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1. Introduction

Rational expectations models attribute a unique probability model to diverse agents. Gilboa and Schmeidler (1989) express a
single person’s ambiguity with a set of probability models. A coherent multi-agent setting with ambiguity must impute possibly
distinct sets of models to different agents, and also specify each agent’s understanding of the sets of models of other agents.1 This
paper studies three ways of doing this for a Ramsey planner. We analyze three types of ambiguity, called I, II, and III, that a
Ramsey planner might have. In all three, the Ramsey planner believes that private agents experience no ambiguity. This
distinguishes our models from others that attribute ambiguity to private agents. For example, in what we shall call the type 0
ambiguity analyzed by Karantounias (forthcoming), the planner has no model ambiguity but believes that private agents do.

To illustrate these distinctions, Fig. 1 depicts four types of ambiguity within a class of models in which a Ramsey
planner faces a private sector. The symbols x and o signify distinct probability models over exogenous processes (the
exogenous process is a cost-push shock in the example that we will carry along in this paper). Circles with either x’s or o

denote boundaries of sets of models. An x denotes a Ramsey planner’s model while an o denotes a model of the private
sector. In a rational expectations model, there is one model x for the Ramsey planner and the same model o¼x for the
private sector, so a graph like Fig. 1 for a rational expectations model would be a single x on top of a single o.

The top left panel of Fig. 1 depicts the type of ambiguity analyzed by Karantounias (forthcoming).2 To distinguish it
from three other types to be studied in this paper, we call this type 0 ambiguity. A type 0 Ramsey planner has a single
model x but thinks that private agents have a set of models o contained in an entropy ball that surrounds the planner’s
model. Karantounias’s (forthcoming) Ramsey planner takes into account how its actions influence private agents’ choice of a
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equilibria in games where players are ambiguity averse.

trategies to study problems in which a Ramsey planner cannot commit and in which the private

ability models. They represent history-dependent strategies in terms of pairs of continuation values

mption.
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Type 0 Type I

Type II Type III

Fig. 1. Type 0, top left: Ramsey planner trusts its approximating model (x), knowing private agents (o) do not trust it. Type I, top right: Ramsey planner

has set of models (x) centered on an approximating model, while private sector knows a correct model (o) among Ramsey planner’s set of models x. Type

II, bottom left; Ramsey planner has set of models (x) surrounding its approximating model, which private sector trusts (o). Type III, bottom right: Ramsey

planner has single model (x) but private sector has another model in an entropy ball around (x).

L.P. Hansen, T.J. Sargent / Journal of Monetary Economics 59 (2012) 422–445 423
worst-case model along the boundary of the set of models depicted by the o’s. Part of the challenge for the Ramsey planner is to
evaluate the private agent’s Euler equation using the private agent’s worst-case model drawn from the boundary of the set.3

Models of types I, II, and III differ from the type 0 model because in these three models, the Ramsey planner believes that
private agents experience no model ambiguity. But the planner experiences ambiguity. The three types differ in what the
planner is ambiguous about. The private sector’s response to the Ramsey planner’s choices and the private sector’s view of
the exogenous forcing variables have common structures across all three types of ambiguity. In all three, private agents view
the Ramsey planner’s history-dependent strategy as a sequence of functions of current and past values of exogenously specified
processes. In addition, the private sector has a well specified view of the evolution of these exogenous processes. These two
inputs determine the private sector’s actions. Although the planner’s strategy and the private sector’s beliefs differ across our
three types of ambiguity, the mapping (i.e., the reaction function) from these inputs into private sector responses is identical. We
will represent this generalized notion of a reaction function as a sequence of private sector Euler equations. When constructing
Ramsey plans under our three types of ambiguity, we will alter how the Ramsey planner views both the evolution of the
exogenous processes and the beliefs of the private sector. We will study the consequences of three alternative configurations
that reflect differences in what the Ramsey planner is ambiguous about.

The top right panel of Fig. 1 depicts type I ambiguity. Here the Ramsey planner has a set of models x centered on an
approximating model. The Ramsey planner is uncertain about both the evolution of the exogenous processes and how the
private sector views these processes. The planner presumes that private sector uses a probability specification that actually
governs the exogenous processes. To cope with its ambiguity, the Ramsey planner’s alter ego chooses a model on the circle,
while evaluating private sector Euler equations using that model.

The bottom left panel of Fig. 1 depicts type II ambiguity. In the spirit of Hansen and Sargent (2008, Chapter 16), the
Ramsey planner has a set of models surrounding an approximating model x that the private sector o completely trusts; so
the private sector’s set of models is a singleton on top of the Ramsey planner’s approximating model. The Ramsey planner’s
probability-minimizing alter ego chooses a model on the circle, while evaluating the private agent’s Euler equation using
the approximating model a.

The bottom right panel of Fig. 1 depicts type III ambiguity. Following Woodford (2010), the Ramsey planner has a single
model x of the exogenous processes and thus no ambiguity along this dimension. Nevertheless, the planner faces
ambiguity because it knows only that the private sector’s model o is within a ‘‘ball’’ around its own model. The Ramsey
planner evaluates the private sector’s Euler equations using a worst-case model chosen by the Ramsey planner’s alter ego.

