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Abstract

A dynamic extension of max-min preferences allows a decision maker to consider

both a parametric family of what we call structured models and unstructured alterna-

tives that are statistically close to them. The decision maker suspects that parameter

values vary over time in unknown ways that he cannot describe probabilistically. Be-

cause he suspects that all of these parametric models are misspecified, he evaluates

decisions under alternative probability distributions with much less structure. We

characterize equilibrium uncertainty prices by confronting a representative investor

with a portfolio choice problem. We offer a quantitative illustration that focuses on

the investor’s uncertainty about the size and persistence of macroeconomic growth

rates. Nonlinearities in marginal valuations induce time variations in market prices

of uncertainty. Prices of uncertainty fluctuate because a representative investor es-

pecially fears high persistence in bad states and low persistence in good ones.
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In what circumstances is a minimax solution reasonable? I suggest that it is

reasonable if and only if the least favorable initial distribution is reasonable

according to your body of beliefs. Good (1952)

1 Introduction

Applied dynamic economic models today typically rely on the rational expectations as-

sumption that agents inside a model and nature share the same probability distribution.

This paper instead assumes that agents are uncertain about their model. They may not

know values of parameters governing the evolution of pertinent state variables; they may

suspect that these parameters vary over time; they may doubt parametric models. We

put agents into what they view as a complicated setting in which learning is very difficult

and in which valuations and outcomes are sensitive to their subjective beliefs. We draw

ideas extensively from literatures on statistical decision theory, robust control theory, and

the econometrics of misspecified models to build a tractable model of how decision makers’

specification doubts affect equilibrium prices and quantities.

To illustrate our approach, we use a consumption-based asset pricing model as a lab-

oratory for studying how decision makers’ specification worries influence “prices of uncer-

tainty.” These prices emerge from how decision makers evaluate utility consequences of

alternative specifications of state dynamics. We show how these concerns induce variations

in asset values and construct a quantitative example that assigns an important role to

uncertainty about macroeconomic growth rates. Investors in our model fear growth rate

persistence in times of weak growth, but they fear the absence of persistence when macroe-

conomic growth is high because these have especially adverse consequences for discounted

expected utilities.

We propose methods to simplify evaluation and decision making in the face of these

specification challenges. We accomplish this by blending ideas from two distinct approaches.

We start by assuming that a decision maker considers a parametric family of structured

models (with either fixed or time varying parameters) that we represent in terms of a re-

cursive structure suggested by Chen and Epstein (2002) for continuous time models with

Brownian motion information flows. Because our decision maker distrusts all of his struc-

tured models, he adds unstructured models that reside within a statistical neighborhood of

them.1 Because Chen and Epstein’s framework is too confining to include concerns about

1By “structured” we don’t mean what econometricians in the tradition of either the Cowles commission
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such unstructured statistical models, we extend work by Hansen and Sargent (2001) and

Hansen et al. (2006) that described a decision maker who expresses distrust of a probabil-

ity model by surrounding it with an infinite dimensional family of difficult-to-discriminate

unstructured models. A Hansen and Sargent decision maker represents alternative models

by multiplying baseline probabilities with likelihood ratios whose entropies relative to the

baseline model are forced to be small via a penalty parameter. Formally, we accomplish

this extension by applying a continuous-time counterpart of the dynamic variational pref-

erences of Maccheroni et al. (2006b). In particular, we generalize what Hansen and Sargent

(2001) and Maccheroni et al. (2006a,b) call multiplier preferences.2

We illustrate our approach by applying it to an environment that includes macroe-

conomic growth-rate uncertainty. A representative investor who stands for “the market”

has specification doubts. We calculate shadow prices that characterize aspects of model

specifications that most concern a representative investor. These shadow prices are also

uncertainty prices that clear competitive security markets. Multiplying an endogenously

determined vector of worst-case drift distortions by minus one gives a vector of prices that

compensate the representative investor for bearing model uncertainty.3 Time variation in

uncertainty prices emerges endogenously since the representative investor’s concerns about

the persistence of macroeconomic growth rates depend on the state of the macroeconomy.

Viewed as a contribution to the consumption-based asset pricing literature, this paper

extends earlier inquiries about whether responses to modest amounts of model ambiguity

can substitute for the implausibly large risk aversions that are required to explain observed

market prices of risk. Viewed as a contribution to the economic literature on robust con-

trol theory and ambiguity, this paper introduces a tractable new way of formulating and

quantifying a set of models against which a decision maker seeks robust evaluations and

decisions.

Section 2 specifies an investor’s baseline probability model and martingale perturbations

to it, both cast in continuous time for analytical convenience. Section 3 describes discounted

relative entropy, a statistical measure of discrepancy between martingales, and uses it to

construct a convex set of probability measures that we impute to our decision maker. This

martingale representation proves to be a tractable way for us to formulate robust decision

or rational expectations call “structural” models. We simply mean more or less tightly parameterized
statistical models.

2Applications of multiplier preferences to macroeconomic policy design and dynamic incentive problems
include Karantounias (2013), Bhandari (2014), and Miao and Rivera (2016).

3This object also played a central role in the analysis of Hansen and Sargent (2010).
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problems in sections 4, 5 and 8.

Section 6 describes and compares two statistical distance measures applicable to a set

of martingales, relative entropy and Chernoff entropy. We show how to use these measure

1) in the spirit of Good (1952), ex post to assess plausibility of worst-case models, and

2) to calibrate the penalization used to represent variational preferences. By extending

estimates from Hansen et al. (2008), section 7 calculates key objects in a quantitative

version of a baseline model together with worst-case probabilities associated with a convex

set of alternative models that concern both a robust investor and a robust planner. Section

8 constructs a recursive representation of a competitive equilibrium of an economy with

a representative investor. Then it links the worst-case model that emerges from a robust

planning problem to equilibrium compensations that the representative investor receives in

competitive markets. Section 9 tells why it is impossible for our decision maker to learn

his way out of the types of model ambiguity with which we present him. It also briefly

takes up a dynamic consistency issue present in the problem. Section 10 indicates why a

procedure for construcing sets of models recommended by Epstein and Schneider (2003)

does not work in our setting. Section 11 offers concluding remarks.

2 Models and perturbations

This section describes nonnegative martingales that alter a baseline probability model.

Section 3 then describes how we use a family of parametric alternatives to a baseline model

to form a convex set of martingales representing unstructured models that in later sections

we use to pose robust decision problems.

2.1 Mathematical framework

For concreteness, we use a specific baseline model and in section 3 a corresponding family

of parametric alternatives that we call structured models. A representative investor cares

about a stochastic process X
.
“ tXt : t ě 0u that he approximates with a baseline model4

dXt “ pµpXtqdt` σpXtqdWt, (1)

4We let X denote a stochastic process, Xt the process at time t, and x a realized value of the process.
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where W is a multivariate Brownian motion.5

A decision maker cares about plans. A plan is a tCt : t ě 0u that is a progressively mea-

surable process with respect to the filtration F “ tFt : t ě 0u associated with the Brownian

motion W augmented by information available at date zero. The date t component Ct is

measurable with respect to Ft.
Because he does not fully trust baseline model (1), the decision maker explores util-

ity consequences of other probability models that he obtains by multiplying probabilities

associated with (1) by likelihood ratios. Following Hansen et al. (2006), we represent a

likelihood ratio by a positive martingale MU with respect to the baseline model (1) that

satisfies6

dMU
t “MU

t Ut ¨ dWt (2)

or

d logMU
t “ Ut ¨ dWt ´

1

2
|Ut|

2dt, (3)

where U is progressively measurable with respect to the filtration F . We adopt the conven-

tion that MU
t is zero when

şt

0
|Uτ |

2dτ is infinite, which happens with positive probability.

In the event that
ż t

0

|Uτ |
2dτ ă 8 (4)

with probability one, the stochastic integral
şt

0
Uτ ¨ dWτ is an appropriate probability limit.

Imposing the initial condition MU
0 “ 1, we express the solution of stochastic differential

equation (2) as the stochastic exponential

MU
t “ exp

ˆ
ż t

0

Uτ ¨ dWτ ´
1

2

ż t

0

|Uτ |
2dτ

˙

. (5)

As specified so far, MU
t is a local martingale, but not necessarily a martingale.7

Definition 2.1. M denotes the set of all martingales MU constructed as stochastic expo-

nentials via representation (5) with a U that satisfies (4) and is progressively measurable

with respect to F “ tFt : t ě 0u.

5Applications typically use Markov specifications, but a Markov formulation is not essential. It could be
generalized to allow other stochastic processes that can be constructed as functions of a Brownian motion
information structure.

6James (1992), Chen and Epstein (2002), and Hansen et al. (2006) used this representation.
7It is not convenient here to impose sufficient conditions for the stochastic exponential to be a martingale

like Kazamaki’s or Novikov’s. Instead we will verify that an extremum of a pertinent optimization problem
does indeed result in a martingale.
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Associated with U are probabilities defined by

EU
rBt|F0s “ E

“

MU
t Bt|F0

‰

for any t ě 0 and any bounded Ft-measurable random variable Bt, so the positive random

variable MU
t acts as a Radon-Nikodym derivative for the date t conditional expectation

operator EU r ¨ |X0s. The martingale property of the process MU ensures that conditional

expectations operators satisfy a Law of Iterated Expectations.

Under baseline model (1), W is a standard Brownian motion, but under the alternative

U model, it has increments

dWt “ Utdt` dW
U
t , (6)

where WU is now a standard Brownian motion. Furthermore, under the MU probabil-

ity measure,
şt

0
|Uτ |

2dτ is finite with probability one for each t. While (3) expresses the

evolution of logMU in terms of increment dW , the evolution in terms of dWU is:

d logMU
t “ Ut ¨ dW

U
t ´

1

2
|Ut|

2dt. (7)

In light of (7), we can write model (1) as:

dXt “ pµpXtqdt` σpXtq ¨ Utdt` σpXtqdW
U
t .

3 Measuring statistical discrepancies

We use entropy relative to the baseline probability to restrict martingales that represent

alternative probabilities. The process MU logMU evolves as an Ito process with date t drift

(also called a local mean) 1
2
MU

t |Ut|
2. Write the conditional mean of MU logMU in terms

of a history of local means8

E
“

MU
t logMU

t |F0

‰

“
1

2
E

ˆ
ż t

0

MU
τ |Uτ |

2dτ |F0

˙

.

To formulate a decision problem that chooses probabilities to minimize expected utility, we

will use this representation without imposing that MU is a martingale and then verify that

8There exists a variety of sufficient conditions that justify this equality.
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the solution is indeed a martingale. Hansen et al. (2006) justify this approach.9

To construct entropy relative to a probability specification affiliated with a martingale

MS defined by a drift distortion process S that is measurable with respect to F , rather than

a log likelihood ratio logMU
t with respect to the baseline model, we use a log likelihood

ratio logMU
t ´ logMS

t with respect to the MS
t model to arrive at:

E
“

MU
t

`

logMU
t ´ logMS

t

˘

|F0

‰

“
1

2
E

ˆ
ż t

0

MU
τ |Uτ ´ Sτ |

2dτ
ˇ

ˇ

ˇ
F0

˙

.

When the following limits exist, a notion of relative entropy appropriate for stochastic

processes is:

lim
tÑ8

1

t
E
”

MU
t

`

logMU
t ´ logMS

t

˘

ˇ

ˇ

ˇ
F0

ı

“ lim
tÑ8

1

2t
E

ˆ
ż t

0

MU
τ |Uτ ´ Sτ |

2dτ
ˇ

ˇ

ˇ
F0

˙

“ lim
δÓ0

δ

2
E

ˆ
ż 8

0

expp´δτqMU
τ |Uτ ´ Sτ |

2dτ
ˇ

ˇ

ˇ
F0

˙

.

The second line is the limit of Abel integral averages, where scaling by δ makes the weights

δ expp´δτq integrate to one. Rather than using undiscounted relative entropy, we shall use

Abel averages with a discount rate equaling the subjective rate that discounts expected

utility flows. With that in mind, we define a discrepancy between two martingales MU and

MS as:

∆
`

MU ;MS
|F0

˘

“
δ

2

ż 8

0

expp´δtqE
´

MU
t | Ut ´ St |

2
ˇ

ˇ

ˇ
F0

¯

dt.

Hansen and Sargent (2001) and Hansen et al. (2006) set St ” 0 to construct discounted

relative entropy neighborhoods of a baseline model:

∆pMU ; 1|F0q “
δ

2

ż 8

0

expp´δtqE
´

MU
t |Ut|

2
ˇ

ˇ

ˇ
F0

¯

dt ě 0, (8)

where baseline probabilities are represented here by a degenerate St ” 0 drift distortion

affiliated with a martingale that is identically one. Formula (8) quantifies how a martingale

MU distorts baseline model probabilities.

Hansen and Sargent (2001) and Hansen et al. (2006) start from a unique baseline model.

Instead, we start from a convex set MS PMo of structured models that we represent by

9See their Claims 6.1 and 6.2.
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martingales with respect to one such baseline model. We describe how to form Mo in

subsection 3.1. Structured models Mo are parametric alternatives to the baseline model

that particularly concern the decision maker. For scalar θ ą 0, define a scaled discrepancy

of martingale MU from a set of martingales Mo as

ΘpMU
|F0q “ θ inf

MSPMo
∆
`

MU ;MS
|F0

˘

. (9)

Scaled discrepancy ΘpMU |F0q equals zero for MU in Mo and is positive for MU not in

Mo. We use discrepancy ΘpMU |F0q to define a set of unstructured models near Mo for

which a decision maker wants to investigate utility consequences. The scaling parameter θ

measures how heavily an expected utility maxmizing decision maker penalizes an expected

utility minimizing agent for distorting probabilities relative to models in Mo.

3.1 A family Mo of structured models

We construct a family of structured probabilities by forming a set of martingales MS with

respect to a baseline probability associated with model (1). Formally,

Mo
“
 

MS
PM such that St P Ξt for all t ě 0

(

(10)

where Ξ is a process of convex sets adapted to the filtration F . Chen and Epstein (2002) also

used an instant-by-instant constraint like (10) to construct a set of probability models.10

When the setMo of probabilities comprises part of the preferences of a max-min decision

maker, restriction (10) imposes a recursive structure on those preferences that justifies using

dynamic programming. That is a consequence of the fact that these preferences satisfy a

dynamic consistency property axiomatized by Epstein and Schneider (2003). Example 3.1

provides a specifications of Ξ in (10) that encompasses the application with uncertainty

about macroeconomic growth rates to be featured in section 5. In section 9, we revisit

restriction (10) and discuss its implications for applications not explored in this paper. It

is important to note here that in contrast to Chen and Epstein (2002), we use constraint (10)

only as an intermediate step in constructing a larger set of statistically similar unstructured

models whose utility consequences the decision maker wants to know.

10Anderson et al. (1998) also explored consequences of a constraint like (10) but without the state
dependence in Ξ. Allowing for state dependence is important in the applications featured in this paper.
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Example 3.1. Suppose that Sjt is a time invariant function of the Markov state Xt for

each j “ 1, . . . , n. Linear combinations of Sjt ’s generate the following set of time-invariant

parameter models:

#

MS
PM : St “

n
ÿ

j“1

πjSjt , π P Π for all t ě 0

+

. (11)

The unknown parameter vector is π “
”

π1 π2 ... πn
ı1

P Π, a closed convex subset of Rn.

We can include time-varying parameter models in Mo by changing (11) to:

#

MS
PM : St “

n
ÿ

j“1

rπjtS
j
t , rπt P Π for all t ě 0

+

, (12)

where the time-varying parameter vector π̃t “
”

rπ1
t rπ2

t ... rπnt

ı1

has realizations confined to

Π, the same convex subset of Rn that appears in (11). The decision maker has an incentive

to compute the mathematical expectation of rπt conditional on date t information, which we

denote πt. Since realizations of rπt are restricted to be in Π, conditional expectations πt of

π̃t also belong to Π, so what now plays the role of Ξ in (10) becomes

Ξt “

#

St “
n
ÿ

j“1

πjtS
j
t , πt P Π, πt is Ft measurable

+

. (13)

As the quantitative example in section 7 demonstrates, even when structured models

are linear in a Markov state, max-min expressions of ambiguity aversion can deliver worst-

case models with nonlinearities. An ex post assessment of empirical plausibility of the type

envisioned by Good (1952) would ask whether such nonlinearities are plausible.

In section 4.2.2 we describe another construction of Ξt that is motivated in part by

using relative entropy to restrict alternative models that concern the decision maker. In

our application, we use the section 4.2.2 way of constructing Ξ to guide how we choose the

set Π of potential parameter values.

3.1.1 Comparison to earlier formulations

Especially in applications to asset pricing, it is useful to compare the role of the baseline

model here with its role in the robust decision model formulated by Hansen and Sargent

(2001) and Hansen et al. (2006). For example, in Barillas et al. (2009), who build on
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the two papers just mentioned, the baseline model is both (a) a unique structured model,

the distrust of which motivates a decision maker to compute worst-case models to guide

evaluations and decisions; and (b) the probability model under which we as outside analysts

quantitatively evaluate prices of uncertainty. While the baseline model continues to play

role (b) in this paper, it now plays a substantially modified version of role (a). The baseline

model is now just one of a set of structured models that the decision maker entertains, albeit

a pivotal one that anchors specifications of the remaining members of the set. The decision

maker distrusts all models in the set of structured models constructed as we have described.

3.2 Misspecification of structured models

Unlike a decision maker of Epstein and Schneider (2003), our decision maker wants to

evaluate the utility consequences not just of the structured models in Mo but also of

unstructured models that statistically are difficult to distinguish from them. For that

purpose, he employs the scaled statistical discrepancy measure ΘpMU |F0q defined in (9).11

The decision maker uses the scaling parameter θ ă 8 and the relative entropy that it

implies to calibrate a set of nearby unstructured models. We pose a minimization problem

in which θ serves as a penalty parameter that precludes exploring utility consequences of

unstructured probabilities that statistically deviate too much from the structured models.

This minimization problem induces a preference ordering within a broader class of dynamic

variational preferences that Maccheroni et al. (2006b) showed are dynamically consistent.

To understand how our formulation relates to dynamic variational preferences, notice

how structured models represented in terms of their drift distortion processes St appear

separately on the right side of the statistical discrepancy measure

∆
`

MU ;MS
|F0

˘

“
δ

2

ż 8

0

expp´δtqE
´

MU
t | Ut ´ St |

2
ˇ

ˇ

ˇ
F0

¯

dt.

Specification (9) leads to a conditional discrepancy

ξtpUtq “ inf
StPΞt

|Ut ´ St|
2

11Watson and Holmes (2016) and Hansen and Marinacci (2016) discuss misspecification challenges con-
fronted by statisticians and economists.
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and an associated scaled integrated discounted discrepancy

Θ
`

MU
|F0

˘

“
θδ

2

ż 8

0

expp´δtqE
”

MU
t ξtpUtq

ˇ

ˇ

ˇ
F0

ı

dt. (14)

Our decision maker cares also about the utility consequences of statistically close unstruc-

tured models that he describes in terms of the discrepancy measure Θ
`

MU |F0

˘

. For any

hypothetical state- and date-contingent plan – a consumption plan in the example of sec-

tion 5 – our decision maker follows Hansen and Sargent (2001) by minimizing a discounted

expected utility function plus a θ-scaled relative entropy penalty ΘpMU |F0q over the set of

models.

4 Recursive Representation of Preferences

A decision maker uses scalar continuation value stochastic processes to rank alternative

consumption plans. Date t continuation values tell a decision maker’s date t ranking.

Continuation value processes have a recursive structure that makes preferences be dynami-

cally consistent. For Markovian consumption processes, a Hamilton-Jacobi-Bellman (HJB)

equation describes the evolution of continuation values.

4.1 Continuation values

For a consumption plan tCtu, the continuation value process tVtu
8
t“0 is defined by

Vt “ min
tUτ :tďτă8u

E

ˆ
ż 8

0

expp´δτq

ˆ

MU
t`τ

MU
t

˙„

ψpCt`τ q `

ˆ

θδ

2

˙

ξt`τ pUt`τ q



dτ | Ft
˙

(15)

where ψ is an instantaneous utility function. Equation (15) builds in a recursive structure

that can be expressed as

Vt “ min
tUτ :tďτăt`εu

"

E

„
ż ε

0

expp´δτq

ˆ

MU
t`τ

MU
t

˙„

ψpCt`τ q `

ˆ

θδ

2

˙

ξt`τ pUt`τ q



dτ | Ft


` expp´δεqE

„ˆ

MU
t`ε

MU
t

˙

Vt`ε | Ft
*

(16)

for ε ą 0.

Heuristically, we can “differentiate” the right-hand side of (16) with respect to ε to
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obtain an instantaneous counterpart to a Bellman equation. Viewing the continuation

value process tVtu as an Ito process, write:

dVt “ νtdt` ςt ¨ dWt. (17)

A local counterpart to (16) is:

0 “ min
Ut

„

ψpCtq ´
θδ

2
ξtpUtq ´ δVt ` Ut ¨ ςt ` νt



, (18)

where Ut is restricted to be Ft measurable. The term Ut ¨ ςt comes from an Ito adjustment

to the local covariance between
dMU

t

MU
t

and dVt. Alternatively, it is an adjustment to the

drift νt of dVt that is induced by using martingale MU to change the probability measure.

Preferences defined in this way are a continuous-time counterpart to the dynamic variational

preferences of Maccheroni et al. (2006b). Their recursive structure demonstrates that these

preferences are dynamically consistent.12

4.2 Markovian Consumption Processes

By ranking consumption processes with continuation value processes satisfying (18), a

decision maker evaluates utility consequences of unstructured models that our relative

entropy measure asserts are difficult to distinguish from members of the set of structured

modelsMo that also concern him. We now illustrate this by deliberately considering a setup

that starts with a Markovian consumption process and eventually adds non-Markovian

processes.

To construct a set of models, the decision maker:

1) Begins with a Markovian baseline model.

2) Creates a setMo of structured models by naming a sequence of closed convex sets tΞtu

and associated drift distortion processes tStu that satisfy structured model constraint

(10).

12The term θδ
2 ξtpUtq in our analysis is γt in Maccheroni et al. (2006b) and our equation (18) is a

continuous time counterpart to equation (12) in their paper. In Hansen and Sargent (2001) and Hansen
et al. (2006), their γt “

θ
2 |Ut|

2 where Maccheroni et al.’s θ is a scaled version of ours. This construction
contrasts with how equation (17) of Maccheroni et al. (2006b) describes Hansen and Sargent and Hansen
et al.’s “multiplier preferences”. We regard the disparity as a minor blemish in Maccheroni et al. (2006b).
It is pertinent to point this out here only because the analysis in this paper generalizes our earlier work.
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3) AugmentsMo with additional unstructured models that violate (10) but are statistically

close to models that do satisfy it according to discrepancy measure (9).

For step 1, we use the diffusion (1) as a Markovian baseline model. Step 3 includes

statistically similar models that are not Markovian. We will describe two approaches for

step 2.

4.2.1 Revisiting example 3.1

We begin with Markov alternatives to (1) of the form

dXt “ µjpXtq ` σpXtqdW
Sj

t , j “ 1, . . . , n

where W Sj is a Brownian motion and (6) continues to describe the relationship between

processes W and W Sj . The vectors of drifts µj differ from pµ in baseline model (1), but the

volatility vector σ is common to all models. These structured models have drift distortions

that are time-invariant functions of the Markov state, namely, linear combinations of Sjt “

ηjpXtq, where

ηjpxq “ σpxq´1
“

µjpxq ´ pµpxq
‰

.

As in example 3.1, we want to add structured models of the form (10) with Ξt satisfying

(13) to an initial baseline model, so we represent an initial set of time invariant parameter

models in terms of

spxq “
n
ÿ

j“1

πjηjpxq, π P Π, (19)

where Π is a convex set of possible parameter values. We allow parameters and conditional

expectations of them to vary over time. Our decision maker considers mixtures in which

Π “

#

π : πj ě 0,
n
ÿ

j“1

πj “ 1

+

represents alternative posterior probabilities that at a given date can be assigned to pa-

rameter configurations present within the set of structured models.

Where Ct is a time invariant function of the Markov state, we depict preferences with

an instantaneous objective function δφpxq and a subjective discount rate δ where we write

ψpCtq “ δφpXtq. We seek a continuation value process tVtu whose time t component can
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be represented as

Vt “ δΦpXtq.

We exploit the Markovian assumption to represent continuation values in terms of a function

Φ that solves a functional equation. Specifically, the local mean ν and volatility |ς| that

govern the evolution of the continuation value process in equation (17) are described by

νt “ pµpXtq ¨
BΦ

Bx
pXtq `

1

2
trace

„

σpXtq
1 B

2Φ

BxBx1
pXtqσpXtq



ςt “ σpXtq
1

„

BΦ

Bx
pXtq



.

Substituting these into equation (18) gives the HJB equation

0 “min
u,s
´δΦpxq ` φpxq ` pµpxq ¨

BΦ

Bx
pxq ` rσpxqus ¨

BΦ

Bx
pxq

`
1

2
trace

„

σpxq1
B2Φ

BxBx1
pxqσpxq



`
θ

2
|u´ s|2 (20)

where minimization over u, s is subject to (19).13 Here s represents structured models in

Mo and u represents unstructured models that are statistically similar to models in Mo.

The problem on the right side of HJB equation (20) can be simplified by first minimizing

with respect to u given s, or equivalently, by minimizing with respect to u´s given s. First-

order conditions for this simpler problem lead to

u´ s “ ´
1

θ
σpxq1

BΦ

Bx
pxq. (21)

Substituting from (21) into HJB equation (20) gives the reduced HJB equation:

Problem 4.1.

0 “min
s
´δΦpxq ` φpxq ` pµpxq ¨

BΦ

Bx
pxq ` rσpxqss ¨

BΦ

Bx
pxq

`
1

2
trace

„

σpxq1
B2Φ

BxBx1
pxqσpxq



´
1

2θ

„

BΦ

Bx
pxq

1

σpxqσpxq1
„

BΦ

Bx
pxq



(22)

where minimization is subject to (19). Given the minimizing s˚pxq, we can recover the

minimizing u from u˚pxq “ s˚pxq ´ 1
θ
σpxq1 BΦ

˚

Bx
pxq, where Φ* solves HJB equation (22).

13We have divided by δ for notational convenience.
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Minimizers of the right side of (20) are s˚ and u˚. The minimizing s is a structured

state-dependent drift distortion taking the form s˚pxq “
řn
j“1 π

j˚pxqηjpxq. The minimizing

u is a worst-case drift distortion u˚pxq relative to s˚pxq that adjusts for the decision maker’s

suspicion that the data are generated by a model not in Mo.

The solution of the HJB equation in problem 4.1 should in general be interpreted as a

viscosity solution that satisfies appropriate boundary conditions as well as conditions that

justify a verification theorem. In an example in section 7, the first derivative of the value

function has a kink, but the value function is still a viscosity solution.

More generally, the decision maker or, as in our example, a fictitious planner, could face

a resource allocation problem that involves accumulating physical capital and other factors

of production that make consumption endogenous. A counterpart to problem 4.1 in such

settings would be a two-player, zero-sum stochastic differential game of a type studied by

Fleming and Souganidis (1989).

4.2.2 Restricting relative entropy

In this subsection, we describe how, instead of forming a set of structured model according

to equation (19), we form a set indirectly by restricting relative entropies. We will use this

approach in our quantitative application. For special cases that include our application

in section 7, the two ways of forming a set of structured models coincide, but in other

applications they would not.14

Section 3 defined relative entropy for a stochastic process MS to be

εpMS
q “ lim

tÑ8

1

2t

ż t

0

E
´

MS
τ |Sτ |

2
ˇ

ˇ

ˇ
F0

¯

dτ.

Notice that ε is the limit as t Ñ `8 of a process of mathematical expectations of time

series averages
1

2t

ż t

0

|Sτ |
2

under the probability measure implied by MS. Suppose that MS is defined by the drift

distortion St “ ηpXtq, where X is an ergodic Markov process with transition probabilities

that converge to a unique well-defined stationary distribution Q under the MS probability.

14See appendix A.
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In this case, we can use Q to evaluate relative entropy by computing:

1

2

ż

|η|2dQ.

In continuous time, we can represent the instantaneous counterpart to the one-period

transition distribution for a Markov process in terms of an infinitesimal generator. A

generator tells how conditional expectations of the Markov state evolve locally. It can

be derived heuristically by differentiating the family of conditional expectation operators

with respect to the gap of elapsed time. For a diffusion, the infinitesimal generator A of

transitions under the MS probability is the second-order differential operator:

Aρ “ Bρ

Bx
¨ ppµ` σηq `

1

2
trace

ˆ

σ1
B2ρ

BxBx1
σ

˙

,

where ρ resides in an appropriately defined domain of the generator A. A stationary

distribution Q for a continuous-time Markov process with generator A satisfies:

ż

AρdQ “ 0. (23)

This equation can be derived heuristically by applying the Law of Iterated expectations.

We apply characterization (23) of a stationary distribution to obtain the following

second-order differential equation whose solution gives the implied relative entropy:

Aρ “ q2

2
´
|η|2

2
, (24)

where εpMSq “
q2

2
is the relative entropy and q measures the magnitude of the corre-

sponding drift distortion. To compute relative entropy associated with a process defined

by generator A, we solve equation (24) simultaneously for q and the function ρ. Since Q is

a stationary distribution, the right side of (24) must have mean zero under the stationary

distribution Q, which justifies our interpretation of q2

2
. The function ρ is well defined only

up to translation by a constant. This approach for computing relative entropy has direct

extensions for Markov jump processes and mixed jump diffusion processes. For diffusion

processes, equation (24) is a special case of a Feynman-Kac equation.15

15Had our interest been to compute discounted relative entropy, equation (24) would include a term ´δρ
on the left-side and the term q

2 would be omitted. Discounted relative entropy is state dependent and given
by δρpxq with ρ satisfying a different Feynman-Kac equation.
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We have just illustrated how to compute relative entropy for a Markov process. We

want to use similar calculations to restrict the family of potential structured models in

terms of their relative entropies εpMSq. Instead of specifying η, we use relative entropy as

a constraint on η, , for instance by restricting η. One approach is to specify only q and then

to find all η that satisfy (26), or more generally all S that satisfy εpMSq ď
q2

2
. However,

imposing a constraint on relative entropy by pre-specifying only q produces a family of

probabilities that fails to satisfy an instant-by-instant constraint St P Ξt for all t ě 0 in

(10) for some collection tΞt : t ě 0u.16 Therefore, we use the following approach instead.

For ρ and q specified a priori, we impose the following inequality on the local evolution s

of alternative structured models:

Bρ

Bx
pxq ¨ rpµpxq ` σpxqss `

1

2
trace

„

σpxq1
B2ρ

BxBx1
pxqσpxq



`
|s|2

2
ď

q2

2
. (25)

Integrating both sides with respect to dQ implies that

ż

|η|2

2
dQ ď

q2

2
(26)

where Q satisfies

ż
„

Bρ

Bx
¨ ppµ` σηq `

1

2
trace

ˆ

σ1
B2ρ

BxBx1
σ

˙

dQ “ 0.

We impose structure on models by specifying ρ. Because it is quadratic in s, inequality (25)

imposes a state-dependent restriction on s that is easy to implement. The local restriction

(25) goes beyond restricting entropy because it deliberately precludes the intertemporal

tradeoffs that are allowed by a relative entropy constraint.

One way to proceed is to posit an alternative drift configuration ηpxq and then to solve

(24) for ρ. But other models also satisfy inequality (25) for the same ρ. We provide an

illustration in section 7. An extreme example imposes that Bρ
Bx
pxq “ 0, which is equivalent

to restricting |St|2

2
to be less than or equal to a constant q2

2
every instance. Our section

7 application will lead us naturally to consider state-dependent (in particular, quadratic)

specifications of ρ.

To illustrate how we use local restriction (25), we again depict preferences with an

16Furthermore, embedding this set in one that is rectangular would yield too large a set in a sense
described in section 10.

16



instantaneous utility function δφpxq and a subjective discount rate δ. The decision problem

that replaces problem 4.1 has HJB equation

Problem 4.2.

0 “min
s
´δΦpxq ` φpxq ` pµpxq ¨

BΦ

Bx
pxq ` rσpxqss ¨

BΦ

Bx
pxq

`
1

2
trace

„

σpxq1
B2Φ

BxBx1
pxqσpxq



´
1

2θ

„

BΦ

Bx
pxq

1

σpxqσpxq1
„

BΦ

Bx
pxq



(27)

where minimization over s is subject to

Bρ

Bx
pxq ¨ rpµpxq ` σpxqss `

1

2
trace

„

σpxq1
B2ρ

BxBx1
pxqσpxq



`
|s|2

2
ď

q2

2
.

We can recover a minimizing u from a minimizing s˚pxq via u˚pxq “ s˚pxq´ 1
θ
σpxq1 BΦ

˚

Bx
pxq,

where Φ˚ solves HJB equation (27).

In appendix A we construct a different representation of the constraint set and verify that

it is not empty.

5 Uncertainty about Macroeconomic Growth

To prepare the way for the quantitative illustration in section 7, this section describes

a particular macro-finance setting. In the tradition of Lucas (1978), it features a repre-

sentative agent who faces an exogenous aggregate consumption process.17 From a robust

planning problem, we deduce shadow prices that equal prices of risk and uncertainty in a

competitive equilibrium.

We start with a baseline parametric model for a representative investor’s consumption

process, then form a family of parametric structured probability models. We deduce the

pertinent version of HJB equation (27) that describes the value function attained by worst-

case drift distortions S and U . The baseline model is

dYt “ .01
´

pαy ` pβZt

¯

dt` .01σy ¨ dWt

dZt “ ppαz ´ pκZtq dt` σz ¨ dWt. (28)

17More generally, a fictitious planner could solve a resource allocation problem that involves accumulating
physical capital and other factors of production and that makes consumption endogenous.
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We scale by .01 because we want to work with growth rates and Y is typically expressed

in logarithms. Let

X “

«

Y

Z

ff

.

Notice that the drift pαz ´ pκz has a zero at

z̄ “
pαz
pκ
,

and that pαz ´ pκz “ ´pκpz´ z̄q; z̄ is the mean of Zt in the stationary distribution under the

baseline model.

We focus on the following collection of structured parametric models:

dYt “ .01 pαy ` βZtq dt` .01σy ¨ dW
S
t

dZt “ pαz ´ κZtq dt` σz ¨ dW
S
t , (29)

where W S is a Brownian motion and (6) continues to describe the relationship between

the processes W and W S. Collection (29) nests the baseline model (28). Here pαy, β, αz, κq

are parameters that distinguish the structured models (29) from the baseline model, and

pσy, σzq are parameters common to models (28) and (29).

We represent members of a parametric class defined by (29) in terms of our section 2.1

structure with drift distortions S of the form

St “ ηpZtq ” η0 ` η1pZt ´ z̄q,

then use (1), (6), and (29) to deduce the following restrictions on η1:

ση1 “

«

β ´ pβ

pκ´ κ

ff

.

where

σ “

«

pσyq
1

pσzq
1

ff

.

Relative entropy q2

2
emerges from the solution to differential equation (24) appropriately
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specialized:

|ηpzq|2

2
`
dρ

dz
pzqr´pκpz ´ z̄q ` σz ¨ ηpzqs `

|σz|
2

2

d2ρ

dz2
pzq ´

q2

2
“ 0. (30)

Under the parametric alternatives (29), the solution for ρ is quadratic in z ´ z̄. Write:

ρpzq “ ρ1pz ´ z̄q `
1

2
ρ2pz ´ z̄q

2.

As described in Appendix B, we compute ρ1 and ρ2 by matching coefficients on the terms

pz ´ z̄q and pz ´ z̄q2, respectively. Matching constant terms then implies q2

2
. In restricting

structured models, we impose:

|St|
2

2
` rρ1 ` ρ2pZt ´ z̄qs r´pκpZt ´ z̄q ` σz ¨ Sts `

|σz|
2

2
ρ2 ´

q2

2
ď 0. (31)

Suppose that Y “ logC, where C is consumption, δ is a subjective rate of discount and

instantaneous utility φpxq “ y. Let r “ σs. Let Φpxq “ y ` pΦpzq be a value function for a

robust planner; Φ̂pxq solves the HJB equation

0 “min
r
´δpΦpzq ` .01rpαy ` pβz ` r1s ` r´pκpz ´ z̄q ` r2s

dpΦ

dz
pzq

`
1

2
|σz|

2d
2
pΦ

dz2
pzq ´

1

2θ

”

.01 dpΦ
dz
pzq

ı

σσ1

«

.01
dpΦ
dz
pzq

ff

(32)

where the minimization is subject to

1

2
r1Λr ` rρ1 ` ρ2pz ´ z̄qs r´pκpz ´ z̄q ` r2s `

|σz|
2

2
ρ2 ´

q2

2
ď 0 (33)

and Λ “ pσ1q´1σ´1. A worst-case structured model induces a worst-case unstructured

model via equation (21). (In the portfolio problem of section 8, we will also maximize over

portfolio weights and the consumption process C.)

For a given pΦ and state realization z, the component of the objective that depends on

r is the inner product
”

.01 dpΦ
dz
pzq

ı

r.

That this component is linear in r pushes the solution to an ellipsoid that is the boundary

of the convex constraint set for each z. Figure ?? shows ellipoids associated with two
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alternative values of z and baseline parameters that we present in section 7. For every

feasible choice of r2, two choices of r1 satisfy the implied quadratic equation. Provided

that dpΦ
dz
pzq ą 0, which is true in our calculations, we take the lower of the two solutions for

r1. The solution occurs at a point on the lower left of the ellipsoid where dr1
dr2
“ ´100d

pΦ
dz
pzq

and depends on z, as figure ?? indicates.

Figure 1: An illustration for section 7 parameter configuration, the figure 3 configuration
for qs,0 “ .1 and qu,s “ .2. The figure displays parameter contours for pr1, r2q, holding
relative entropy fixed. The upper right contour depicted in red is for z equal to the .1
quantile of the stationary distribution under the baseline model and the lower left contour
is for z at the .9 quantile. The dot depicts the pr1, r2q “ p0, 0q point corresponding to the
baseline model. Tangency points denote worst-case structured models.

By prespecifying pρ1, ρ2, qq, we trace out a one-dimensional family of parametric models

with the same relative entropy. For instance, we can solve equation (30) for η0 and η1. By

matching a constant, a linear term, and a quadratic term in z´ z̄, we obtain three equations

in four unknowns that imply a one dimensional curve for η0 and η1 that imply nonlinear
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St’s. In this way, nonlinear structured models emerge endogenously. These nonlinear

models will also have relative entropy q2

2
. We can represent the resulting nonlinear model

as a time-varying coefficient model by solving

r˚pzq “ σ rη0 ` η1pz ´ z̄qs

for η0 and η1 along the one-dimensional curve z by z as illustrated in example 5.1. By using

this construction, our relative entropy restriction (31) can also be depicted as in example

3.1. See appendix A for a more complete derivation.

We will feature the following special case in some of our calculations.

Example 5.1. Suppose that

ηpzq “ η1pz ´ z̄q,

which focuses structured uncertainty on how drifts for pY, Zq respond to the state variable

Z. In this case, ρ1 “ 0 and

´
q2

2
`

1

2
ρ2|σz|

2
“ 0,

or equivalently,

ρ2 “
q2

|σz|2
.

Notice that restriction (31) implies that

St “ 0

when Zt “ z̄. To connect this to a time-varying parameter specification, first construct the

convex set of η1’s that satisfy

1

2
η1 ¨ η1 `

ˆ

q2

|σz|2

˙

r´pκ` σz ¨ η1s ď 0.

Next form the boundary of the convex set Π by solving

ση1 “

«

pβ ´ pβq

ppκ´ κq

ff

for pβ, κq associated with alternative choices of η1. This illustrates how using a convex set

Π constrained in this way in the HJB equation for problem 4.1 is equivalent to imposing
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the restricted version ρ in the HJB equation of problem 4.2.

6 Inspecting variational preferences

Preference orderings described in section 4 use the penalization parameter θ to limit the

model misspecifications that concern a decision maker. We want the decision maker to

follow Good’s (1952) advice to evaluate a max-min expected utility approach by verifying

that a worst-case model is plausible.18 We implement Good’s recommendation by first

using entropy to measure how far a worst-case model is from a set of structured models,

and then using the outcome to restrict the penalty parameter θ in HJB equation (20).

We consider two entropy concepts that quantify a statistical discrepancy of a probability

model generated by a martingale MS from a model generated by a martingale MU , where

logarithms of MS and MU both evolve according to appropriate versions of (7), namely,

d logMS
t “ ´

1

2
|St|

2dt` St ¨ dWt

d logMU
t “ ´

1

2
|Ut|

2dt` Ut ¨ dWt.

Think of a pairwise model selection problem that statistically compares a structured model

generated by a martingale MS with an unstructured model generated by a martingale MU .

For a given value of θ, we compute worst-case structured and unstructured models in terms

of the drift distortions

St “ ηspZtq

Ut “ ηupZtq

implied for example by the minimization that appears in decision problem 4.2.

6.1 Relative entropy

Relative entropy is one measuure of divergence between probabilities. Relative entropy is

an expected log likelihood ratio:

ΛpMU ,MS
q “ lim

tÑ8

1

t
E
“

MU
t

`

logMU
t ´ logMS

t

˘

|F0

‰

.

18See Berger (1994) and Chamberlain (2000) for related discussions.
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Since worst-case structured and unstructured probability models are both Markovian, we

can compute ΛpMU ,MSq using the same procedures that we applied to compute entropy

relative to the baseline model. In particular, we solve

Bρ

Bx
pxq ¨ ppµ` σηuq `

1

2
trace

ˆ

σ1
B2ρ

BxBx1
σ

˙

`
|ηu ´ ηs|

2

2
ď

q2

2

for ρ (up to a constant translation) and q2

2
. Appendix C describes our computational ap-

proach. Entropy concept ΛpMU ,MSq is typically independent of the date zero conditioning

information when the Markov process is asymptotically stationary. In our application, we

find it enlightening to report the following transformed object that measures the magnitude

of the drift distortion:

qu,s “
a

2ΛpMU ,MSq.

6.2 Chernoff entropy

As an alternative measure of probability measure divergence, we also consider a version of

Chernoff entropy that we construct as a dynamic counterpart to Chernoff’s (1952) diver-

gence concept. Chernoff entropy emerges from studying how, by disguising distortions of

a baseline probability model, Brownian motions make it challenging to distinguish models

statistically. Chernoff entropy’s connection to a statistical decision problem makes it inter-

esting, but it is less tractable than relative entropy. Anderson et al. (2003) used Chernoff

entropy measured as a local rate to draw direct connections between magnitudes of market

prices of uncertainty and statistical discrimination. That local rate is state dependent and

for diffusion models proportional to the local drift in relative entropy. Quantitative dif-

ferences arise when we measure statistical discrepancy globally as did Newman and Stuck

(1979). We shall characterize a long-run version of Chernoff entropy and show how to

compute it.

Think of a pairwise model selection problem that statistically compares a structured

model generated by a martingaleMS with an unstructured model generated by a martingale

MU . Consider a statistical model selection rule based on a data history of length t that

takes the form of a log likelihood comparison logMU
t ´ logMS

t ě h. This selection rule

sometimes incorrectly chooses the unstructured model when the structured model governs

the data. We can bound the probability of this outcome by using an argument from large
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deviations theory that starts from

1tlogMU
t ´logMS

t ěhu
“ 1t´γph`logMU

t ´logMS
t qě0u

“ 1texpp´γhqpMU
t q

γpMS
t q

´γě1u

ď expp´γhqpMU
t q

γ
pMS

t q
´γ,

where the inequality holds for 0 ď γ ď 1. Under a structured model, the mathematical

expectation of the term on the left side multiplied by MS
t equals the probability of mistak-

enly selecting the alternative model when data are a sample of size t generated under the

structured model. We bound this mistake probability for large t by following Donsker and

Varadhan (1976) and Newman and Stuck (1979) and studying

lim
tÑ8

1

t
logE

”

expp´γhq
`

MU
t

˘γ `
MS

t

˘1´γ
|F0

ı

“ lim
tÑ8

1

t
logE

”

`

MU
t

˘γ `
MS

t

˘1´γ
|F0

ı

for alternative choices of γ. We apply these calculations for specifications of U and S,

checking that the limits are well defined. The threshold h does not affect the limit. Fur-

thermore, the limit is often independent of the initial conditioning information. To get the

best bound, we compute

inf
0ďγď1

lim
tÑ8

1

t
logE

”

`

MU
t

˘γ `
MS

t

˘1´γ
|F0

ı

,

which is typically negative because mistake probabilities decay with sample size. Chernoff

entropy is then

ΓpMU ,MS
q “ ´ inf

0ďγď1
lim inf
tÑ8

1

t
logE

”

`

MU
t

˘γ `
MS

t

˘1´γ
|F0

ı

. (34)

Setting ΓpMU ,MSq “ 0 would include only alternative models MU that cannot be dis-

tinguished from MS on the basis of histories of infinite length.19 Because we want to include

more possible alternative models than that, we entertain positive values of ΓpMU ,MSq.

To interpret ΓpMU ,MSq, consider the following. If the decay rate of mistake probabili-

19That is what is done in models that extend the rational expectations equilibrium concept to self-
confirming equilibria that allow probability models that are wrong only off equilibrium paths, i.e., for
events that in equilibrium do not occur infinitely often. See Fudenberg and Levine (1993, 2009) and Sargent
(1999). Our decision theory differs from that used in most of the literature on self confirming equilibria
because our decision maker acknowledges model uncertainty and wants to adjust decisions accordingly.
But see Battigalli et al. (2015).
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ties were constant, say d, then mistake probabilities for two sample sizes Ti, i “ 1, 2, would

be

mistake probabilityi “
1

2
exp p´Tidu,sq

for du,s “ ΓpMU ,MSq. We define a half-life as an increase in sample size T2 ´ T1 ą 0 that

multiplies a mistake probability by a factor of one half:

1

2
“

mistake probability2

mistake probability1

“
exp p´T2χq

exp p´T1dq
,

so the half-life is approximately

T2 ´ T1 “
log 2

d
. (35)

The bound on the decay rate should be interpreted cautiously because the actual decay

rate is not constant. Furthermore, the pairwise comparison understates the true challenge,

which is statistically to discriminate among multiple models.

A symmetrical calculation reverses the roles of the two models and instead conditions

on the perturbed model implied by martingale MU . The limiting rate remains the same.

Thus, when we select a model by comparing a log likelihood ratio to a constant threshold,

the two types of mistakes share the same asymptotic decay rate.

To implement Chernoff entropy, we follow an approach suggested by Newman and Stuck

(1979). Because our worst case models are Markovian, we use Perron-Frobenius theory to

characterize

lim
tÑ8

1

t
logE

”

`

MU
t

˘γ `
MS

t

˘1´γ
|F0

ı

for a given γ P p0, 1q as a dominant eigenvalue of a semigroup of linear operators. The

limit does not depend on the initial state x and is characterized as a dominant eigenvalue

associated with an eigenfunction that is strictly positive.

Appendix C describes how we evaluate Chernoff entropy numerically for the nonlinear

Markov specifications that we use in subsequent sections.

7 Quantitative example

Our quantitative example builds on section 5 and features a representative investor who

wants to explore utility consequences of alternative models portrayed by tMU
t u and tMS

t u

processes, some of which contribute a troublesome and difficult to detect predictable compo-
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nents of consumption growth.20 Relative entropy and Chernoff entropy shape and quantify

the doubts that we impute to investors.

7.1 Baseline model

Our example blends elements of Bansal and Yaron (2004) and Hansen et al. (2008). We

use a vector autoregression (VAR) to construct a quantitative version of a baseline model

like (28) that approximates responses of consumption to permanent shocks. In contrast

to Bansal and Yaron (2004), we assume no stochastic volatility because we want to focus

exclusively on fluctuations in uncertainty prices that are induced by the representative

investor’s specification concerns.

Our VAR follows Hansen et al. (2008) in using additional macroeconomic time series

to infer information about long-term consumption growth. We deduce a calibration of our

baseline model (28) from a trivariate VAR for the first difference of log consumption, the

difference between logs of business income and consumption, and the difference between

logs of personal dividend income and consumption. This specification makes consumption,

business income, and personal dividend income be cointegrated.21 Since we presume that all

three time series grow, we know the coefficients in the cointegrating relation. In Appendix

D we tell how we used the discrete time VAR estimates to deduce the following parameters

for the baseline model (28):

pαy “ .386 pβ “ 1

pαz “ 0 pκ “ .019

σ
.
“

«

pσyq
1

pσzq
1

ff

“

«

.488 0

.013 .028

ff

(36)

20While we appreciate the value of a more comprehensive empirical investigation with multiple macroe-
conomic time series, here our aim is to illustrate a mechanism within the context of relatively simple time
series models of predictable consumption growth.

21Business income is measured as proprietor’s income plus corporate profits per capita. Dividends are
personal dividend income per capita. The time series are quarterly data from 1948 Q1 to 2015 Q1. Our
consumption measure is nondurables plus services consumption per capita. The business income data are
from NIPA Table 1.12 and the dividend income from NIPA Table 7.10. By including proprietors’ income
in addition to corporate profits, we use a broader measure of business income than Hansen et al. (2008)
who used only corporate profits. Hansen et al. (2008) did not include personal dividends in their VAR
analysis.
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We suppose that δ “ .002 and φ “ y, where y is the logarithm of consumption. Under

this model, the standard deviation of the Z process in the implied stationary distribution

is .158.

7.2 Structured models and a robust plan

We solve HJB equation (32) for three different configurations of structured models.

7.2.1 Uncertain growth rate responses

We compute a solution by first focusing on an Example 5.1 specification in which ρ1 “ 0

and ρ2 satisfies:

ρ2 “
q2

|σz|2
.

When η is restricted to be η1pz ´ z̄q, a given value of q imposes a restriction on η1 and

implicitly on pβ, κq. Figure 2 plots iso-entropy contours for pβ, κq for q “ .1 and q “ .05.
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Figure 2: Parameter contours for pβ, κq holding relative entropy fixed. The outer curve
depicts qs,0 “ .1 and the inner curve qs,0 “ .05. The small diamond depicts the baseline
model.

While Figure 2 displays contours of time invariant parameters with the same relative

entropy, the robust planner chooses a two-dimensional vector of drift distortions r for a

structured model in a more flexible way. As happens when there is uncertainty about

pβ, κq, the set of possible r’s differs depending on the state z. As we remarked earlier,

when z “ z̄ the only feasible r is r “ 0. Figure 1 also reported iso-entropy contours when

z is at the .01 and .9 quantile of the stationary distribution under the baseline model. The

larger value of z results in a lower downward shift of the contour relative to the smaller

value of z. The tangent lines in figure 1 have slopes equal to ´100d
pV
dz

where the point of

tangency is the worst-case structured model. This point occurs at a lower drift distortion

for the .9 quantile than for the .1 quantile.
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Consider next the adjustment for model misspecification. Since

σpu˚ ´ s˚q “ ´
1

θ
σσ1

«

.01
dpV
dz

ff

and entries of σσ1 are positive, the adjustment for model misspecification is smaller in

magnitude for larger values of the state z. Taken together, the vector of drift distortions

is:

σu˚ “ σpu˚ ´ s˚q ` r˚.

The first term on the right is smaller in magnitude for a larger z and conversely, the second

term is larger in magnitude for smaller z.

Under the restrictions on structured models now under study that ρ1 “ 0 and ρ2 “
q2

|σz |2

and that η is restricted to be η1pz ´ z̄q, the first derivative of the value function is not

differentiable at z “ z̄. We can compute the value function and the worst-case models

by solving two coupled HJB equations, one for z ă z̄ and another for z ą z̄. We obtain

two second-order differential equations in value functions and their derivatives; these value

functions coincide at z “ z̄, as do their first derivatives.

Figure 3: Worst-case structured model growth rate drifts. Left panel: larger structured
entropy (qs,0 “ .1). Right panel: smaller structured entropy (qs,0 “ .05). The penalization
parameter θ set to hit targeted values of qu,s. Red: worst-case structured model; blue:
qu,s “ .1; and green: qu,s “ .2.
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Figure 3 shows adjustments of the drifts due to ambiguity aversion and concerns about

misspecification of the structured models. Setting θ “ 8 silences concerns about misspec-

ification of the structured models, all of which are expressed through minimization over s.

When we set θ “ 8, the implied worst-case structured model has state dynamics that take

the form of a threshold autoregression with a kink at zero. The distorted drifts again show

less persistence than does the baseline model for negative values of z and more persistence

for larger values of z. We activate a concern for misspecification of the structured models

by setting θ to attain targeted values of qu,s computed using the structured and unstruc-

tured worst-case models. This adjustments shifts the implied worst-case drift as a function

of the state downwards, even more so for negative values of z than for positive ones. The

impact of the drift for y is much more modest.

qs,0 qu,s du,s half life u, s qu,0 du,0 half life u, 0

.10 .10 .0010 671 .29 .0036 192

.10 .20 .0047 148 .54 .0107 65

.05 .10 .0011 623 .18 .0024 288

.05 .20 .0047 148 .33 .0077 89

Table 1: Entropies and half lives. 1
2
q2 measures relative entropy and d measures Chernoff

entropy. The subscripts denote the probability models used in performing the computa-
tions.

Table 1 reports Chernoff and relative entropies implied by structured and unstructured

worst-case models. The first two columns tell the relative entropy magnitudes that we

imposed by adjusting the value of θ. The remaining columns report other measures of

entropy as implied by these settings. Recall that the q’s measure magnitudes of the drift

distortions under associated distorted measures. Thus, qu,0 measures how large the drift

distortion is relative to the baseline model. As expected, increasing the targeted values of

qs,0 and qu,s increases the implied values qu,0. There is one perhaps puzzling finding. From

table 1, we see that

qu,s ` qs,0 ă qu,0,

which does not satisfy a Triangle Inequality because while qu,s and qu,0 are computed under

the stationary probability measure implied by the worst-case unstructured model induced

by U , qs,0 is computed under the measure implied by worst-case structured model.

Table 1 also reports Chernoff entropies and their implied half lives. . These numbers

indicate that statistical discrimination is challenging for all four configurations, since even
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the smallest half-life exceeds 65 quarters. Discrimination is especially challenging when we

limit the extent of model misspecification by setting qu,s “ .1. In terms of how the entropy

measures are related, we know of no formula that transforms relative entropy into long-run

Chernoff entropy, but a formula from by Anderson et al. (2003) is valid locally and leads

us to expect that
q2

2
« 4d,

an approximation that becomes exact when relative drift distortions are constant. This is

evidently a good approximation for the computed qu,s and du,s, but not for qu,0 and du,0.

As we have seen, the composite drift distortions show substantial state dependence because

of the impact of the worst-case structured model.

Figure 4: Distribution of Yt´Y0 under the baseline model and worst-case model for qs,0 “ .1
and qu,s “ .2. The gray shaded area depicts the interval between the .1 and .9 deciles for
every choice of the horizon under the baseline model. The red shaded area gives the region
within the .1 and .9 deciles under the worst-case model.

Figure 4 extrapolates impacts of the drift distortion on distributions of future consump-

tion growth over alternative horizons. It shows how the consumption growth distribution

adjusted for ambiguity aversion and misspecification tilts down relative to the baseline

distribution.
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7.2.2 Altering the scope of uncertainty

Until now, we have restricted

ρ2 “
q

|σz|2

with the implication that the alternative structured models have no drift distortions for Z

at Zt “ z̄. We now alter this restriction by cutting the value of ρ2 in half. Consequences of

this change are depicted in the right panel of Figure 5. For sake of comparison, this figure

includes the previous specification in the left panel. The worst-case structured drifts no

longer coincide with the baseline drift at z “ z̄ and vary smoothly in the vicinity of z “ z̄.

Figure 5: Distorted growth rate drift for Z. Relative entropy qs,0 “ .1. Left panel: ρ2 “
p.01q
|σz |2

. Right panel: ρ2 “
p.01q

2|σz |2
. red: worst-case structured model; blue: qu,s “ .1; and

green: qu,s “ .2.

Adding the restriction that ρ2 “ 0 makes the robust planner’s value function become

linear and the minimizing s and u become constant and therefore independent of z. Specif-

ically,

dpΦ

dz
“ .01

pβ

δ ` pκ
,

and

s˚9´ σ1

«

.01
.01
δ`pκ

ff
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u˚ ´ s˚ “ ´
1

θ
σ1

«

.01
.01
δ`pκ

ff

The constant of proportionality for s˚ is determined by the constraint |s˚| “ q. So setting

ρ1 and ρ2 to zero results in parallel downward shifts of the baseline drifts of worst-case

drifts for both Y and Z. This amounts to changing the coefficients αy and αz in ways that

are time invariant and leave κ “ pκ and β “ pβ.

8 Robust portfolio choice and pricing

In this section, we describe equilibrium prices that make a representative investor willing

to bear risks accurately approximated by baseline model (1) in spite of his concerns about

model misspecification. We construct equilibrium prices by computing shadow prices from

the robust planning problem of section 4. We decompose equilibrium risk prices into distinct

compensations for bearing risk and for bearing model uncertainty. We begin by posing the

representative investor’s portfolio choice problem.

8.1 Robust investor portfolio problem

A representative investor solves a continuous-time Merton portfolio problem in which indi-

vidual wealth K evolves as

dKt “ ´Ctdt`KtιpZtqdt`KtAt ¨ dWt `KtωpZtq ¨ Atdt, (37)

where At “ a is a vector of chosen risk exposures, ιpzq is an instantaneous risk free rate,

and ωpzq is a vector of risk prices evaluated at state Zt “ z. Initial wealth is K0. The

investor discounts the logarithm of consumption and distrusts his probability model.

Key inputs to a representative investor’s robust portfolio problem are the baseline model

(1), the wealth evolution equation (37), the vector of risk prices ωpzq, and the quadratic

function ρ and relative entropy q2

2
that define alternative structured models.

Under a guess that the value function takes the form rΦpzq ` log k ` log δ, the HJB

equation for the robust portfolio allocation problem is

0 “ max
a,c

min
u,s
´δrΦpzq ´ δ log k ´ δ log δ ` δ log c´

c

k
` ιpzq
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` ωpzq ¨ a` a ¨ u´
|a|2

2
`
drΦ

dz
pzq r´pκpz ´ z̄q ` σz ¨ us

`
1

2
|σz|

2d
2
rΦ

dz2
pzq `

θ

2
|u´ s|2 (38)

subject to
|s|2

2
`
dρ

dz
pzqr´pκpz ´ z̄q ` σz ¨ ss `

|σz|
2

2

d2ρ

dz2
pzq ´

q2

2
“ 0. (39)

First-order conditions for consumption are

δ

c˚
“

1

k
,

which imply that c˚ “ δk, an implication that follows from the unitary elasticity of in-

tertemporal substitution associated with the logarithmic instantaneous utility function.

First-order conditions for a and u are

ωpzq ` u˚ ´ a˚ “ 0 (40a)

a˚ ` θpu˚ ´ s˚q `
drΦ

dz
pzqσz “ 0. (40b)

These two equations determine a˚ and u˚ ´ s˚ as functions of ωpzq and the value function
rΦ. We determine s˚ as a function of u˚ by solving

min
s

θ

2
|u´ s|2

subject to (39). Taken together, these determine pa˚, u˚, s˚q. We can appeal to arguments

like those of Hansen and Sargent (2008, ch. 7) to justify stacking first-order conditions as

a way to collect equilibrium conditions for the two-person zero-sum game that the robust

portfolio problem solves.22

8.2 Competitive equilibrium prices

We now impose logC “ Y as an equilibrium condition. We show here that the drift

distortion η˚ that emerges from the robust planner’s problem of section 5 determines prices

22An alternative timing protocol that allows the maximizing player to take account of the impact of its
decisions on the minimizing agent implies the same equilibrium decision rules described in the text. See
Hansen and Sargent (2008, ch. 5).
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that a competitive equilibrium awards for bearing model uncertainty. To compute a vector

ωpxq of competitive equilibrium risk prices, we find a robust planner’s marginal valuations

of exposures to the W shocks. We decompose that price vector into separate compensations

for bearing risk and for accepting model uncertainty.

Noting from the robust planning problem that the shock exposure vectors for logK and

Y must coincide implies

a˚ “ p.01qσy.

From (40b) and the solution for s˚

u˚ “ η˚pzq,

where η˚ can be shown to be the worst-case drift from the robust planning problem provided

that we can show that rΦ “ pΦ, where pΦ is the value function for the robust planning problem.

Thus, from (40a), ω “ ω˚, where

ω˚pzq “ p.01qσy ´ η
˚
pzq. (41)

Similarly, in the problem for a representative investor within a competitive equilibrium,

the drifts for logK and Y coincide:

´δ ` ιpzq ` rp.01qσy ´ η
˚
pzqs ¨ a˚ ´

.0001

2
σy ¨ σy “ p.01qpα̂y ` β̂zq,

so that ι “ ι˚, where

ι˚pzq “ δ ` .01ppαy ` pβzq ` .01σy ¨ η
˚
pzq ´

.0001

2
σy ¨ σy. (42)

We use these formulas for equilibrium prices to construct a solution to the HJB equation

of a representative investor in a competitive equilibrium by letting rΦ “ pΦ.

8.3 Local uncertainty prices

The equilibrium stochastic discount factor process Sdf for our robust representative investor

economy is

d logSdft “ ´δdt´ .01
´

pαy ` pβZt

¯

dt´ .01σy ¨ dWt ` U
˚
t ¨ dWt ´

1

2
|U˚t |

2dt. (43)
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The components of the vector ω˚pZtq given by (41) equal minus the local exposures to

the Brownian shocks. While these are usually interpreted as local “risk prices,” we shall

reinterpret them. The decomposition

minus stochastic discount factor exposure “ .01σy ´U˚t ,

risk price uncertainty price

motivates us to think of .01σy as risk prices induced by the curvature of log utility and

´U˚t as “uncertainty” prices induced by a representative investor’s doubts about the base-

line model. Here U˚t is state dependent. Local prices are large in both good and bad

macroeconomic growth states. Prices of longer horizons will behave differently.

8.4 Uncertainty prices over alternative investment horizons

We now report shock-price elasticities for exposures to future uncertainty. These are related

to but distinct from objects computed by Borovička et al. (2014). We use a different

timing convention than they do because we want to answer a different set of questions.

In particular, Borovička et al. report elasticities that tell the impact of changing the next

period exposure to a shock on the expected return on a hypothetical asset with payoff

τ periods into the future. In contrast, here we shift the change in the exposure to τ

time periods in the future, the same time as the asset payoff. We then study the current

period impact on the expected return as the investment horizon τ ą 0 varies. We express

responses as elasticities by normalizing the exposure change to be a unit standard deviation

and focusing on logs of expected returns. The shock-price elasticities we report here are

designed to enlighten us about how state dependence in exposures to future shocks impacts

the current period expected return over alternative investment horizons. As we will see,

elasticities defined in this way link pricing to relative entropy.

We let consumption be the hypothetical payoff of interest. The logarithm of the ex-

pected return from a consumption payoff at date t consists of two terms:

logE

˜

Ct
C0

ˇ

ˇ

ˇ

ˇ

ˇ

X0 “ x

¸

´ logE

«

Sdft

ˆ

Ct
C0

˙

ˇ

ˇ

ˇ

ˇ

ˇ

X0 “ x

ff

. (44)

where logCt “ Yt. The first term is an expected payoff and the second is the cost of
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purchasing that payoff. Our example imposes a unitary elasticity of substitution

Sdft

ˆ

Ct
C0

˙

“MU˚

t ,

so the second term features a martingale contributed by the representative investor’s con-

cerns about misspecificaion.

An elasticity tells changes in an expected return that result from a local change in the

exposure of consumption to the underlying Brownian motion. Malliavin derivatives are

important inputs into calculating a shock-price elasticity. These derivatives measure how

a shock at a given date affects consumption and stochastic discount factor processes. Both

Sdft and Ct depend on the Brownian motion between dates zero and t. We are particularly

interested in the impact of a date t shock. Computing the derivative of the logarithm of

the expected return given in (44) results in

E rDtCt|F0s

E rCt|F0s
´ E

”

DtMU˚

t |F0

ı

where DtCt and DtMU˚

t denote two-dimensional vectors of Malliavin derivatives with re-

spect to the two dimensional Brownian increment at date t for consumption and the worst-

case martingale, respectively.

A formula familiar from other forms of differentiation implies

DtCt “ Ct pDt logCtq .

The Malliavin derivative of logCt “ Yt is the vector .01σy, which is the exposure vector of

logCt to the Brownian increment dWt:

DtCt “ .01Ctσy,

so
E rDtCt|F0s

E rCt|F0s
“ .01σy.

Similarly,

DtMU˚

t “ U˚t .
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Therefore, the term structure of prices that interests us is

.01σy ´ E
”

MU˚

t U˚t |F0

ı

. (45)

The first term is the risk price familiar from consumption-based asset pricing. It is state

independent and contributes a (small) term that is independent of the horizon. In contrast,

the equilibrium drift distortion in the second term provides a state dependent component;

its expectation under the distorted probability measure

(a) first shock with qu,s “ .1 (b) first shock with qu,s “ .05

(c) second shock with qu,s “ .1 (d) second shock with qu,s “ .05

Figure 6: Shock price elasticities for alternative horizons. The change in the exposure
occurs at the same future date as the consumption payoff. The figure reports the median
and deciles for the section 5 specification with pβ, κq structured uncertainty. Black: median
of the Z stationary distribution red: .1 decile; and blue: .9 decile.
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Figure 6 shows shock price elasticities for our economy. Notice that although the price

elasticity is initially smaller for the median specification of z than for the .9 quantile, this

inequality is eventually reversed as the horizon increases. (The blue and black curves cross.)

The uncertainty price for positive z initially diminishes because the probability measure

implied by the martingale MU
t has reduced persistence for positive states. Under the MU

t

probability, the growth rate state variable is expected to spend less time in the positive

region. This is reflected in smaller prices at the .9 quantile than at the median over longer

investment horizons. For longer investment horizons, but not necessarily for very short

ones, an endogenous nonlinearity makes uncertainty prices larger for negative values of z

than for positive values of z. Horizon dependence is an important avenue through which

concerns about misspecification and ambiguity aversion influence valuations of assets.

There is an intriguing connection between long-horizon prices and relative entropy.

While the uncertainty price trajectories do not converge over the time span reported in fig-

ure 6, well defined limiting uncertainty prices do emerge over longer time horizons.23 These

limits equal EMU˚

r´u˚s, i.e., expectations of the corresponding drift distortions computed

under the worst-case probability measures. In table 2, we compare these limit prices to the

relative entropy divergence qu,0, which measures the overall magnitude of these distortions

by
b

2EMU˚

r|u˚|2s, i.e., the square root of twice the expected square of the absolute value

of the vector of drift distortions, also under the worst-case probability measures. Indeed

these mean contributions account for most of the relative entropy measures.

qs,0 qu,s qu,0 shock one price shock two price

.10 .20 .54 .30 .44

.05 .20 .33 .19 .27

Table 2: Entropies and limit prices. 1
2
q2 denotes relative entropy. The limiting long-horizon

prices are the expectations of ´U˚ under the probability model implied by U˚.

We have designed our quantitative examples to investigate a particular mechanism that

causes statistically plausible amounts of uncertainty to generate fluctuations in uncertainty

prices. We infer parameters of the baseline model for these examples solely from time series

of macroeconomic quantities, thus completely ignoring asset prices during calibration. As

23Hansen and Scheinkman (2012) study a limiting growth rate risk price that is based on a different
conceptual experiment but leads to a similar characterization. Whereas formula (45) has an adjustment
for the current consumption exposure to shocks, the limiting Hansen and Scheinkman measure replaces
this term by the proportionate exposure of the martingale component of consumption. Both adjustments
are small in our quantitative example.
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a consequence, we do not expect to track high frequency movements in financial markets

well. By limiting our empirical inputs, we respect concerns that Hansen (2007) and Chen

et al. (2015) expressed about using asset market data to calibrate macro-finance models

that assign a special role to investors’ beliefs about the future asset prices.24

9 Learning and dynamic consistency

We have made the set of unstructured models that concerns our decision maker so vast and

some of the structured models themselves so complicated that our decision maker thinks

that it is pointless to learn his way out of model ambiguity as he observes more data. Had

we featured only time invariant models, there would be ways a decision maker could learn,

but ambiguity would still add a source of variation to valuations. Even if we were to begin

with a family of time invariant models, confining Mo to time-invariant parameter models

would be too restrictive for at least two reasons One is that time invariance precludes

learning from new information. Another is that the passage of time alters what a decision

maker cares about.

Consider first learning. Until now, we have supposed that the set of models of interest to

our representative investor makes learning particularly difficult. But had we restricted that

set of models enough, learning would be possible. For time invariant parameter models with

unknown parameters, endowing a decision maker with a family of conjugate priors could

make it tractable to construct a coresponding family of posteriors by repeatedly applying

Bayes law. But as the following example illustrates, learning breaks time invariance:

Example 9.1. Apply Bayes’ rule to a finite collection of models characterized by Sj where

MSj is in Mo for j “ 1, . . . , n. Let πj0 ě 0 be a prior probability assigned to model Sj,

where
řn
i“1 π

j
0 “ 1. A martingale

M “

n
ÿ

j“1

πj0M
Sj

corresponds to a mixture of Sj models. The mathematical expectation of M conditioned on

24Hansen (2007) and Chen et al. (2015) describe situations in which it is the behavior of rates of return
on assets that, through the cross-equation restrictions, lead an econometrician to make inferences about
the behavior of macroeconomic quantities like consumption that are much more confident than can be
made from the quantity data alone. That opens questions about how the investors who are supposedly
putting those cross-equation restrictions into returns came to know those quantity processes before they
observed returns.
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date zero information equals unity. The law of motion of M is

dMt “

n
ÿ

j“1

πj0dM
Sj

t

“

n
ÿ

j“1

πj0M
Sj

t Sjt ¨ dWt

“Mt

`

πjtS
j
t

˘

¨ dWt

where πjt is the date t posterior

πjt “
πj0M

Sj

t

Mt

.

The drift distortion is

St “
n
ÿ

j“1

πjtS
j
t .

The example illustrates how Bayes’ rule leads naturally to a particular form of history-

dependent weights on the Sjt ’s that characterize alternative models.25

Another reason for history dependence is that a decision maker with a nontrivial set

of priors (i.e., a robust Bayesian) would want to evaluate the utility consequences of a

set of posteriors implied by Bayes’ law from different perspectives as time passes. With

an aversion to ambiguity, a robust Bayesian would rank alternative plans by minimizing

expected continuation utilities over the set of posteriors. Epstein and Schneider (2003) note

that for many possible sets of models and priors, this approach induces a form of dynamic

inconsistency.

Thus, consider a given plan. A decision maker has more information at t ą 0 than at

t “ 0 and he cares only about the continuation of the plan for dates s ě t. To evaluate a

plan under ambiguity aversion at t ą 0, the decision maker would minimize continuation

utility over the set of date zero priors. Changes in perspective would in general lead the

decision maker to choose different worst-case date zero priors as time passes. A date t

conditional preference order could conflict with a date 0 preference order. This possibility

led Epstein and Schneider to study implications of a dynamic consistency axiom.

25Two papers that focus on so-called rational learning models are Cogley and Sargent (2008) and Collin-
Dufresne et al. (2016), both of which insightfully discuss martingale-type contributions to risk pricing that
emanate from investors’ learning. Both of these studies explore prior sensitivity, but both do so only from
from an ex ante perspective and both presume that investors do not recurrently reassess sensitivity as time
passes.
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To make preferences satisfy that axiom, they argue that the decision maker’s set of

probabilities should satisfy a property that they call rectangularity. A rectangular fam-

ily of probabilities is formed by i) specifying a set of possible local (i.e., instantaneous)

transitions for each t, and ii) constructing all possible joint probabilities having such local

transitions. The set of probabilities implied by martingales in Mo satisfying the time-

separability restriction (10) satisfies this property.26

Epstein and Schneider make

. . . an important conceptual distinction between the set of probability laws that

the decision maker views as possible, such as Prob, and the set of priors P that

is part of the representation of preference.

Regardless of whether they are subjectively or statistically plausible, Epstein and Schneider

recommend augmenting a decision maker’s original set of “possible” probabilities (i.e., their

Prob) with enough additional probabilities to make an enlarged set (i.e., their P ) satisfy

a condition that suffices to render conditional preferences orderings dynamically consistent

as required by their axioms.

We can illustrate what Epstein and Schneider’s procedure does and does not accomplish

within the setting of Example 9.1 with n “ 2. Suppose that we have a set of priors

π1
0 ď π1

0 ď π1
0. For each π1

0, we can use Bayes’ rule to construct a posterior residing in an

interval rπ1
t , π

1
t s, an associated set of drift processes tSt : t ě 0u, and implied probability

measures over the filtration tFt : t ě 0u. This family of probabilities is typically not

rectangular in the sense of Epstein and Schneider. To obtain a smallest rectangular family

that contains these probabilities, we construct the larger space tSt : t ě 0u with St P Ξt,

where

Ξt “
 

π1
tS

1
t ` p1´ π

1
t qS

2
t , π

1
t ď πt ď π1

t , πt is Ft measurable
(

(46)

Augmenting the set tSt : t ě 0u in this way makes conditional preference orderings over

plans remain the same as time passes. But this expanded set of probabilities includes

elements that can emerge from no single date zero prior. Thus, in constructing the set

tSt : t ě 0u, Epstein and Schneider allow different date zero priors at each calendar date t.

Doing that intertemporally disconnects restrictions on local transition probabilities.27

The failure of Epstein and Schneider’s procedure to yield a unique prior capable of

justifying their dynamically consistent preference ordering undermines the useful concept

26Rectangularity, per se, does not require Ξt to be convex, a property that we impose for other reasons.
27This approach could be made tractable by using a family of conjugate priors that enable updating via

Bayes law by applying recursive methods.
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called admissibility that is widely applied in statistical decision theory. An admissible

decision rule is one that cannot be dominated under all possible probability specifications

entertained by a decision maker. Verifying optimality against a unique worst-case model

is a common way to establish that a statistical decision rule is admissible. Epstein and

Schneider’s proposal to achieve dynamic consistency by adding probabilities to those that

the decision maker thinks are possible renders the resulting decision rule inadmissible and

disables Good (1952)’s sensible recommendation for assessing the suitability of max-min

decision making.28

10 Relative entropy and rectangularity

Our decision maker starts with a set of structured probability models that happen to

be rectangular in the sense of Epstein and Schneider. But our decision maker’s concern

that all structured models are misspecified leads him to explore the utility consequences

of unstructured probability models that are not rectangular, even though as measured by

relative entropy they are statistically close to models in the rectangular set.

An alternative approach would be first to construct a set that includes relative entropy

neighborhoods of all martingales in Mo. For instance, we could start with a set

M “
 

MU
PM : ΘpMU

|F0q ă ε
(

(47)

that yields a set of implied probabilities that are not rectangular. At this point, why not

follow Epstein and Schneider’s (2003) recommendation to add enough martingales to attain

a rectangular set of probability measures? Our answer is that doing so would include all

martingales in M – a set much too large for a max-min decision analysis.

To show this, it suffices to look at relative entropy neighborhoods of the baseline model.29

To construct a rectangular set of models that includes the baseline model, for a fixed date

τ , consider a random vector U τ that is observable at τ and that satisfies

E
`

|U τ |
2
| F0

˘

ă 8. (48)

28Presumably, an advocate of Epstein and Schneider’s dynamic consistency axiom could respond that
admissibility is too limiting in a dynamic context because it commits to a time 0 perspective and does
not allow a decision maker to reevaluate later. Nevertheless, it is common in the control theory literature
to maintain just such a date zero perspective and in effect solve a commitment problem under ambiguity
aversion.

29Including additional structured models would only make the set of martingales larger.
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Form a stochastic process

Uh
t “

$

’

&

’

%

0 0 ď t ă τ

U τ τ ď t ă τ ` h

0 t ě τ ` h.

(49)

The martingale MUh associated with Uh equals one both before time τ and after time τ`h.

Compute relative entropy:

∆pMUh
|F0q “

ˆ

1

2

˙
ż τ`h

τ

expp´δtqE
”

MUh

t |U τ |
2dt

ˇ

ˇ

ˇ
F0

ı

dt

“

„

1´ expp´δhq

2δ



expp´δτqE
`

|U τ |
2
| F0

˘

.

Evidently, relative entropy ∆pMUh |F0q can be made arbitrarily small by shrinking h to zero.

This means that any rectangular set that contains M must allow for a drift distortion U τ

at date τ . We summarize this argument in the following proposition:

Proposition 10.1. Any rectangular set of probabilities that contains the probabilities in-

duced by martingales in (47) must also contain the probabilities induced by any martingale

in M.

This rectangular set of martingales allows us too much freedom in setting date τ and

random vector U τ : all martingales in the setM identified in definition 2.1 are included in

the smallest rectangular set that embeds the set described by (47). That set is too big to

pose a meaningful decision problem.

11 Concluding remarks

This paper formulates and applies a tractable model of the effects on equilibrium prices

of exposures to macroeconomic uncertainties. We use models’ consequences for discounted

expected utilities to quantify investors’ concerns about model misspecification. We char-

acterize the effects of concerns about misspecification of a baseline stochastic process for

individual consumption as shadow prices for a planner’s problem that supports competitive

equilibrium prices.

To illustrate our approach, we have focused on the growth rate uncertainty featured

in the “long-run risk” literature initiated by Bansal and Yaron (2004). Other applications

seem natural. For example, the tools developed here could shed light on a recent public
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debate between two groups of macroeconomists, one prophesying secular stagnation because

of technology growth slowdowns, the other discounting those pessimistic forecasts. The

tools that we describe can be used, first, to quantify how challenging it is to infer persistent

changes in growth rates, and, second, to guide macroeconomic policy in light of available

empirical evidence.

Specifically, we have produced a model of a log stochastic discount factor whose uncer-

tainty prices reflect a robust planner’s worst-case drift distortions U˚ and we have argued

that these drift distortions should be interpreted as prices of model uncertainty. The

dependence of these uncertainty prices U˚ on the growth state z is shaped partly by the

alternative parametric models that the decision maker entertains. In this way, our theory of

state dependence in uncertainty prices is all about how our robust investor responds to the

presence of the alternative parametric models among a huge set of unspecified alternative

models that also concern him.

It is worthwhile comparing this paper’s way of inducing time varying prices of risk with

three other macro/finance models that also get them. Campbell and Cochrane (1999) pro-

ceed in the standard rational expectations single-known-probability-model tradition and

so exclude any fears of model misspecification from the mind of their representative in-

vestor. They construct a utility function in which the history of consumption expresses

an externality. This history dependence makes the investor’s local risk aversion depend

in a countercyclical way on the economy’s growth state. Ang and Piazzesi (2003) use an

exponential quadratic stochastic discount factor in a no-arbitrage statistical model and

explore links between the term structure of interest rates and other macroeconomic vari-

ables. Their approach allows movements in risk prices to be consistent with historical

evidence without specifying an explicit general equilibrium model. A third approach intro-

duces stochastic volatility into the macroeconomy by positing that the volatilities of shocks

driving consumption growth are themselves stochastic processes. A stochastic volatility

model induces time variation in risk prices via exogenous movements in the conditional

volatilities impinging on macroeconomic variables. A related approach is implemented by

Ulrich (2013) and Ilut and Schneider (2014), who posit exogenous stochastic fluctuations

in ambiguity concerns to induce additional macroeconomic fluctuations.

In Hansen and Sargent (2010), countercyclical uncertainty prices are driven by a rep-

resentative investor’s robust model averaging. The investor carries along two difficult-to-

distinguish models of consumption growth, one with substantial growth rate dependence

and the other with little such dependence. The investor uses observations on consumption
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growth to update a Bayesian posterior over these models and expresses his specification

distrust by pessimistically exponentially twisting a posterior over alternative models. That

leads the investor to act as if good news is temporary and bad news is persistent, an out-

come that is qualitatively similar to what we have found here. Learning occurs in Hansen

and Sargent’s analysis because the parameterized structured models are time invariant and

hence learnable.

In this paper, we propose a different way to make uncertainty prices vary in a qual-

itatively similar way. We exclude learning and instead consider alternative models with

parameters whose future variations cannot be inferred from historical data. These time-

varying parameter models differ from the decision maker’s baseline model, a fixed parameter

model whose parameters can be well estimated from historical data. The alternative models

include ones that allow parameters persistently to deviate from those of the baseline model

in statistically subtle and time-varying ways. In addition to this particular parametric

class of alternative models, the decision maker also worries about other specifications. The

robust planner’s worst-case model responds to these forms of model ambiguity partly by

having more persistence in bad states and less persistence in good states. Adverse shifts in

a worst-case shock distribution that drive up the absolute magnitudes of uncertainty prices

were also present in some of our earlier work (for example, see Hansen et al. (1999) and

Anderson et al. (2003)). In this paper, we induce state dependence in uncertainty prices

in a new way, namely, by specifying a set of alternative models to capture concerns about

the baseline model’s specification of persistence in consumption growth.

Our continuous-time formulation (18) exploits mathematically convenient properties of

a Brownian information structure. There is a discrete-time counterpart to our formulation

that starts from a baseline model cast in terms of a nonlinear stochastic difference equation.

In that formulation, there are counterparts to structured and unstructured models that

play the same roles that they do in the present continuous time formulation. Furthermore,

preference orderings defined in terms of continuation values are dynamically consistent.

While our example used entropy measures to restrict the decision maker’s set of struc-

tured models, two other approaches could be employed instead. One would use a more

direct implementation of a robust Bayesian approach; the other would refrain from impos-

ing absolute continuity when constructing a family of structured models.

We illustrated how one might start with structured models that are time invariant and

a convex set of priors over the invariant parameters. Provided that the resulting set of

posteriors could be characterized date-by-date and computed easily, say through the use of
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conjugate priors, this approach could be tractable. But after a rectangular augmentation of

a set of probabilities, the implied worst case structured model would typically not emerge

from applying Bayes’ rule to a single prior. That prevents applying Good’s advice about

assessing the plausibility of max-min choice theory. On the other hand, a rectangular

structure may place models on the table that are substantively interesting in their own

right, including possibly the worst case structured model. By incorporating a concern for

misspecification, this would provide an alternative to the approach to robust learning in

Hansen and Sargent (2007).

In this paper we assumed that the structured model probabilities can be represented

as martingales with respect to a baseline model. An alternative approach invented by

Peng (2004) uses a theory of stochastic differential equations under a broad notion of

ambiguity that is rich enough to allow for uncertainty in the conditional volatility of the

Brownian increments. Alternative probability specifications there fail to be absolutely

continuous and standard likelihood ratio analysis ceases to apply. If we knew how to

construct bounds on uncertainty under a nondegenerate rectangular embedding, we could

extend the construction of worst-case structured models and still restrain relative entropy

as a way to limit the unstructured models to be explored.30

30See Epstein and Ji (2014) for an application of the Peng analysis to asset pricing that does not use
relative entropy.
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Appendices

A Structured model restrictions

Consider the constraint in problem 4.2. To verify that the constraint set is not empty,

suppose that there exists an η such that

|ηpxq|2

2
`
Bρ

Bx
pxq ¨ rpµpxq ` σpxqηpxqs `

1

2
trace

„

σpxq1
B2ρ

BxBx1
pxqσpxq



´
q2

2
“ 0.

Next pose the problem

min
s

|s|2

2
`
Bρ

Bx
pxq ¨ rpµpxq ` σpxqss `

1

2
trace

„

σpxq1
B2ρ

BxBx1
pxqσpxq



´
q2

2
,

whose solution

s̃pxq “ ´σpxq1
Bρ

Bx
pxq

attains a minimized objective function

´
Υpxq

2
” ´

1

2

„

Bρ

Bx
pxq

1

σpxqσpxq1
„

Bρ

Bx
pxq



`
Bρ

Bx
pxq ¨ pµpxq `

1

2
trace

„

σpxq1
B2ρ

BxBx1
pxqσpxq



´
q2

2

ď 0.

For convenience, write the constraint as:

|s´ s̃pxq|2

2
ď

Υpxq

2
. (50)

Since Υpxq is nonnegative for each x, minimizing solutions exist and reside on an ellipsoid

centered at s̃pxq.

B Computing relative entropy

In this appendix we show how to compute relative entropies for parametric models of the

form (29). Recall that relative entropy q2

2
emerges as part of the solution to HJB equation
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(27) appropriately specialized:

|ηpzq|2

2
`
dρ

dz
pzqr´pκpz ´ z̄q ` σz ¨ ηpzqs `

|σz|
2

2

d2ρ

dz2
pzq ´

q2

2
“ 0.

where z̄ “ pαz
pκ

and

ηpzq “ η0 ` η1pz ´ z̄q.

Under our parametric alternatives, the solution for ρ is quadratic in z ´ z̄. Write:

ρpzq “ ρ1pz ´ z̄q `
1

2
ρ2pz ´ z̄q

2.

Compute ρ2 by targeting only the terms of the HJB equation that involve pz ´ z̄q2:

η1 ¨ η1

2
` ρ2 r´pκ` σz ¨ η1s “ 0.

Thus

ρ2 “
η1 ¨ η1

2 ppκ´ σz ¨ η1q

Given ρ2, compute ρ1 by targeting only the terms in pz ´ z̄q:

η0 ¨ η1 ` ρ2 pσz ¨ η0q ` ρ1 p´pκ` σz ¨ η1q “ 0.

Thus

ρ1 “
η0 ¨ η1

pκ´ σz ¨ η1

`
pη1 ¨ η1q pσz ¨ η0q

2 ppκ´ σz ¨ η1q
2 .

Finally, calculate q by targeting the remaining constant terms:

η0 ¨ η0

2
` ρ1 pσz ¨ η0q ` ρ2

|σz|
2

2
´

q2

2
“ 0.

Thus
q2

2
“
η0 ¨ η0

2
`
η0 ¨ η1 pσz ¨ η0q

pκ´ σz ¨ η1

`
η1 ¨ η1 p`σz ¨ η0q

2

2 ppκ´ σz ¨ η1q
2 `

η1 ¨ η1|σz|
2

4 ppκ´ σz ¨ η1q
.

The formula could alternatively be derived by computing the expectation of |ηpZtq|
2

2
under

the altered distribution.
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C Computing Chernoff and relative entropy

In this appendix we show how to compute Chernoff and relative entropies for Markov

specifications where the associated S’s and U ’s take the forms

Ut “ ηupZtq

St “ ηspZtq.

C.1 Chernoff entropy

Given the implied Markov structure of both models, we compute Chernoff entropy by using

an eigenvalue approach of Donsker and Varadhan (1976) and Newman and Stuck (1979).

We start by computing the drift of
`

MU
t

˘γ `
MS

t

˘1´γ
gpZtq for 0 ď γ ď 1 at t “ 0:

rGpγqgspzq .“´
γp1´ γq

2
|ηupzq ´ ηspzq|

2gpzq ` gpzq1σ ¨ rγηupzq ` p1´ γqηspzqs

` g1pzq ppαz ´ pκzq `
g2pzq

2
|σz|

2,

where rGpγqgspxq is the drift given that Z0 “ z. Next we solve the eigenvalue problem

rGpγqsepz, γq “ ´λpγqepz, γq.

We seek the eigenvalue for which expr´λpγqs is largest in magnitude; the associated eigen-

function is positive.

We compute Chernoff entropy by solving

ΓpMH ,MS
q “ max

γPr0,1s
λpγq,

where we compute λpγq numerically using a finite-difference approach. For a prespecified

γ, We evaluate rGpγqsg at each of n grid points and replacing derivatives by two-sided

symmetric differences except at the edges where we use corresponding one-sided differences.

For each such grid point, this gives a linear transformation of g evaluated at the n grid

points. The outcome of this calculation is an n by n matrix applied to a vector containing

the entries of g evaluated at the n grid points. The eigenvalue of the resulting matrix

that has the largest exponential equals ´ηpγq. We we use a grid for z over the interval

r´2.5, 2.5s with grid increments equal to .01, choices that imply that n “ 501.
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C.2 Relative entropy

Using an approach similar to that applied in section C.1, we solve

q2

2
´
dρ

dz
pzqrpαz ´ pκz ` σz ¨ ηupzqs ´

|σz|
2

2

d2ρ

dz2
pzq “

|ηupzq ´ ηspzq|
2

2
(51)

for q numerically using a finite difference approach. Notice that left-hand side of (51) is

linear in
´

ρ, q
2

2

¯

. We evaluate equation (51) at the n grid points for z and use a finite

difference approximation for the derivatives. We write the resulting left-hand equations as

a matrix times a vector containing q2

2
and ρ evaluated at n´ 1 grid points omitting z “ 0

because we conveniently set ρp0q “ 0. We write the right-hand side as a vector evaluated

at the n grid points and solve the resulting equation system via matrix inversion.

D Statistical calibration

We fit a trivariate VAR with the following variables:

log Yt`1 ´ log Yt

logGt`1 ´ log Yt`1

logDt`1 ´ log Yt`1

where Gt is the sum of corporate profits and proprietors’ income and Dt is personal income.

Provided that the VAR has stable coefficients, this is a co-integrated system. All three

time series have stationary increments, but there one common martingale process. The

shock to this process is identified as the only one with long-term consequences. We set

pαz “ 0 and pβy “ 1. For the remaining parameters we:

i) fit a VAR with a constant and four lags of the first variable and five of the other two;

ii) compute the implied mean for log Yt`1 ´ log Yt and set this to pαy;

iii) compute the state dependent component of the expected long-term growth rate by

calculating:

log Y p
t “ lim

jÑ8
E plog Yt`j ´ log Yt ´ jpαy|Ftq
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implied by the VAR estimates, to compare to the counterpart calculation in the

continuous-time model:

Zp
t “ lim

jÑ8
E plog Yt`j ´ log Yt ´ jpα|Ztq “

1

pκ
Zt.

iv) compute the implied autoregressive coefficient for tlog Y p
t u in the discrete-time speci-

fication using the VAR parameter estimates and equate this coefficient to 1´ pκ.

v) compute the VAR implied covariance matrix for the one-step-ahead forecast error for

tlog Y pu, the direct shock to consumption and equate this to

«

pσyq
1

1
pκ
pσzq

1

ff

”

pσyq
1
pκ
pσzq

ı

where we achieve identification of σz and σy by imposing a zero restriction on the

second entry of σy and positive signs on the first coefficient of σy and on the second

coefficient of σz.

E Solving the ODE’s

The value function is approximately linear in the state variable for large |z|. This gives a

good Neumann boundary condition to use in an approximation in which z is restricted to

a compact interval that includes z “ z. Recall the constraint:

1

2
r1Λr ` rρ1 ` ρ2pz ´ z̄qs r´pκpz ´ z̄q ` r2s `

|σz|
2

2
ρ2 ´

q2

2
ď 0.

Consider an affine solution r “ r0 ` r1pz ´ z̄q. The vector r1 satisfies

1

2
pr1q

1Λr1 ´ ρ2pκ` ρ2r1,2 “ 0

where r1 “ pr1,1, r1,2q
1 When we view this relation as a quadratic equation in r1,1 given r1,2,

there will be two solutions. We pick the solution that makes r1,1pz ´ z̄q the smallest this

will differ depending on whether we use a left boundary point z´ ăă z or a right boundary

point z` ąą z.

It remains to pick the two boundary conditions for the derivative of the value function
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φ´ and φ`. From the HJB equation:

p´δ ´ pκ` r1,2qφ` .01ppβ ` r1,1q “ 0

Λr1 `

«

0

ρ2

ff

9

«

.01

φ

ff

.

The first equation is the derivative of the value function for constant coefficients, putting

aside the minimization. The next is the large z approximation to the first-order conditions

implied by (32). By taking ratios of the latter condition, we obtain an equation in r1 and

φ. Solving the resulting three equations determines pr´1.1, r
´
1,2, φ

´q and pr`1,1, r
`
1,2, φ

`q, where

φ´ and φ` are the two approximate boundary conditions for the derivative of the value

function.

We used bvp4c in Matlab to solve the ode’s over the two intervals r´2.5, 0s and r0, 2.5s

where z “ 0.
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