision rule computation. The optimal control law is the same as in problem

(1), but it is evaluated at the new (estimated) state x̂ generated recursively by the Kalman filter.

5.10 Robust filtering and control
To put a preference for robustness into the decision problem, we again introduce a sec-

ond agent and formulate a dynamic recursive two-person game. We consider two such

games. They differ in how the second agent can deceive the first agent.

In decision problems with only terminal rewards, it is known that Bayesian-Kalman

filtering is robust for reasons that are subtle (Basar & Bernhard, 1995, Chap. 7; Hansen

& Sargent, 2008b, Chaps. 17 and 18). Suppose the decisionmaker at date t has no con-

cerns about past rewards; he only cares about rewards in current and future time per-

iods. This decisionmaker will have data available from the past in making decisions.

Bayesian updating using the Kalman filter remains a defensible way to use this past

information, even if model misspecification is entertained. Control theorists break this

result by having the decisionmaker continue to care about initial period targets even as

time evolves (Basar & Bernhard, 1995; Zhou, Doyle, & Glover, 1996). In the games

posed next, we take a recursive perspective on preferences by having time t
29 In fact, the matrices Gx and Gy are not unique but the so-called gain matrix K ¼ Gx(Gy)
�1 is.

30 A more general problem in which z depends directly on hidden components of the state vector can also be handled.
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decisionmakers only care about current and future targets. That justifies our continued

use of the Kalman filter even when there is model misspecification and it delivers

separation of prediction and control not present in the counterpart control theory

literature. See Hansen and Sargent (2008b), Hansen, Sargent, and Wang (2002), and

Cagetti, Hansen, Sargent, and Williams (2002) for more detail.

Game 7. (Robust Control and Prediction, i)

To compute a robust control law, we solve the two-person, zero-sum game 3 but with the

information or predicted state x̂ replacing the original state x. Since we perturb evolution equation

(29) instead of (1), we substitute the matrix Gx for C when solving the robust control problem.

Since the equilibrium of our earlier two-person, zero-sum game depended on the matrix C, the

matrix Gx produced by the Kalman filter alters the control law.

Except for replacing C by Gx and the unobserved state x with its predicted state x̂,

the equilibria of game 7 and game 3 coincide.31 The separation of estimation and con-

trol makes it easy to modify our previous analysis to accommodate unobserved states.

A complaint about game 7 is that the original state evolution was relegated to the

background by forgetting the structure for which the innovations representation

(Eqs. 29 and 3030) is an outcome. That is, when solving the robust control problem,

we failed to consider direct perturbations in the evolution of the original state vector,

and only explored indirect perturbations from the evolution of the predicted state. The

premise underlying game 3 is that the state x is directly observable. When x is not

observed, an information state x̂ is formed from past history, but x is not observed.

Game 7 fails to take account of this distinction.

To formulate an alternative game that recognizes this distinction, we revert to the

original state evolution equation:

x� ¼ Axþ BuþCw�:

The state x is unknown, but can be predicted by current and past values of y using the

Kalman filter. Substituting x̂ for x yields:

x� ¼ Ax̂þ Buþ �G w�; ð33Þ

where �w* has an identity matrix as its covariance matrix and the (steady-state) forecast-

error covariance matrix for x* given current and past values of y is �G �G 0.
To study robustness, we disguise the model misspecification by the shock �w*.

Notice that the dimension of �w* is typically greater than the dimension of ŵ*,

providing more room for deception because we use the actual next-period state x*

on the left-hand side of the evolution equation (33) instead of the constructed informa-

tion state x̂*. Thus, we allow perturbations in the evolution of the unobserved state

vector when entertaining model misspecification.
31 Although the matrix Gx is not unique, the implied covariance matrix Gx(Gx)
0 is unique. The robust control depends

on Gx only through the covariance matrix Gx(Gx)
0.
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Game 8. (Robust Control and Prediction, ii)

To compute a robust control law, we solve the two-person, zero-sum game 3 but

with the matrix �G used in place of C.

For a given choice of the robustness parameter y, concern about misspecification

will be more potent in game 8 than in the other two-person, zero-sum games.

Mechanically, this is because

�Gð �GÞ0 � CC0

�Gð �GÞ0 � GxðGxÞ0:

The first inequality compares the covariance matrix of x* conditioned on current and

past values of y to the covariance matrix of x* conditioned on the current state x. The

second inequality compares the covariance of x* to the covariance of its estimator x̂*,

both conditioned on current and past values of y. These inequalities show that there is

more latitude to hide model misspecification in game 8 than in the other two robust-

ness games. The enlarged covariance structure makes statistical detection more chal-

lenging. The fact that the state is unobserved gives robustness more potency in game

8 than in game 3.32 The fact that the decisionmakers explore the evolution of x* instead

of the information state x̂* gives robustness more potency in game 8 than 7.33

In summary, the elegant decision theory for combined control and prediction has

direct extensions to accommodate robustness. Recursivity in decision making makes

Bayesian updating methods justifiable for making predictions while looking back at current

and past data even when there are concerns about model misspecification. When making

decisions that have future consequences, robust control techniques alter decision rules

similar to when the state vector is fully observed. These ideas are reflected in games 7 and 8.

5.11 Adaptive control versus robust control
The robustness of Bayesian updating is tied to the notion of an approximating model

(A, B, C) and perturbations around that model. The adaptive control problem 5 is

aimed at eliminating the commitment to a time-invariant benchmark model. While a

more flexible view is adopted for prediction, a commitment to the estimated model is

exploited in the design of a control law for reasons of tractability. Thus, robust control

and prediction combines Bayesian learning (about an unknown state vector) with

robust control, while adaptive control combines flexible learning about parameters

with standard control methods.
32 Game 3 corresponds to the outcome in risk-sensitive joint filtering and control. See Whittle (1980). Thus, when

filtering is part of the problem, the correspondence between risk-sensitive control and preferences for robustness is

modified.
33 As emphasized in Hansen et al. (2002), holding y fixed across games is different than holding detection errors

probabilities fixed. See Barillas, Hansen, and Sargent (2009) for an illustration of this in the context of an example

that links risk-premia culled from asset prices to measuring the uncertainty costs associated with aggregate

fluctuations.
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6. ROBUSTNESS IN ACTION

6.1 Robustness in a simple macroeconomic model
We use Ball’s (1999) model to illustrate the robustness attained by alternative settings of

the parameter y. In this model we present Figure 8 to show that while robust rules do

less well when the approximating model actually generates the data, their performance

deteriorates more slowly with departures of the data-generating mechanism from the

approximating model.

Following the risk-sensitive control literature, we transform y into the risk-sensitiv-

ity parameter s � �y�1. Figure 8 plots the value �E(p2 þ y2) attained by three rules

under the worst-case model for the value of s on the ordinate axis. The rules are those

for three values: s ¼ 0, �0.04, and �0.085. Recall how the detection error probabil-

ities computed earlier associate a value of y ¼ �0.085 with a detection error probabil-

ity of about 0.1. Notice how the robust rules (those computed with preference

parameter s ¼ �0.04 or �0.085) have values that deteriorate at a lower rate with

model misspecification (they are flatter). Notice that the rule for s ¼ �0.085 does
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Figure 8 Value of �E(p2 þ y2) for three decision rules when the data are generated by the worst-
case model associated with the value of s on the horizontal axis: s ¼ 0 rule (solid line), s ¼
�0.04 rule (dashed-dotted line), s ¼ �0.085 ( dashed) line.
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worse than the s ¼ 0 or s ¼ �0.04 rules when s ¼ 0, but is more robust in deterior-

ating less when the model is misspecified. Next, we turn to various ways of character-

izing the features that make the robust rules more robust.

6.2 Responsiveness
A common method for studying implications of dynamic economic models is to com-

pute the impulse responses of economic variables to shocks. Formally, these responses are

a sequence of dynamic multipliers that show how a shock vector wt alters current and

future values of the state vector xt and the target zt tomorrow. These same impulse

response sequences provide insights into how concerns about robustness alter the deci-

sion-making process.

6.2.1 Impulse responses
Let F be a candidate control law and suppose there is no model misspecification. Thus,

the state vector xt evolves according to:

xtþ1 ¼ ðA� BFÞxt þ Cwtþ1:

and the target is now given by

zt ¼ ðH � JFÞxt:

To compute an impulse response sequence, we run the counterfactual experiment of

setting x�1 to zero, w0 to some arbitrary vector of numbers, and all future wt’s to zero.

It is straightforward to show that the resulting targets are:

zt ¼ ðH � JFÞ ðA� BFÞtCw0: ð34Þ

The impulse response sequence is just the sequence of matrices: I (F, 0) ¼ (H � JF )C,

I (F, 1) ¼ (H � JF)(A � BF )C, . . ., I (F, t � 1) ¼ (H � JF )(A � BF)t�1C, . . ..
Under this counterfactual experiment, the objective (3) is given by

� 1

2
ðw0Þ0

X1
t¼0

btIðF; t � 1Þ0IðF; t � 1Þw0: ð35Þ

Shocks occur in all periods not just period zero, so the actual object should take these

into account as well. Since the shocks are presumed to be independent over time,

the contributions of shocks at different time periods can effectively be uncoupled

(see the discussion of spectral utility in Whiteman, 1986). Absorbing the discounting

into the impulse responses, we see that in the absence of model misspecification, the

goal of the decisionmaker is to choose F to make the sequence of matrices I (F, 0),ffiffiffi
b

p
I (F, 1), . . .,

ffiffiffi
b

p tI (F, t), . . . small in magnitude. Thus, Eq. (35) induces no
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preferences over specific patterns of the impulse response sequence, only about the

overall magnitude of the sequence as measured by the discounted sum (35).

Even though we have only considered a degenerate shock sequence, maximizing

objective (3) by choice of F gives precisely the solution to problem 1. In particular,

the optimal control law does not depend on the choice of w0 for w0 6¼ 0. We summa-

rize this in:

Claim 9. (Frequency Domain Problem)

For every w0, the solution of the problem of choosing a fixed F to maximize Eq. (35) is the

same F̂ that solves problem (1). This problem induces no preferences about the shape of the

impulse response function, only about its magnitude as measured by Eq. (35).

In the next subsection, we will see that a preference for robustness induces prefer-

ences about the shape of the impulse response function as well as its magnitude.

6.2.2 Model misspecification with filtering
Consider now potential model misspecification. As in game 3, we introduce a second,

minimizing agent. In our counterfactual experiment, suppose this second agent can

choose future vt’s to damage the performance of the decision rule F. Thus, under

our hypothetical experiment, we envision state and target equations:

xtþ1 ¼ Axt þ But þ Cvt
zt ¼ Hxt þ Jvt

with x0 ¼ Cw0. By conditioning on an initial w0, we are free to think of the second

agent as choosing a sequence of the vt’s that might depend on the initial w0. A given

vt will influence current and future targets via the impulse response sequence derived

above.

To limit the damage caused by the malevolent agent, we penalize the choice of the

vt sequence by using the robustness multiplier parameter y. Thus, the nonrecursive

objective for the two-player, zero-sum dynamic game is:

�
X1
t¼0

btfjztj � yjvtj2g: ð36Þ

When the robustness parameter y is large, the implicit constraint on the magnitude of

the sequence of vt’s is small and very little model misspecification is tolerated. Smaller

values of y permit sequences vt that are larger in magnitude. A malevolent player agent

chooses a vt sequence to minimize Eq. (36) To construct a robust control law, the orig-

inal decisionmaker then maximizes Eq. (36) by choice of F. This nonrecursive repre-

sentation of the game can be solved using the Fourier transform techniques

employed by Whiteman (1986), Kasa (1999), and Christiano and Fitzgerald (1998).
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See Hansen and Sargent (2008b, Chap. 8), for a formal development. This nonrecur-

sive game has the same solution as the recursive game 3.

Before describing some details, it is easy to describe informally how the malevolent

agent will behave. He will detect seasonal, cyclical, or long-run patterns in the implied

impulse response sequences
ffiffiffi
b

p
IðF; tÞ

	 
1
t¼0

, then use his limited resources to concen-

trate deception at those frequencies. Thus, the minimizing agent will make the vt’s have

cyclical components at those frequencies in the impulse response function at which the

maximizing agent’s choice of F leaves himself most vulnerable as measured by Eq. (35).

Here the mathematical tool of Fourier transforms allows us to summarize the

impulse response function in the frequency domain.34 Imagine using a representation

of the components of the specification error vt sequence in terms of sines and cosines

to investigate the effects on the objective function when misspecification is confined

to particular frequencies. Searching over frequencies for the most damaging effects

on the objective allows the minimizing agent to put particular temporal patterns into

the vt’s. It is necessary to view the composite contribution of entire vt sequence, includ-

ing its temporal pattern.

An impulse response sequence summarizes how future targets respond to a current

period vt; a Fourier transform of the impulse response function quantifies how future

targets respond to vt sequences that are pure cosine waves. When the minimizing agent

chooses a temporally dependent vt sequence, the maximizing agent should care about

the temporal pattern of the impulse response sequence, not just its overall magnitude.35

The minimizing agent in general will find that some particular frequencies (e.g., a

cosine wave of given frequency for the vt’s) will most efficiently exploit model misspe-

cification. In addition to making the impulse response sequence small, the maximizing

agent wants to design a control law F in part to flatten the frequency sensitivity of the

(appropriately discounted) impulse response sequence. This concern causes a trade-

off across frequencies to emerge. The robustness parameter y balances a tension

between asking that impulse responses are small in magnitude and also that they are

insensitive to model misspecification.

6.3 Some frequency domain details
To investigate these ideas in more detail, we use some arithmetic of complex numbers.

Recall that

exp ðiotÞ ¼ cos ðotÞ þ i sin ðotÞ:
34 Also see Brock, Durlauf, and Rondina (2008).
35 It was the absence of the temporal dependence in the vt’s under the approximating model that left the maximizing

agent indifferent to the shape of the impulse response function in Eq. (35).
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We can extract a frequency component from the misspecification sequence {vt} using a

Fourier transform. Define:

F T ðvÞ ðoÞ ¼
X1
t¼0

bt=2vt exp ðiotÞ; o 2 ½�p;p�:

We can interpret

F T ðvÞ ðoÞ exp ð�iotÞ

as the frequency o component of the misspecification sequence. Our justification for

this claim comes from the integration recovery (or inversion) formula:

bt=2vt ¼
1

2p

ðp
�p

F T ðvÞ ðoÞ exp ð�iotÞ do:

Thus, we have an additive decomposition over the frequency components. By adding

up or integrating over these frequencies, we recover the misspecification sequence in

the time domain. Moreover, the squared magnitude of the misspecification sequence

can be depicted as an integral:X1
t¼0

btvt�vt ¼
1

2p

ðp
�p

j F T ðvÞ ðoÞj2do

Thus, Fourier transforms provide a convenient toolkit for thinking formally about

misspecification in terms of frequency decompositions.

It may appear troubling that the frequency components are complex. However, by

combining contribution at frequencies o and �o, we obtain sequences of real vectors.

The periodicity of frequency o and frequency �o are identical, so it makes sense

to treat these two components as a composite contribution. Moreover, jF T (v)(o)j
¼ jF T (v)(�o)j.

We can get a version of this decomposition for the appropriately discounted target

vector sequence.36 This calculation results in the following formula for the Fourier

transform F T (z)(o) of the “target” zt sequence:

F T ðzÞ ðoÞ ¼ hðoÞ½w0 þ exp ðioÞF T ðvÞðoÞ�

where the matrix function

hðoÞ ¼ ðH � JFÞ½I �
ffiffiffi
b

p
ðA� BFÞ exp ðioÞ��1

C

¼
X1
t¼1

bt=2IðF; tÞ exp ðiotÞ:
36 That cosine shocks lead to cosine responses of the same frequency reflects the linearity of the model. In nonlinear

models, the response to a cosine wave shock is more complicated.
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is the Fourier transform of the sequence of impulse responses from the shocks to the

target zt. This transform depends implicitly on the choice of control law F. This Four-

ier transform describes how frequency components of the misspecification sequence

influence the corresponding frequency components of the target sequence. When

the matrix h(o) is large in magnitude relative to other frequencies, frequency o is par-

ticularly vulnerable to misspecification.

Objective (36) has a frequency representation given by:

� 1

4p

ðp
�p
ðjF T ðzÞ ðoÞj2 � yjF T ðvÞ ðoÞj2Þ do:

The malevolent agent chooses to minimize this objective by choice of F T (v)(o). The
control law F is then chosen to minimize the objective. As established in Hansen and

Sargent (2008b, Chap. 8), this is equivalent to ranking control laws F using the fre-

quency-based entropy criterion:

entropy ¼ � 1

2p

ðp
�p

log det ½yI � h ðoÞ0h ð�oÞ� do: ð37Þ

See Hansen and Sargent (2008b) for an explanation of how this criterion induces the

same preferences over decision rules F as the two-player game 3. Lowering y causes

the decisionmaker to design Fy to make (trace h(o)0h(�o)) flatter as a function of

frequency, lowering its larger values at the cost of raising smaller ones. Flattening

(trace h(o)0h(�o)) makes the realized value of the criterion function less

sensitive to departures of the shocks from the benchmark specification of no serial

correlation.

6.3.1 A limiting version of robustness
There are limits on the size of the robustness parameter y. When y is too small, it is

known that the two-player, zero-sum game suffers a breakdown. The fictitious malevo-

lent player can inflict sufficient damage that the objective function remains at �1
regardless of the control law F. The critical value of y can be found by solving:

y ¼ sup
v

1

2p

ðp
�p

jh ðoÞF T ðvÞ ðoÞj2 do

subject to

1

2p

ðp
�p

j F T ðvÞ ðoÞj2 do ¼ 1:

The sup is typically not attained, but is approximated by a sequence that isolates one

particular frequency.
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The critical value y depends on the choice of control law F. One (somewhat

extreme) version of robust control theory, called H1 control theory, instructs a deci-

sionmaker to select a control law to make this critical value of y as small as possible.

6.3.2 A related econometric defense for filtering
In econometric analyses, it is often argued that time series data should be filtered before

estimation to avoid contaminating parameters. Indeed, frequency decompositions can

be used to justify such methods. The method called spectral analysis is about decompos-

ing time series into frequency components. Consider an econometrician with a formal

economic model to be estimated. He suspects, however, that the model may not be

well suited to explain all of the component movements in the time series. For instance,

many macroeconomic models are not well designed to explain seasonal frequencies.

The same is sometimes claimed for low frequency movements as well. In this sense

the data may be contaminated vis-á-vis the underlying economic model.37

One solution to this problem would be to put a prior distribution over all possible

forms of contamination and to form a hyper model by integrating over this contamina-

tion. As we have argued previously, that removes concerns about model misspecifica-

tion from discussion, but arguably in a contrived way. Also, this approach will not give

rise to the common applied method of filtering the data to eliminate particular frequen-

cies where the most misspecification is suspected.

Alternatively, we could formalize the suspicion of data contamination by introdu-

cing a malevolent agent who has the ability to contaminate time series data over some

frequency range, say seasonal frequencies or low frequencies, that correspond to long-

run movements in the time series. This contamination can undermine parameter esti-

mation in a way formalized in the frequency domain by Sims (1972) for least-squares

regression models and Sims (1993) and Hansen and Sargent (1993) for multivariate

time series models. Sims (1974) and Wallis (1974) used frequency domain characteriza-

tions to justify a seasonal adjustment filter and to provide guidance about the appropri-

ate structure of the filter. They found that if one suspects that a model is better specified

at some frequencies than others, then it makes sense to diminish approximation errors

by filtering the data to eliminate frequencies most vulnerable to misspecification.

Consider a two-player, zero-sum game to formulate this defense. If an econometri-

cian suspects that a model is better specified at some frequencies than others, this can be

operationalized by allowing the malevolent agent to concentrate his mischief making

only at those frequencies, like the malevolent agent from robust control theory. The

data filter used by the econometrician can emerge as a solution to an analogous two-

player game. To arrest the effects of such mischief making, the econometrician will

design a filter to eliminate those frequencies from estimation.
37 Or should we say that the model is contaminated vis-á-vis the data?
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Such an analysis provides a way to think about both seasonal adjustment and trend

removal. Both can be regarded as procedures that remove frequency components with

high power with the aim of focusing empirical analysis on frequencies where a model is

better specified. Sims (1993) and Hansen and Sargent (1993) described situations in

which the cross-equation restrictions of misspecified rational expectations models pro-

vide better estimates of preference and technological parameters with seasonally

adjusted data.

6.3.3 Comparisons
It is useful to compare the frequency domain analysis of data filtering with the fre-

quency domain analysis of robust decision making. The robust decisionmaker achieves

a robust rule by damping the influence of frequencies most vulnerable to misspecifica-

tion. In the Sims (1993) analysis of data filtering, an econometrician who fears misspe-

cification and knows the approximation criterion is advised to choose a data-filtering

scheme that downplays frequencies at which he suspects the most misspecification.

He does “window carpentry” in crafting a filter to minimize the impact of specification

error on the parameters estimates that he cares about.

6.4 Friedman: Long and variable lags
We now return to Friedman’s concern about the use of misspecified models in the

design of macroeconomic policies, in particular, to his view that lags in the effects of

monetary policy are long and variable. The game theoretic formulation of robustness

gives one possible expression to this concern about long and variable lags. That the lags

are long is determined by the specification of the approximating model. (We will soon

give an example in the form of the model of Laurence Ball.) That the lags are variable is

captured by the innovation mean distortions vt that are permitted to feed back arbi-

trarily on the history of states and controls. By representing misspecified dynamics,

the vt’s can capture one sense of variable lags. Indeed, in the game theoretic construc-

tion of a robust rule, the decisionmaker acts as though he believes that the way that the

worst-case vtþ1 process feeds back on the state depends on his choice of decision rule F.

This dependence can be expressed in the frequency domain in the way we have

described. The structure of the original model (A, B, C) and the hypothetical control

law F dictate which frequencies are most vulnerable to model misspecification. They

might be low frequencies, as in Friedman’s celebrated permanent income model, or

they might be business cycle or seasonal frequencies. Robust control laws are designed

in part to dampen the impact of frequency responses induced by the vt’s. To blunt the

role of this second player, under robustness the original player aims to diminish the

importance of the impulse response sequence beyond the initial response. The resulting

control laws often lead to impulse responses that are greater at impact and are more

muted in the tails. We give an illustration in the next subsection.
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6.4.1 Robustness in Ball's model
We return to Ball’s (1999) model and use it to illustrate how concerns about robustness

affect frequency domain representations of impulse response functions. We discount

the return function in Ball’s model, altering the object that the government would like

to maximize to be

�E
X1
t¼0

btðp2t þ y2t Þ:

We derive the associated robust rules for three values of the robustness parameter y.
In the frequency domain, the criterion can be represented as

H2 ¼ �
ðp
�p

trace ½hðoÞ0hð�oÞ� do:

Here h(o) is the transfer function from the shocks in Ball’s model to the targets, the

inflation rate, and output. The transfer function h depends on the government’s choice

of a feedback rule Fy. Ball computed F1.

Figure 9 displays frequency decompositions of [trace h(o)0h(�o)] for robust rules
with b ¼ 1 and b ¼ 0.9. Figure 9 shows frequency domain decompositions of a gov-

ernment’s objective function for three alternative policy rules labeled y ¼ þ1, y ¼ 10,

y ¼ 5. The parameter y measures a concern about robustness, with y ¼ þ1
corresponding to no concern about robustness, and lower values of y representing a

concern for misspecification. Of the three rules whose transfer functions are depicted

in Figure 9, Ball’s rule (y ¼ þ1) is the best under the approximating model because

the area under the curve is the smallest.

The transfer function h gives a frequency domain representation of how targets

respond to serially uncorrelated shocks. The frequency domain decomposition C

depicted by the y ¼ þ1 curve in Figure 9 exposes the frequencies that are most vul-

nerable to small misspecifications of the temporal and feedback properties of the

shocks. Low frequency misspecifications are most troublesome under Ball’s optimal

feedback rule because for those frequencies, trace[h(z)0h(z)] is highest.
We can obtain more robust rules by optimizing the entropy criterion (37). Flatten-

ing the frequency response trace[h(o)0h(�o)] is achieved by making the interest rate

more sensitive to both y and e; as we reduce y, both a and b increase in the feedback

rule rt ¼ ayt þ bpt.
38 This effect of activating a preference for robust rules has the fol-

lowing interpretation. Ball’s model specifies that the shocks in Eqs. (12)–(14) are seri-

ally uncorrelated. The no-concern about robustness y ¼ þ1 rule exposes the

policymaker to the biggest costs if the shocks instead are actually highly positively seri-

ally correlated. This means that a policymaker who is worried about misspecification is
38 See Sargent (1999a) for a discussion.
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most concerned about misreading what is actually a “permanent” or “long-lived”

shock as a temporary (i.e., serially uncorrelated) one. To protect himself, the policy-

maker responds to serially uncorrelated shocks (under the approximating model) as

though they were positively serially correlated. This response manifests itself when

he makes the interest rate more responsive to both yt and pt.
An interesting aspect of the two panels of Figure 9 is that in terms of trace [h(o)0h

(�o)], lowering the discount factor b has similar effects as lowering y (compare the

y ¼ 5 curves in the two panels). Hansen et al. (1999) uncovered a similar pattern in

a permanent income model; they showed that there existed offsetting changes in b
and y that would leave the quantities (but not the prices) of a permanent income model

unchanged.
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Figure 10 displays impulse response functions of inflation to �t (the shock in

the Phillips curve) and et (the shock in the IS curve) under the robust rules for

y ¼ þ1, 10, 5 when b ¼ 1. The panels show that activating preferences for robustness

causes the impulse responses to damp out more quickly, which is consistent with the

flatter trace [h(o)0h(�o)] functions observed as we accentuate the preference for

robustness. Note also that the impact effect of et on inflation is increased with an

increased preference for robustness.

6.5 Precaution
A property or limitation of the linear-quadratic decision problem 1 in the absence of

robustness is that it displays certainty equivalence. The optimal decision rule does

not depend on the matrix C that governs how shocks impinge on the state evolution.

The decision rule fails to adjust to the presence of fluctuations induced by shocks (even
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though the decisions do depend on the shocks). The rule would be the same even if

shocks were set to zero. Thus, there is no motive for precaution.

The celebrated permanent income model of Friedman (1956) (see Zeldes, 1989, for

an elaboration) has been criticized because it precludes a precautionary motive for sav-

ings. Leland (1968) and Miller (1974) extended Friedman’s analysis to accommodate

precautionary savings by moving outside the linear-quadratic functional forms given

in problem 1. Notice that in decision problem 1, both the time t contribution to the

objective function and the value function are quadratic and hence have zero third deri-

vatives. For general decision problems under correct model specification, Kimball

(1990) constructed a measure of precaution in terms of the third derivatives of the util-

ity function or value function.

We have seen how a preference for robustness prompts the C matrix to influence

behavior even within the confines of decision problem 1, which because it has a qua-

dratic value function precludes a precautionary motive under correct model misspeci-

fication. Thus, a concern about model misspecification introduces an additional

motivation for precaution beyond that suggested by Leland (1968) and Miller (1974).

Shock variances play a role in this new mechanism because the model misspecification

must be disguised to a statistician. Hansen et al. (1999) are able to reinterpret Fried-

man’s permanent income model of consumption as one in which the consumer is

concerned about model misspecification. Under the robust interpretation, consumers

discount the future more than under the certainty-equivalent interpretation. In spite

of this discounting, consumers save in part because of concerns that their model of

the stochastic evolution of income might be incorrect.

This new mechanism for precaution remains when robustness is introduced into the

models studied by Leland (1968), Miller (1974), Kimball (1990), and others. In contrast

to the precautionary behavior under correct model specification, robustness makes pre-

caution depend on more than just third derivatives of value functions. The robust

counterpart to Kimball’s (1990) measures of precaution depends on the lower order

derivatives as well. This dependence on lower order derivatives of the value function

makes robust notions of precaution distinct from and potentially more potent than

the earlier notion of precaution coming from a nonzero third derivative of a value

function.

6.6 Risk aversion
Economists are often perplexed by the behavior of market participants that seems to

indicate extreme risk aversion, for example, the behavior of asset prices and returns.

To study risk aversion, economists want to confront decisionmakers with gambles

described by known probabilities. From knowledge or guesses about how people

would behave when confronted with specific and well-defined risks, economists infer
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degrees of risk aversion that are reasonable. For instance, Barsky, Juster, Kimball, and

Shapiro (1997) administered survey questions eliciting from people their willingness

to participate in gambles. A distinct source of information about risk aversion comes

from measurements of risk–return trade-offs from financial market data. The implied

connection between risk aversion as modeled by a preference parameter and

risk–return trade-offs as measured by financial econometricians was delineated by

Hansen and Jagannathan (1991) and Cochrane and Hansen (1992). But evidence

extracted in this way from historical security market data suggests that risk aversion

implied by security market data is very much larger than that elicited from participants

facing those hypothetical gambles with well-understood probabilities.

There are a variety of responses to this discrepancy. One questions the appropriate-

ness of extrapolating measures of risk aversion extracted from hypothetical small gam-

bles to much larger ones. For example, it has been claimed that people look more risk

averse when facing smaller rather than larger gambles (Epstein & Melino, 1995; Rabin,

1999; Segal & Spivak, 1990). Others question the empirical measurements of the

risk–return trade-off because, for example, mean returns on equity are known to be

difficult to measure reliably. Our statistical notion of robustness easily makes contact

with such responses. Thus, a concern about robustness comes into play when agents

believe that their probabilistic descriptions of risk might be misspecified. In security

markets, precise quantification of risks is difficult. It turns out that there is a formal

sense in which a preference for robustness as modeled earlier can be reinterpreted in

terms of a large degree of risk aversion, treating the approximating model as known.

This formal equivalence has manifestations in both decision making and in prices.

The observationally equivalent risk-averse or risk-sensitive interpretation of robust

decision making was first provided by Jacobson (1973), but outside the recursive

framework used here. Hansen and Sargent (1995b) built on the work of Jacobson

(1973) and Whittle (1980) to establish an equivalence between a preference for robust-

ness and risk-sensitive preferences for the two-person, zero-sum game 3. Anderson,

Hansen, and Sargent (2003) and Hansen et al. (2006) extended this equivalence result

to a larger class of recursive two-person, zero-sum games. Thus, the decision rules that

emerge from robustness games are identical with those rules that come from risk-sensi-

tive control problems with correctly specified models.39

Hansen et al. (1999), Tallarini (2000), and Cagetti et al. (2002) show that in a

class of stochastic growth models the effects of a preference for robustness or of a
39 This observational equivalence applies within an economy for perturbations modeled in the manner described here.

It can be broken by either restricting the class of perturbations, by introducing differential penalty terms, or in

some of formulations with hidden states. Also, this equivalence result applies for a given economic environment.

The robustness penalty parameter y should not be thought of as invariant across environments with different state

equations. Recall that in our discussion of calibration, we used specific aspects of the environment to constrain the

magnitude of the penalty parameter.
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risk-sensitive adjustment to preferences are very difficult or impossible to detect in the

behavior of quantities along, for example, aggregate data on consumption and invest-

ment. The reason is that in these models altering a preference for robustness has effects

on quantities much like those that occur under a change in a discount factor. Altera-

tions in the parameter measuring preference for robustness can be offset by a change

in the discount factor, leaving consumption and investment allocations virtually

unchanged.

However, that kind of observational equivalence result does not extend to asset

prices. The same adjustments to preferences for robustness and discount factors that

leave consumption and investment allocations unaltered can have marked effects on

the value function of a planner in a representative agent economy and on equilibrium

market prices of risk. Hansen et al. (1999) and Hansen et al. (2002) have used this

observation to study the effects of a preference for robustness on the theoretical value

of the equity premium.

A simple and pedagogically convenient model of asset prices is obtained by studying

the shadow prices from optimal resource allocation problems. These shadow prices

contain a convenient decomposition of the risk–return trade-off. Let gt denote a vector
of factor loadings, so that under an approximating model, the unpredictable compo-

nent of the return is gt � wtþ1. Let r
f
t denote the risk-free interest rate. Then the

required mean return mt satisfies the factor pricing relation

mt � rft ¼ gt�qt
where qt is a vector of what are commonly referred to as factor risk prices. Changing

the price vector qt changes the required mean return. Economic models with risk-averse

investors imply a specific shadow price formula for qt. This formula depends explicitly on

the risk preferences of the consumer. An implication of many economic models is that

the magnitude jqtj of the price vector implied by a reasonable amount of risk aversion is

too small to match empirical observations.

Introducing robustness gives us an additive decomposition for qt in corresponding

continuous-time models, as demonstrated by Anderson, Hansen, and Sargent (1999,

2003) and Chen and Epstein (1998). One component is an explicit risk component

and the other is a model uncertainty component. The model uncertainty component

relates directly to the detection error rates that emerge from the statistical discrimina-

tion problem previously described. By exploiting this connection, Anderson et al.

(2003) argued that it is reasonable to assign about a third of the observed jqtj to con-

cerns about robustness. This interpretation is based on the notion that the market exper-

iment is fundamentally more complicated than the stylized experiments confronting

people with well-understood risks that are typically used to calibrate risk aversion.

Faced with this complication, investors use models as approximations and make
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conservative adjustments. These adjustments show up prominently in security market

prices even when they are disguised in macroeconomic aggregates.

Figure 11 is from Hansen et al. (2002), who studied the contribution to the market

price of risk from a concern about robustness in three models: the basic model of Han-

sen et al. (1999) and two modified versions of it in which agents do not observe the

state and so must filter. Those two versions corresponded to the two robust filtering

games 7 and 8 described in preceding sections. Figure 11 graphs the contribution to

the market price of risk of four-period securities coming from robustness for each of

these models graphed against the detection error probability. Freezing the detection

error probability across models makes the value of y depend on the model. (See the

preceding discussion about how the detection error probability depends on y and the

particular model.) Figure 11 affirms the tight link between detection error probabilities

and the contribution of a concern about robustness to the market price of risk that was
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Figure 11 Four-period market price of Knightian uncertainty versus detection error probability for
three models: HST denotes the model of Hansen et al. (1999); “benchmark” denotes their model
modified along the lines of the first robust filtering game 7; “HSW” denotes their model modified
according to the second robust filtering game 8.
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asserted by Anderson et al. (2003). Notice how the relationship between detection

error probabilities and the contribution of robustness to the market price of risk does

not depend on which model is selected. The figure also conveys that a preference

for robustness corresponding to a plausible value of the detection error probability gives

a substantial boost to the market price of risk.
7. CONCLUDING REMARKS

This paper has discussed work designed to account for a preference for decisions that

are robust to model misspecification. We have focused mainly on single-agent decision

problems. The decisionmaker evaluates decision rules against a set of models near his

approximating model, and uses a two-person, zero-sum game in which a malevolent

agent chooses the model as an instrument to achieve robustness across the set of

models.

We have not touched issues that arise in contexts where multiple agents want

robustness. Those issues deserve serious attention. One issue is the appropriate equilib-

rium concept with multiple agents who fear model misspecification. We need an equi-

librium concept to replace rational expectations. Hansen and Sargent (2008b, Chaps.

15 and 16) and Karantounias et al. (2009) used an equilibrium concept that seems a nat-

ural extension of rational expectations because all agents share the same approximating

model. Suitably viewed, the communism of models seen in rational expectations mod-

els extends only partially to this setting: now agents share an approximating model, but

not necessarily their sets of surrounding models against which they value robustness,

nor the synthesized worst-case models that they use to attain robustness. Anderson

(2005) studied a pure endowment economy whose agents have what we would inter-

pret as different concerns about robustness, and shows how the distribution of wealth

over time is affected by those concerns.40 Hansen and Sargent (2008b, Chap. 16), Kasa

(1999), and Karantounias et al. (2009) described multi-agent problems in the form of

Ramsey problems for a government facing a competitive private sector.

Preferences for robustness also bear on the Lucas (1976) critique. Lucas’s critique is

the assertion that rational expectations models make decision rules functions of stochas-

tic processes of shocks and other variables exogenous to decisionmakers. To each shock

process, a rational expectations theory associates a distinct decision rule. Lucas criticized

earlier work for violating this principle. What about robust decision theory? It partially

affirms but partially belies the Lucas critique. For a given preference for robustness (i.e.,

for a given y < þ1), a distinct decision rule is associated with each approximating

model, respecting the Lucas critique. However, for a given preference for robustness
40 Anderson (2005) embraced the risk-sensitivity interpretation of his preference specification, but it is also susceptible

to a robustness interpretation. He studied a Pareto problem of a planner who shares the approximating model and

recognizes the differing preferences of the agents.
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and a fixed approximating model, the decisionmaker is supposed to use the same

decision rule for a set of models surrounding the approximating model, superficially

“violating the Lucas critique.” Presumably, the decisionmaker would defend that vio-

lation by appealing to detection error probabilities large enough to make members of

that set of models difficult to distinguish from the approximating model based on the

data available.
APPENDIX

Generalizations
This appendix describes how the linear-quadratic setups in much of the text link to

more general nonlinear, non-Gaussian problems. We define relative entropy and

how it relates to the term v0tvt that plays such a vital role in the robust control problems

treated in the text.

1. Relative entropy and multiplier problem
Let V(e) be a (value) function of a random vector e with density f(e). Let y > 0 be a

scalar penalty parameter. Consider a distorted density f̂ðeÞ ¼ mðeÞfðeÞ where m(e) �
0 is evidently a likelihood ratio. The risk-sensitivity operator is defined in terms of

the indirect utility function TV that emerges from:

Problem 10

TV ¼ min
mðeÞ �0

ð
mðeÞ½V ðeÞ þ y logmðeÞ� fðeÞde ð38Þ

subject to ð
mðeÞ f ðeÞde ¼ 1 ð39Þ

Here
Ð
m ðeÞlog m ðeÞ f ðeÞ de ¼

Ð
log m ðeÞ f̂ ðeÞde is the entropy of f̂ relative to f.

The minimizing value of m(e) is

m ðeÞ ¼ exp ð�V ðeÞ=yÞÐ
exp ð�V ðeeÞ=yÞ fðeeÞ dee ð40Þ

and the indirect utility function satisfies

TV ¼ � y log
ð
exp ð�V ðeÞ=yÞ f ðeÞ de: ð41Þ
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2. Relative entropy and Gaussian distributions
It is useful first to compute relative entropy for the case that f is N (0, I) and f̂ is N
(w, S), where the covariance matrix S is nonsingular. We seek a formula forÐ
m ðeÞ logm ðeÞ f ðeÞ de ¼

Ð
ðlog f̂ ðeÞ � log f ðeÞÞf̂ ðeÞde: The log-likelihood ratio

is

log f̂ ðeÞ � logfðeÞ ¼ 1

2
½�ðe� wÞ0 S�1ðe� wÞ þ e0e� log det S�: ð42Þ

Observe that

�
ð
1

2
ðe� wÞ0 S�1ðe� wÞf̂ ðeÞde ¼ � 1

2
trace ðIÞ:

Applying the identity e ¼ w þ (e � w) gives

1

2
e0e ¼ 1

2
w0w þ 1

2
ðe� wÞ0ðe� wÞ þ w0ðe� wÞ:

Taking expectations under f̂,

1

2

ð
e0e f̂ðeÞde ¼ 1

2
w0w þ 1

2
trace ðSÞ:

Combining terms gives

ent ¼
ð
ð log f̂� logfÞ f̂de ¼ � 1

2
log det Sþ 1

2
w0w þ 1

2
trace ðS� IÞ: ð43Þ

Notice the separate appearances of the mean distortion w and the covariance distortion

S � I. We will apply formula (43) to compute a risk-sensitivity operator T in the next

subsection.

3. A static valuation problem
In this subsection, we construct a robust estimate of a value function that depends on a

random vector that for nowwe assume is beyond the control of the decisionmaker. Con-

sider a quadratic value function V ðxÞ ¼ � 1
2
x0Px� r where P is a positive definite sym-

metric matrix, and x�N (�x, S). We shall use the convenient representation x¼ �xþCe,
where CC0 ¼ S and e � N (0, I). Here x 2 Rn, e 2 Rm, and C is an n 
 m matrix.

We want to apply the risk-sensitivity operator T to the value function

V ðxÞ ¼ � 1
2
x0Px� r,

TV ð�xÞ ¼ � y log
ð
exp

�V ð�xþ CeÞ
y

� �
f ðeÞ de;

where fðeÞ / exp ð� 1
2
e0eÞ by the assumption that f � N (0, I).
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Remark 11

For the minimization problem defining TV to be well posed, we require that y be sufficiently

high that (I � y�1C0PC) is nonsingular. The lowest value of y that satisfies this condition is

called the breakdown point.41

To compute TV, we will proceed in two steps.
41 S

th

d

Step 1. First, we compute f̂ðe; �xÞ. Recall that the associated worst-case likelihood

ratio is
mðe; �xÞ / exp
�V ð�xþ CeÞ

y

� �
;

which for the value function V ðxÞ ¼ � 1
2
x0Px� r becomes

mðe; �xÞ / exp
1
2
e0C0PCeþ e0C0P �x

y

� �
:

Then the worst-case density of e is
f̂ðe; �xÞ ¼ mðe; �xÞfðeÞ

/ exp � 1

2
e0ðI � y�1C0PCÞ eþ 1

y
e0ðI � y�1C0PCÞ ðI � y�1C0PCÞ�1

C0P �x

� �
:

From the form of this expression, it follows that the worst-case density f̂ðe; �xÞ is
Gaussian with covariance matrix (I � y�1 C0 PC)�1 and mean y�1 (I � y�1 C0

PC)�1 C0 P�x ¼ (yI � C0 PC)�1 C0 �x.
Step 2. Second, to compute TV (�x), we can use
TV ð�xÞ ¼
ð
V ð�xþ CeÞf̂ðeÞdeþ y

ð
mðe; �xÞ logm ðe; �xÞ f ðeÞde ð44Þ

while substituting our formulas for the mean and covariance matrix of f̂ into our

formula (43) for the relative entropy of two Gaussian densities. We obtain

TV ð�xÞ ¼ �1

2
�x0DðPÞ�x� r� 1

2
trace ðPCðI � y�1C0PCÞ�1

C0Þþ

y
2
trace ½ðI � y�1C0PCÞ�1 � I � � y

2
log det ðI � y�1C0PCÞ�1

ð45Þ
ee Hansen and Sargent (2008b, Chap. 8), for a discussion of the breakdown point and its relation to H1 control

eory as viewed especially from the frequency domain. See Brock et al. (2008) for another attack on robust policy

esign that exploits a frequency domain formulation.
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where

DðPÞ ¼ P þ PCðyI �C0PCÞ�1
C0P: ð46Þ

The matrix D(P) appearing in the quadratic term in the first line on the right side of

Eq. (45) emerges from summing contributions coming from (i) evaluating the expected

value of the quadratic form x0 Px under the worst-case distribution, and (ii) adding in y
times that part of the contribution to entropy 1

2
w0w in Eq. (43) coming from the

dependence of the worst-case mean w ¼ (y I � C0 PC)�1 C0 �x on �x. The term

� 1
2
trace ðPCðI � y�1CPCÞ�1

C0Þ is the usual contribution to the expected value from

a quadratic form, but evaluated under the worst-case variance matrix (I � y�1 C0

PC)�1. The two terms on the second line of Eq. (45) are y times the two contributions

from entropy in Eq. (43) other than 1
2
w0w.42

Formula (45) simplifies when we note that

ðI � y�1C0PCÞ�1 � I ¼ y�1ðI � y�1C0PCÞ�1
C0PC

and that therefore

� 1

2
trace ðPCðI � y�1CPCÞ�1

C0Þ þ y
2
trace ½ðI � y�1C0PCÞ�1 � I � ¼ 0:

So it follows that

TV ð�xÞ ¼ � 1

2
�x0DðPÞ�x� r� y

2
log det ðI � y�1C0PCÞ�1: ð47Þ

It is convenient that with a quadratic objective, linear constraints, and Gaussian random

variables the value function for the risk-sensitivity operator and the associated worst-

case distributions can be computed by solving a deterministic programming problem:

Problem 12

The worst-case mean v ¼ (y I � C0 PC)�1 C0 P�x attains:

min
v

� 1

2
ð�xþ CvÞ0Pð�xþCvÞ þ y

v0v

2

� �
:

The minimized value function is � 1
2
�x’DðPÞ�x where D(P) satisfies Eq. (51).
42 In the special (no-concern about robustness) case that y ¼ þ1, we obtain the usual result that

TV ð�xÞ ¼ EV ð�xÞ ¼ � 1

2
�x0P �x� r� 1

2
trace ðPCC0Þ:

To verify this, one shows that the limit of the log det term is the trace term in the second line of Eq. (45) as y ! 1.

Write the log det as the sum of logs of the corresponding eigenvalues, then take limits and recall the formula expressing

the trace as the sum of eigenvalues.
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4. A two-period valuation problem
In this section, we describe a pure valuation problem in which the decisionmaker does not

influence thedistributionof randomoutcomes.Weassume the following evolution equation:

y� ¼ Ayþ Ce ð48Þ

where y is today’s value and y* is next period’s value of the state vector, and e�N (0, I).

There is a value function

V ðy�Þ ¼ � 1

2
ðy�Þ0Py� � r:

Our risk-sensitive adjustment to the value function is

TðV ÞðyÞ ¼ �y log
Ð
exp

�V ½Ayþ Ce�
y

 !
pðeÞde

" #
¼
Ð
V ðy�Þ p̂deþ y

Ð
ðlog p̂� logpÞ p̂ de

ð49Þ

where p̂ is obtained as the solution to the minimization problem in a multiplier prob-

lem. We know that the associated worst-case likelihood ratio satisfies the exponential

twisting formula

m̂ðe; yÞ / exp
1

2y
e0C0PCeþ 1

y
e0C0P Ay

� �
:

(We have absorbed all nonrandom terms into the factor of proportionality signified by

the 1 sign. This accounts for the dependence of m̂ (e, y) on y.) When p is a standard

normal density, it follows that

pðeÞm̂ðe; yÞ / exp � 1

2
e0 I � 1

y
C0PC

� �
e þ e0 I � 1

y
C0PC

� �
ðyI � C0PCÞ�1

C0P Ay

� �
;

where we choose the factor of proportionality so that the function of e on the right-

hand side integrates to unity. The function on the right side is evidently proportional

to a normal density with covariance matrix ðI � 1
yC

0PCÞ�1
and mean (y I � C0

PC)�1 C0 P Ay. The covariance matrix of the worst-case distribution is

ðI � 1
yC

0PCÞ�1
exceeds the covariance matrix I for the original distribution of e.

The altered mean for e implies that the distorted conditional mean for y* is [I þ
C(y I � C0 PC)�1 C0 P] Ay.

Applying Eq. (47), the risk-sensitive adjustment to the objective function

� 1
2
ðy�Þ0Pðy�Þ � r is
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TðV ÞðyÞ ¼ �1

2
ðAyÞ0DðPÞ ðAyÞ � r

� y
2
log det I � 1

y
C0PC

 !�1 ð50Þ

where the operator D(P) is defined by

DðPÞ ¼ P þ PCðyI �C0PCÞ�1
C0P: ð51Þ

All of the essential ingredients for evaluating Eq. (49) or (50) can be computed by solv-

ing a deterministic problem.

Problem 13

Consider the following deterministic law of motion for the state vector:

y� ¼ AyþCw

where we have replaced the stochastic shock e in Eq. (48) by a deterministic specification error

w. Since this is a deterministic evolution equation, covariance matrices do not come into play

now, but the matrix C continues to play a key role in designing a robust decision rule. Solve

the problem

min
w

� 1

2
ðAyþ CwÞ0PðAyþ CwÞ þ y

2
w0w

� �
:

In this deterministic problem, we penalize the choice of the distortion w using only the contribution

to relative entropy (43) that comes from w. The minimizing w is

w� ¼ ðyI �C0PCÞ�1
C0 P Ay:

This coincides with the mean distortion of the worst-case normal distribution for the stochastic

problem. The minimized objective function is

� 1

2
ðAyÞ0DðPÞ ðAyÞ;

which agrees with the contribution to the stochastic robust adjustment to the value function (50)

coming from the quadratic form in Ay. What is missing relative to the stochastic problem is the

distorted covariance matrix for the worst-case normal distribution and the constant term in the

adjusted value function.

The idea of solving a deterministic problem to generate key parts of the solution of

a stochastic problem originated with Jacobson (1973) and underlies much of linear-

quadratic-Gaussian robust control theory ( Hansen & Sargent, 2008b). For the purposes

of computing and characterizing the decision rules in the linear-quadratic model, we

can abstract from covariance distortions and focus exclusively on mean distortions.
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In the linear-quadratic case, the covariance distortion alters the value function only

through the additive constant term r� 1
2
log det ðI � y�1C0PCÞ�1

. We can deduce

both the covariance matrix distortion and the constant adjustment from formulas that

emerge from the purely deterministic problem.
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