This figure is just for motivation. Our formal analysis is more complex. There are many (an infinite number of)
dimensions associated with our ‘‘entropy balls’’ of probability specifications. Technically, we do not specify such balls but
instead penalize relative entropy as a way to restrain how much concern the Ramsey planner has for model ambiguity. To
do this, we extend and apply the multiplier preferences of Hansen and Sargent (2001).
3 Through its choice of actions that affect the equilibrium allocation, the planner manipulates private agents’ worst-case model.
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For each of our three types of ambiguity, we compute a robust Ramsey plan and an associated worst-case probability
model. A worst-case distribution is sometimes called an ex post distribution, meaning after the robust decision maker’s
minimization over probabilities. Ex post, ambiguity of type 1 delivers a model of endogenously distorted homogeneous

beliefs, while ambiguities of types 2 and 3 give distinct models of endogenously heterogeneous beliefs.
A Ramsey problem can be solved by having the planner choose a path for the private sector’s decisions subject to

restrictions on the private sector’s co-state variable lt at dates tZ0 that are implied by the private sector’s optimization.4 The
private sector’s Euler equation for lt involves conditional expectations of future values of lt , which makes it differ from a
standard ‘backward-looking’ state evolution equation in ways that we must take into account when we pose Ramsey problems
that confront alternative types of ambiguity. A Ramsey plan can be represented recursively by using the ‘‘co-state on the private
sector costate,’’ lt , as a state variable ct for the Ramsey planner. The planner chooses the initial value c0 to maximize its time 0
value function. The evolution of ct encodes the planner’s commitment to confirm the private sector’s earlier expectations about
the Ramsey planner’s time t actions. It is particularly important for us to characterize the probability distribution with respect
to which the private sector’s expectations are formed and how ct responds to shocks.

For linear-quadratic problems without robustness, a certainty equivalence principle implies that shock exposures have
no impact on decision rules.5 But even in linear-quadratic problems, concerns about robustness make shock exposures
affect decision rules by affecting the scope of concerns about statistical misspecification.

Along with others, in earlier work we have analyzed the effects of shock exposures on robust decisions too casually. In this
paper, we proceed systematically by starting with fundamentals and distinguishing among conditional expectations associated
with alternative probability models. We exploit the finding that, without concerns about robustness, the planner’s
commitment multiplier ct is ‘‘locally predictable’’ and hence has zero exposure to shocks in the current period. We then
describe ways that a Ramsey planner seeks to be robust for each of our three types of statistical ambiguity and produce a
Hamilton–Jacobi–Bellman equation for each. Technically, this paper (1) uses martingales to clarify distinctions among the three
types of ambiguity; (2) finds, to our initial surprise, that even in continuous time limits and even in our very simple linear New
Keynesian model, ambiguity of types II and III lead to zero-sum games that are not linear-quadratic; (3) uses recursive
formulations of Ramsey problems to impose local predictability of commitment multipliers in a direct way; and (4) finds, as a
consequence of (3), that to reduce the dimension of the state in the recursive formulation, it is convenient to transform the
commitment multiplier in a way to accommodate heterogeneous beliefs with ambiguity of types II and III.6

The ex post belief distortion that emerges from ambiguity of type I is reminiscent of some outcomes for a robust social
planning problem appearing in some of our earlier research, but there are important differences. Hansen and Sargent
(2008, Chapters 12 and 13) used a robust social planning problem to compute allocations as well as worst-case beliefs that
we imputed to a representative agent in a model of competitive equilibrium without economic distortions. In effect, we
appealed to welfare theorems and restrictions on preferences to justify a robust planner. We priced risky assets by taking
the representative agent’s first-order conditions for making trades in a decentralized economy, then evaluating them at the
allocation chosen by a robust social planner under the imputed worst-case beliefs (e.g. Hansen and Sargent, 2008, Chapter
14). In this paper, we cannot appeal to the welfare theorems.7

Section 2 describes a simple New Keynesian model that we use as a laboratory in which to study our three types of
ambiguity. Section 3 sets the stage by solving a Ramsey problem without robustness in two ways, one in the space of
sequences, another recursively. Section 4 describes how to represent alternative probability models as distortions of a
baseline approximating model. Section 5 solves a robust Ramsey problem under the first type of ambiguity. Section 6
studies a Ramsey problem with exogenous belief heterogeneity between the private sector and the Ramsey planner. The
model with arbitrary belief heterogeneity is of interest in its own right and is also useful in preparing for the analysis of the
robust Ramsey problem under the second type of ambiguity to be presented in Section 7. Section 8 then studies the robust
Ramsey problem under the third type of ambiguity. Section 9 proposes new local approximations to compare outcomes
under robust Ramsey plans constructed under the three types of ambiguity. We illustrate our analysis with a numerical
example in Section 10. After Section 11 offers concluding remarks, Appendices B and C describe calculations that illustrate
how sequence formulations and recursive formulations of Ramsey plans agree.

2. Illustrative model

For concreteness, we use a simple version of a New Keynesian model of Woodford (2010). We begin by describing the
model and Ramsey problems without ambiguity in discrete time and in continuous time.
4 Marcet and Marimon (2011) and the references cited there formulate a class of problems like ours under rational expectations. Marcet and

Marimon (2011) discuss measurability restrictions on multipliers that are closely related to ones that we impose.
5 Shock exposures do affect constant terms in value functions.
6 We do not analyze the type 0 ambiguity studied by Karantounias (forthcoming) mainly for the technical reason that the trick we use to reduce the

dimension of the state in the planner’s Bellman equations for ambiguity of types II and III in Sections 7 and 8 does not apply. The Bellman equation

analyzed by Karantounias (2012) contains an additional state variable relative to ours.
7 Even in heterogeneous-agent economies without economic distortions, where the welfare theorems do apply, formulating Pareto problems with

agents who are concerned about robustness requires an additional endogenous state variable to characterize efficient allocations recursively. See

Anderson (2005), who studies risk-sensitive preferences that also have an interpretation as expressing aversion to model ambiguity with what have come

to be called multiplier preferences.
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Let time be discrete with t¼ Ej for E40 and integer jZ0. A cost-push shock ct is a function f ðxtÞ of a Markov state vector
xt described by

xtþ E ¼ gðxt ,wtþ E�wt ,EÞ, ð1Þ

where fwtg is a standard Brownian motion so that the increment wtþ E�wt is normally distributed with mean zero and
variance E and is independent of ws for 0rsrt. The private sector treats c as exogenous to its decisions.

The private sector’s first-order necessary conditions are

pt�pt�E ¼ Elt , ð2Þ

lt ¼ EðkytþctþcnÞþexpð�dEÞE ltþ E9F t

� �
, ð3Þ

EiE,t�Elt ¼ rE½ytþ E9F t��rytþEd
n, ð4Þ

where iE,t is the one-period (of length E) nominal interest rate set at date t. Eq. (3) is a New Keynesian Phillips curve and Eq.
(4) is a consumption Euler equation.

To obtain a continuous-time model that is mathematically easier to analyze, we shrink the discrete-time increment E.
Index the time increment by E¼ 1=2j for some positive integer j. Define the local mean mlt

to be

ml,t ¼ lim
Ek0

1

E E½ltþ E�lt9F t �,

and drive E to zero in (3) to get a continuous time version of a new Keynesian Phillips curve

ml,t ¼ dlt�kyt�ct�cn: ð5Þ

Applying a similar limiting argument to (4) produces a continuous-time consumption Euler equation

my,t ¼
1

r ðit�lt�dn
Þ, ð6Þ

where here lt is the instantaneous inflation rate and it is the instantaneous nominal interest rate. We depict the
continuous-time counterpart to the exogenous state evolution equation (1) as

dxt ¼ mxðxtÞ dtþsxðxtÞ dwt :

These equations, or modifications of them that appropriately allow for alternative specifications of private sector beliefs,
constrain our Ramsey planners.

3. No concern about robustness

In this section, we first pose a Ramsey problem as a Lagrangian and deduce a set of first-order conditions that restrict
the dynamic evolution of the state variables and associated Lagrange multipliers. We can compute a Ramsey plan by
solving these equations subject to the appropriate initial and terminal conditions. When these equations are linear, we
could solve them using invariant subspace methods. We take a different route by developing and solving a recursive
version of the Ramsey problem using the multiplier on the private sector Euler equation as a state variable. The idea of
constructing a recursive representation of a Ramsey plan in this way has a long history. See Ljungqvist and Sargent (2004,
Chapters 18 and 19) for an extensive discussion and references. In later sections, we will extend that literature by
constructing robust counterparts to recursive formulation of the Ramsey problem in discrete and continuous time.

3.1. Planner’s objective function

In discrete time and without concerns about robustness the Ramsey planner maximizes

�
1

2
E E

X1
j ¼ 0

expð�EdjÞ½ðlEjÞ2þzðyEj�ynÞ
2
�9F0

0@ 1A: ð7Þ

In a continuous-time limit, the planner’s objective becomes

�
1

2
E

Z 1
0

expð�dtÞ½ðltÞ
2
þzðyt�ynÞ

2
� dt9F 0

� �
:

In posing our Ramsey problem, we follow Woodford (2010) in specifying the Ramsey planner’s objective function in a
way that induces the Ramsey planner to trade off output and inflation dynamics. The Ramsey planner takes the firm’s Euler
equation (5) as an implementability constraint and chooses welfare-maximizing processes for fltg and fytg. The consumer’s
Euler equation (6) will then determine an implied interest rate rule it ¼ lt�rmy,tþdn that implements the Ramsey plan.
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3.2. A discrete-time sequence formulation

A Ramsey planner chooses sequences flEj,yEjg
1
j ¼ 0 to maximize (7) subject to (3) and ct ¼ f ðxtