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Abstract

Preferences that accommodate aversion to subjective uncertainty and its potential

misspecification in dynamic settings are a valuable tool of analysis in many disciplines.

By generalizing previous analyses, we propose a tractable approach to incorporating

broadly conceived responses to uncertainty. We illustrate our approach on some

stylized stochastic environments. By design, these discrete-time environments have

revealing continuous-time limits. Drawing on these illustrations, we construct recur-

sive representations of intertemporal preferences that allow for penalized and smooth

ambiguity aversion to subjective uncertainty. These recursive representations im-

ply continuous-time limiting Hamilton-Jacobi-Bellman equations for solving control

problems in the presence of uncertainty.

In statistics, control theory, decision theory, and economics, the question of how to

cope with subjective uncertainty comes into play. While researchers have developed many

different approaches, it is standard in decision theory to impose axioms on preferences

over choices. Axiomatic decision theory justifies representations of preferences that provide

applied researchers with alternative ways to capture uncertainty responses. In applications,

however, a decision maker must decide how to calibrate preference parameters, including

aversion to ambiguity and to model misspecification. An important issue that arises is how

to transport these parameters across alternative environments, a question to which existing

axiomatic treatments provide little guidance.
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It has become common practice within economics to transport risk aversion parame-

ters and subjective discount rate parameters from one environment to another. Through

some examples we suggest that a mechanical implementation of the same approach is not

appealing for some forms of aversion to ambiguity and model misspecification that interest

us. These examples are not only of interest in their own right, they also provide guidance

as to meaningful continuous-time limiting counterparts to Hamilton-Jacobi-Bellman (HJB)

equations for which the aversions contribute in the limit.

We build our analysis in multiple steps. We first use a version of Shannon’s relative

entropy to quantify uncertainty. Specifically, in section 1 we present a relative entropy de-

composition of the joint probability distribution over a future observation and an unknown

parameter that we find to be revealing when conceptualizing various forms of aversion. In

section 2 we pose two alternative static robustness problems using relative entropy penal-

izations. Both are special cases of the variational preferences axiomatized by Maccheroni

et al. (2006) and Strzalecki (2011). The first underlies the known connection between risk

sensitive and robust control dating back to Jacobson (1973). As we illustrate, this problem

features the potential misspecification of the predictive density familiar from statistics. A

second problem targets a concern about prior misspecification. In section 3, we solve these

two problems using examples and explore some limits. By changing the exposure to an

underlying shock, we distinguish in a sharp way the contributions from the likelihood and

prior to the relative entropy of the joint distribution. We provide a way to scale aversion

parameters so that their impact remains intact even in the limiting economy.

The limits we explore in section 3 are, by design, valuable inputs into the formulation

and calibration of uncertainty preferences in dynamic stochastic environments. For exam-

ple, in section 4 we study the impact of compounding the assessments of risk, ambiguity,

and the potential for misspecification of subjective probabilities in a sequence of simple

recursive learning environments. We also explore a convenient parametrization of smooth

ambiguity specification of Klibanoff et al. (2005), which we know from Hansen and Sar-

gent (2007) sometimes can be motivated by an aversion to prior uncertainty. We use these

calculations to shed light on how to parameterize aversion to ambiguity and model misspec-

ification across alternative dynamic environments, including an environment that emerges

as a continuous-time limit. Finally, in section 5 we propose a more general continuous-time

specification with distinct forms of aversions to alternative uncertainty components. This

provides a counterpart of the discrete-time specifications of Hansen and Sargent (2007),

Hayashi and Miao (2011), and Ju and Miao (2012). Moreover, it provides HJB equations
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that allow a decision maker to confront uncertainty in its various forms.

1 Entropy penalization

Relative entropy is an attractive and tractable measure of discrepancy between probability

measures. We use it to guide our formulation of preferences for a decision maker with an

aversion to model ambiguity and concerns about misspecification. As a precursor to formu-

lating such preferences, we explore the relative entropy relations between priors, likelihoods,

and predictive densities in a static setting.

We start with a prior distribution π for hypothetical parameter values θ over a set Θ

and a likelihood λ that informs us of the density for possible outcomes y ∈ Y given θ (with

respect to a measure τ). Let P denote the implied joint probability measure over Y ×Θ

P(dy, dθ) = λ(y|θ)τ(dy)π(dθ).

The corresponding predictive density for y that integrates over θ is

φ(y) =

∫
Θ

λ(y|θ)π(dθ).

In our analysis it is the predictive density that the decision maker cares about when taking

actions, but he or she has uncertainty about subjective inputs into its construction. We

introduce baseline counterparts with ·̂’s and explore discrepancies relative to these baselines.

The relative entropy discrepancy of the joint distribution for outcomes and parameters

is defined as:

D
(
P | P̂

)
=

∫
Θ

log

[
dπ

dπ̂
(θ)

]
π(dθ)

+

∫
Θ

∫
Y
λ(y|θ) log

[
λ(y|θ)
λ̂(y|θ)

]
τ(dy)π(dθ), (1)

where we presume that P is absolutely continuous with respect to the baseline P̂. This

representation gives us two potential contributions to relative entropy, one coming from

differences in the prior and the other from differences in the likelihood.

There is an equivalent way to represent the same relative entropy in terms of predictive
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densities and posterior distributions where the posterior distribution, π+, is

π+(dθ | y) =
λ(y | θ)
φ (y)

π(dθ)

and π̂+ is defined analogously.

2 Relative entropy and robustness problem

In this section we pose and solve two problems that adjust for robustness. These problems

are the ingredients to preferences that capture a concern for robustness. While both use

relative entropy to constrain the robustness assessment, one does so in a more restricted

way in order to target the robust choice of a prior. The solutions to both are special cases

of the solution to a more general problem that entails exponential tilting toward lower

expected utilities.

Consider the first robust evaluation:

Problem 2.1.

min
P

∫
U(y)dP + κD

(
P | P̂

)
.

In this problem, κ > 0 is a parameter that penalizes the search for robustness in the

likelihood and prior. The κ = ∞ limit enforces a commitment to the baseline specifica-

tions. Since the function U (y) depends only on y and not θ, the solution distorts only the

predictive density

φ∗(y) =
exp

[
− 1
κ
U(y)

]
φ̂(y)∫

Y exp
[
− 1
κ
U(y)

]
φ̂(y)τ(dy)

and not the posterior π+ of θ given y. The resulting minimized objective is

−κ log

∫
Y

exp

[
−1

κ
U(y)

]
φ̂(y)τ(dy).

The exponential tilting towards outcomes y with lower utility is familiar from the exten-

sive literature applying relative entropy penalizations in control and estimation problems.
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In particular, Problem 2.1 has the same solution as

min
φ

∫
Y
U(y)φ(y)τ(dy)

+ κ

∫
Y

[
log φ(y)− log φ̂(y)

]
φ(y)τ(dy).

This latter problem is the static counterpart to the dynamic recursive specification used ex-

tensively in robust control theory. See, for instance, Jacobson (1973), Doyle et al. (1989),

James (1992), Basar and Bernhard (1995), and Petersen et al. (2000). While the con-

struction of the predictive density φ̂ embeds the reference prior π̂, prior sensitivity is only

confronted in an indirect way by Problem 2.1 through potential modifications in the pre-

dictive density.

As an alternative, we target prior robustness by restricting λ = λ̂ and thus omitting

specification concerns about the likelihood. One justification for this is that uncertainty

about how a prior weights alternative likelihoods already gives us a way to capture many

forms of likelihood uncertainty. Let Π denote the set of priors that are absolutely continuous

with respect to π̂ and solve:

Problem 2.2.

min
π∈Π

∫
U(θ)π(dθ) + κ

∫
Θ

log

[
dπ

dπ̂
(θ)

]
π(dθ)

where

U(θ)
.
=

∫
Y
U(y)λ̂(y|θ)τ(dy).

Notice that U is constructed without likelihood uncertainty. In using the formulation to

investigate prior sensitivity, we penalize only the prior contribution to relative entropy.

This formulation follows Hansen and Sargent (2007).

The solution to this problem gives the worst-case prior

π∗(dθ) =
exp

[
− 1
κ
U(θ)

]∫
Θ

exp
[
− 1
κ
U(θ)

]
π̂(dθ)

π̂(dθ),

provided that the right-hand side integral is finite. The optimized objective is

−κ log

∫
Θ

exp

[
−1

κ
U(θ)

]
π̂(dθ). (2)

The solution to this particular problem is recognizable as a smooth ambiguity objective
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and a special case of Klibanoff et al. (2005).1

3 A revealing family of stochastic environments

We study Problems 2.1 and 2.2 for a family of stochastic environments to illustrate the

impacts of the penalization. We design these illustrations to serve as a precursor to for-

mulating continuous-time limits to be used in a dynamic setting. They will provide input

into formulations of HJB equations for continuous-time decision problems.

Consider a parameterized family of log-normal random variables, indexed by ε, and

assume a logarithmic utility function U :

U (Yε) = log Yε, log Yε = y0 + µ (θ) ε− 1

2
|ς|2 ε+ ς · Zε, (3)

where µ is a measurable function of θ and Zε is a normally distributed random vector with

mean 0 and covariance matrix εI.2 We find it convenient to think of ε > 0 as an interval

of time and {Zε : 0 ≤ ε ≤ 1} as a multivariate standard Brownian motion.

Under the φ̂ε predictive density log Yε is distributed as a mixture of a prior distribution

π̂ for θ and a normal distribution with mean

yo + εµ(θ)− ε

2
|ς|2

and variance ε|ς|2. For pedagogical simplicity, we consider the small ε approximation

whereby the distribution for log Yε implied by φ̂ε is normal with mean:

yo + ε

∫
Θ

µ(θ)π̂(dθ)− ε

2
|ς|2

and variance ε|ς|2. The minimized objective in Problem 2.1 is

− κ log

∫
Y

exp

[
−1

κ
U(y)

]
φ̂ε(y)τ(dy)

≈ yo + ε

[∫
Θ

µ(θ)π̂(dθ)−
(

1

2
+

1

2κ

)
|ς|2
]
.

1See Segal (1990) and Davis and Paté-Cornell (1994) for earlier motivations for smooth ambiguity
decison problems.

2We use |·| to denote the Euclidean norm and I to denote an identity matrix.
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Thus, up to the first-order approximation in ε, the decision maker targets concerns about

misspecified likelihoods in contrast to misspecified priors.

Consider now Problem 2.2, where

U ε(θ)
.
=

∫
Y

log(y)λ̂ε(y|θ)τ(dy) (4)

The minimized objective is given by

− κ log

∫
Θ

exp

[
−1

κ
U ε(θ)

]
π̂(dθ)

≈ yo + ε

[∫
Θ

µ (θ) π̂(dθ)− |ς|
2

2

]
,

which is the same as the expected utility level under π̂ up to the first-order approximation

in ε. Thus the robustness adjustment vanishes to the first-order in ε. In contrast, the

risk-aversion adjustment associated with logarithmic utility remains present.

Why is this the case? The probability distribution for Yε becomes concentrated as

ε becomes small conditioned on θ. The same is true of the predictive distributions for

alternative priors. By contrast, the prior divergence contribution to relative entropy does

not depend on ε. This difference in how the prior and likelihoods behave as a function of

ε causes the entropy penalty relative to the utility distortion to converge to infinity as ε

goes to zero. Thus the solution to Problem 2.2 implies no robustness adjustment up to the

first-order approximation.

As an alternative, we alter Problem 2.2 by letting the prior divergence scale in ε so

that the consequence and cost of altering priors have comparable magnitudes up to the

first-order in ε. Thus we allow κ to depend on ε by setting κ(ε) = κdε for some constant

κd > 0 and consider the problem:

Problem 3.1.

min
π∈Π

∫
Θ

U ε(θ)π(dθ) + εκd

∫
Θ

log

[
dπ

dπ̂
(θ)

]
π(dθ).

The minimized objective is now given by

−εκd log

∫
Θ

exp

[
− 1

εκd
U ε(θ)

]
π̂(dθ).
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Plugging (4) into this expression yields

y0 + ε

{
−κd log

∫
Θ

exp

[
− 1

κd
µ(θ)

]
π̂(dθ)

}
− ε

2
|ς|2.

We may interpret the term in {·} as certainty equivalent of µ (θ) adjusted for robustness.

By Jensen’s Inequality, it is lower than the Bayesian mean of µ(θ) under the baseline prior.

Thus the robust prior adjustment incurs a utility cost in terms of the local mean.

The worst-case prior is given by

π∗ε (dθ) =
exp

[
− 1
εκd
U ε(θ)

]
π̂(dθ)∫

Θ
exp

[
− 1
εκd
U ε(θ)

]
π̂(dθ)

→
exp

[
− 1
κd
µ (θ)

]
π̂(dθ)∫

Θ
exp

[
− 1
κd
µ (θ)

]
π̂(dθ)

,

as ε → 0. Therefore, by reducing the penalization proportionally to ε, the exponential

tilting applies to the first derivative of the objective function U with respect to ε. In so

doing, we are left applying a particular smooth ambiguity adjustment to the local mean of

U (Y ) conditioned on θ. The worst-case prior puts more weight on the lower values of the

mean µ (θ).

We see little motivation for holding fixed the robustness penalization as we change ε.

Quite the contrary, we see a good reason for altering it as suggested in our simple scaling

adjustment. This scaling lends itself the study of prior robustness within a continuous-time

setting for decision problems.

The same issue emerges with other approaches to ambiguity as in the smooth ambiguity

model of Klibanoff et al. (2005). With that perspective, we view − 1
κ(ε)

as an exponential

adjustment for ambiguity aversion capturing a differential preference response for exposure

to ambiguity induced by a prior over θ, in contrast to risk conditioned on the parameter

θ. By holding κ(ε) fixed independent of ε, we reproduce Skiadas (2013). By instead

using κ(ε) = εκd, we obtain a limiting smooth ambiguity adjustment with a hyperbolic

parameterization of ambiguity aversion.
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4 Recursive risk and smooth ambiguity aversion

We now explore consequences of compounding risk, ambiguity and misspecification aversion

over time. We continue to find the environment in section 3 captured by (3) to be revealing

from a pedagogical standpoint, allowing us to draw on some of our previous insights. The

calculations in this section illustrate how risk compounds in rather different ways than

uncertainty about priors over parameters. The resulting differences are pertinent to how

we conceive of ambiguity and misspecification aversion in dynamic environments in general,

and in continuous-time limit environments in particular.3 Given that there are known ways

for ambiguity and misspecification aversion to have an impact on preferences in discrete

time, we find it most appealing to adopt parameterizations with more meaningful and

revealing continuous-time limits.

In what follows, partition the interval [0, 1] into subintervals of length 1/n, and let

ε = 1/n. Let F εjε be the sigma algebra generated by θ and {Y0, Y1ε, Y2ε, ..., Yjε} for j =

0, 1, 2, .., n− 1.

4.1 Risk aversion

We first consider a recursive construction of risk aversion over subintervals. Introduce a

certainty equivalent operator applied to a positive random variable X that is F εt+ε measur-

able,

Rε,t(X) =
(
E
[
X1−γ | F εt

]) 1
1−γ ,

where t = jε and γ > 0 represents the risk aversion parameter. Note that

logRε,t (Yt+ε) = log Yt + ε
[
µ(θ)− γ

2
|ς|2
]
.

for ε > 0. The risk adjustment εγ|ς|2/2 scales with ε.

Introduce a recursive construction for the certainty equivalent of the terminal consump-

tion Y1,

Ut = Rε,t (Ut+ε) , U1 = Y1, (5)

3The calculations build in part on prior work by Hansen and Sargent (2011), who first discuss produc-
tive ways for robustness concerns to persist in a continuous-time limiting specification. Our analysis here
addresses these issues more generally and forges connections to a broader collection of previous contribu-
tions.
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for t = 0, ε, ..., (n− 1) ε. We show that

U0 = R1,0 (Y1) = Y0 exp
[
µ(θ)− γ

2
|ς|2
]
,

for any value of ε. Notice that in the recursive construction on the right-hand side of (5), we

use the same risk aversion coefficient γ in the certainty equivalent operator for any ε. This

simple example shows why the common practice of holding γ fixed across environments (in

our case indexed by ε) can be sensible, even as we shrink the exposure to risk by looking

at small time intervals, due to the law of iterated expectations.

4.2 Parameter learning

Prior to investigating a recursive specification of smooth ambiguity, we remind readers of

Bayesian updating within this setting. Analogous to our previous discussion, we let Gεjε be

the sigma algebra generated by {Y0, Y1ε, Y2ε..., Yjε} for j = 0, 1, 2, .., n−1, but we exclude the

random parameter θ from the construction. The resulting family {Gεjε : j = 0, 1, 2, ..., n− 1}
captures the reduced information structure for a decision maker that does not know the

parameter realization. For simplicity let µ (θ) = θ.

Suppose that the date-zero prior for θ is normal with mean m0 and variance q0. Only

data on Y are used to make inferences about θ. The posterior conditioned on Gεt is normal

with mean mt and variance qt. The Bayesian recursive updating for mt+ε is

mt+ε −mt =

qt
|ς|2 + εqt

(
log Yt+ε − log Yt − εmt +

ε

2
|ς|2
)
, (6)

and the conditional variance update is

qt+ε − qt =
ε(qt)

2

|ς|2 + εqt
. (7)

Both equations have well-known continuous-time limits. The limiting version of equation

(6) for the conditional mean is

dmt =
qt
|ς|2

(
d log Yt −mtdt+

|ς|2

2
dt

)
,
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and the limiting version of equation (7) is

dqt
dt

= −(qt)
2

|ς|2
.

4.3 Recursive robust priors

Analogous to (2), define a certainty equivalent robustness adjustment operator

Bε,t(X) = −κ(ε) logE

[
exp

(
− 1

κ(ε)
X

)
| Gεt
]

for a random variable X that is F εt measurable. Here we allow the robustness parameter

κ(ε) > 0 to depend on ε. Motivated by the static model in sections 3 and 4, we define the

recursive adjustment for robust priors for log utility over the terminal consumption Y1,

logBt = Bε,t [E (logBt+ε | F εt )] , B1 = Y1, (8)

for t = 0, ε, ..., (n− 1) ε.

We show in the online Materials and Methods section that

logBt = log Yt + (1− t)mt + bt,

where

bt+ε − bt =
ε2

2κ(ε)
qt

(
(1− t)qt + |ς|2

|ς|2 + εqt

)2

+
ε|ς|2

2
.

From this formula we see that the worst-case prior/posterior for θ has a mean given by

mt −
ε

κ(ε)
qt

(
(1− t)qt + |ς|2

|ς|2 + εqt

)
.

Using the recursive equation (8) and the conjectured form for Bt we obtain

bt+ε − bt =
ε2

2κ(ε)
qt

(
(1− t)qt + |ς|2

|ς|2 + εqt

)2

+
ε|ς|2

2
.

If the robustness parameter κ(ε) is held constant independent of ε, then robustness vanishes

in the continuous-time limit as ε→ 0. By contrast, we let κ(ε) = κdε as in Problem 3.1 so

that penalization used in making robust prior/posterior adjustments scales with ε. Take
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small ε limits and find

dbt
dt

=
1

2κd
qt

(
(1− t)qt + |ς|2

|ς|2

)2

+
|ς|2

2
.

The first term on the right-hand side is the recursive robustness adjustment that remains

present in a continuous-time limit because of how we scale the robustness penalty as a

function of ε.

4.4 Risk aversion and smooth ambiguity

We next explore “smooth ambiguity adjustments” in Klibanoff et al. (2005) over different

time intervals including ones that are arbitrarily small. For X that is F εt measurable, define

a certainty equivalent operator

Aε,t(X) =
[
E
(
X−α(ε)|Gεt

)]− 1
α(ε) ,

where α(ε) > 0 may depend on ε and captures aversion to the uncertainty about the

unknown parameter θ.

We now investigate how recursive smooth ambiguity behaves as a function of ε. Define

smooth ambiguity adjustments recursively for utility over the terminal consumption Y1,

At = Aε,t [Rε,t (At+ε)] , A1 = Y1. (9)

In the online Materials and Methods section, we show that

logAt = log Yt + (1− t)mt + at

where

at+ε − at =

1

2

(
|ς|2 + (1− t)qt
|ς|2 + εqt

)2 [
ε(γ − 1)|ς|2 + α(ε)ε2qt

]
+
ε|ς|2

2

and a1 = 0.
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Consistent with our earlier discussion of smooth ambiguity over small time intervals,

by letting α(ε) be the same for all ε > 0, smooth ambiguity contributes only a second-

order adjustment.4 In contrast, by adopting a hyperbolic parameterization: α(ε) = αh
ε

the

smooth ambiguity contribution becomes first-order and does not vanish in a continuous-

time limit. With this specification, the continuous-time limiting equation becomes

dat
dt

=
1

2

(
|ς|2 + (1− t)qt

|ς|2

)2 [
αhqt + (γ − 1)|ς|2

]
+
|ς|2

2
.

It matches our robust prior recursion At = Bt by setting γ = 1 and αh = 1
κd

. Thus

the power-power specification of smooth ambiguity adjustments is related to robust prior

adjustments through a log transformation.

In obtaining the limiting recursion, we held the risk aversion parameter the same over

environments indexed by ε while we scaled the ambiguity aversion or robustness parameter

with ε. While there is no perfect way to transform ambiguity aversion parameters across

environments with different discrete-time increments, the embedding we suggest has the

virtue of possessing a tractable continuous-time limit. While we may think that setting

α(ε) = αh
ε

amounts to imposing “infinite” ambiguity aversion in the continuous-time limit,

this is misguided in our view. Notice that in the continuous-time limit αh scales the variance

associated with estimation. As an analogy to our scaling, let 0 < β < 1 denote the discount

factor over a unit of time. Then we think of β
1
n as the discount factor over an interval 1

n

which in the large n limit implies a unit discount factor in the limit. But in fact the rate

− log β continues to play a role of discounting in the continuos-time limit.

5 Implications for stochastic control

Let (Ω,F ,P) be a probability space and time is continuous over [0, T ]. Let {Yt : t ≥ 0} be

an observable stochastic process and θ an unknown parameter. Let {Ft} be the filtration

generated by current and past Yt and θ and {Gt} the filtration generated by current and

past Yt only. The decision maker’s continuation value process (Vt) is adapted to {Gt} and

4Researchers Maccheroni et al. (2013) have a revealing but different type of limiting characterization of
risk aversion and smooth ambiguity in a static environment with small changes in the uncertainty exposure
from a given baseline specification.
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satisfies a backward stochastic differential equation:

dVt = Vtνt(θ)dt+ Vtςt · dWt, VT given,

where {Wt : t ≥ 0} is a standard Brownian motion relative to (Ω,F , {Ft} ,P) . The con-

tinuation value process will be used to give recursive construction of the decision-maker’s

preference over consumption processes. We will derive a HJB equation for the {Vt} to in-

corporate risk aversion, smooth ambiguity aversion and/or prior misspecification aversion.

We find it most convenient to use the logarithm of the continuation value vt = log Vt,

which with an application of Ito’s Lemma satisfies

dvt = νt(θ)dt−
1

2
|ςt|2dt+ ςt · dWt.

This evolution captures the familiar lognormal adjustment.

Motivated by the analysis in sections 3 through 5, we define risk and an ambiguity

adjustment operators:

R∗ε,t (vt+ε) =
1

1− γ
logE (exp [(1− γ) vt+ε] |Ft) ,

A∗ε,t (wε,t) = − ε

αh
logE

[
exp

(
−αh
ε
wε,t

)
|Gt
]
,

where wε,t is Ft measurable. In what follows, let

v∗ε,t = A∗ε,t ◦ R∗ε,t (vt+ε)

and V ∗ε,t = exp
(
v∗ε,t
)
.

We consider a preference specification that includes intermediate consumption and sub-

jective discounting. Suppose that Vt satisfies the commonly used and convenient recursion:

Vt =
(

[1− exp(−δε)] (Ct)
1−ρ + exp(−δε)

(
V ∗ε,t
)1−ρ

) 1
1−ρ

,

where δ > 0 is the subjective discount rate, {Ct : t ≥ 0} is a consumption process adapted

to {Gt : t ≥ 0}, and 1
ρ

is an intertemporal elasticity of substitution. Using the homogeneity
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property of this recursion and taking logarithms, write

0 =
1

1− ρ
log

[
[1− exp(−δε)]

(
Ct
Vt

)1−ρ

+ exp(−δε)
(
V ∗ε,t
Vt

)1−ρ
]
. (10)

We derive (heuristically) the limit of the right-hand side of the equal sign of (10). This

will characterize a restriction on local evolution of the continuation value process. Notice

that

R∗ε,t (vt+ε − vt) = R∗ε,t (vt+ε)− vt,

A∗ε,t (wε,t − vt) = A∗ε,t (wε,t)− vt,

where vt is Gt measurable. Extending our previous calculations, we first study the local

risk adjustment, R∗ε,t (vt+ε − vt):

lim
ε↓0

1

ε

(
1

1− γ

)
logE (exp [(1− γ) (vt+ε − vt)] |Ft)

= νt(θ)−
γ

2
|ςt|2.

Let wε,t = R∗ε,t (vt+ε) and w0,t = vt, and compute

lim
ε↓0

1

ε
A∗ε,t (wε,t − vt)

= − 1

αh
logE (exp [−αhνt(θ)] |Gt)−

γ

2
|ςt|2.

With these intermediate calculations, we construct the local counterpart to (10) by dividing

both sides of the equation by ε and taking small ε limits resulting in

0 =
δ

1− ρ

[(
Ct
Vt

)1−ρ

− 1

]
− 1

αh
logE (exp [−αhνt(θ)] |Gt)−

γ

2
|ςt|2. (11)

The first term on the right-hand side comes from discounting, intermediate consumption
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and intertemporal substitution. The second term captures uncertainty to the drift induced

by the unknown parameter vector θ. We motivate this either as a robust prior/posterior

adjustment or as an an aversion to “smooth ambiguity” in the unknown drift. The third

term captures the local risk adjustment coming from exposure to the underlying Brownian

motion.

Using this limiting recursion for a HJB equation requires that we use a value function

and its derivatives to deduce formulas for νt(θ) and ςt as functions of the relevant Markov

state vector.

We conclude with four connections to related literature in control theory and economics.

Remark 5.1. Recursion (11) provides a continuous-time analog to discrete time recursions

in Hayashi and Miao (2011) and Ju and Miao (2012). Moreover, it shows how to incorpo-

rate ambiguity aversion into the continuous-time specifications of Duffie and Epstein (1992)

and Duffie and Lions (1992).

Remark 5.2. The ambiguity adjustment:

− 1

αh
logE (exp [−αhνt(θ)] |Gt) (12)

for the drift is a smooth counterpart to a continuous-time ambiguity adjustment with period-

by-period constraints when the random set: Ht = {νt(θ) : θ ∈ Θ} is a compact subset of a

Euclidean space with probability one. As αh becomes arbitrarily large, the smooth ambiguity

adjustment converges to the minimum over Ht. The result is a continuation value recursion

of the form considered by Chen and Epstein (2002).

More generally, E (exp [−αhνt(θ)] |Gt) is the moment generating function for νt when

viewed as a function of θ conditioned on Gt. In general, a moment generating function

is not guaranteed to be finite for all αh. Even when the moment generating function is

finite for small αh, there may only be a compact interval of αh’s for which the function

remains finite. The existence of a finite upper bound for αh has a recognizable connection

to breakdown points in dynamic control theory.

Remark 5.3. Recursive equation (11) also gives the continuous-time counterpart to a

discrete-time recursions in Hansen and Sargent (2007) that captures two forms of robust-

ness. These researchers also note the potentially stark asymmetry between how likelihood

and priors contribute to overall entropy and propose separate penalizations. As we discussed

previously, smooth ambiguity adjustment (12) has a dual interpretation as the outcome of

prior/posterior uncertainty adjustment.
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For the likelihood adjustment, there is a well known link between risk sensitivity and

robustness dating back to Jacobson (1973).5 Capture the likelihood uncertainty by repre-

senting dWt = htdt + dW h
t under a change of probability measure for which dW h

t is a

Brownian increment and ht is a local drift distortion. This adjustment alters the implied

value function νt by ςt · ht. Minimizing the local evolution of the value function by the

choice of ht subject to a penalization,
κf
2
|ht|2, illustrates a link between robustness and risk

sensitivity that is familiar in the control literature.

Remark 5.4. To construct the filtration {Gt : t ≥ 0} in practice and use it for solving a

control problem we must produce a recursive solution for a filtering or estimation problem.

While we posed the analysis as one for which θ is an unknown parameter, in fact this

parameter could be an actual process designed to capture time variation in some underlying

parameters. The sigma algebra Gt could condition on the entire process or just the process

up to time t. Examples of recursive constructions include Zakai equations, Kalman filtering

or Wohham filtering depending on the application.

6 Supplemental material

6.1 Problem 2.1

As noted in section 1, there is an equivalent way to represent the relative entropy (1) in

terms of posteriors and predictive densities:

D
(
P | P̂

)
=

∫
Y

∫
Θ

log

[
dπ+

dπ̂+
(θ | y)

]
π+(dθ | y)φ(y)τ(dy)

+

∫
Y

log

[
φ(y)

φ̂(y)

]
φ(y)τ(dy).

Provided that priors π and π̂ are absolutely continuous, the same can be said of posteriors.

Since the objective of Problem 2.1 can be expressed in terms of the predictive density, it

follows from this entropy decomposition that minimization will distort only this density

and not the posterior distribution.

5For a continuous-time analysis see, for instance, James (1992).
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6.2 Section 4 derivations

In section 4 we asserted that

logBt = log Yt + (1− t)mt + bt,

where

bt+ε − bt =
ε2

2κ(ε)
qt

(
(1− t)qt + |ς|2

|ς|2 + εqt

)2

+
ε|ς|2

2

and where b1 = 0. To derive this recursive formula, note that

E (logBt+ε | F εt ) = log Yt + (1− t)mt

+ ε

[
(1− t)qt + |ς|2

|ς|2 + εqt

]
(θ −mt) + bt+ε −

ε|ς|2

2
.

Now apply

Bε,t [E (logBt+ε | F εt )] = log Yt + (1− t)mt

+ bt+ε −
ε|ς|2

2
− ε2

2κ(ε)
qt

(
(1− t)qt + |ς|2

|ς|2 + εqt

)2

.

The recursion follows from our formula for logBt.

In section 4 we also claimed that

logAt = log Yt + (1− t)mt + at

where

at+ε − at =

1

2

(
|ς|2 + (1− t)qt
|ς|2 + εqt

)2 [
ε(γ − 1)|ς|2 + α(ε)ε2qt

]
+
ε|ς|2

2
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and a1 = 0. To deduce this recursion, we first compute

logRε,t (At+ε) =
1

1− γ
logE

[
(At+ε)

1−γ |F εt
]

= log Yt + (1− t)mt

+ε

[
|ς|2 + (1− t)qt
|ς|2 + εqt

]
(θ −mt)

+
ε(1− γ)

2

(
|ς|2 + (1− t)qt
|ς|2 + εqt

)2

|ς|2

+at+ε −
ε|ς|2

2
.

Applying the operator Aε,t and the recursive equation (9), the recursion follows.

The authors thank Michael Barnett, William Brock, Peter Hansen, Massimo Marinacci, and

Grace Tsiang for helpful comments and the Alfred P. Sloan Foundation for the support.
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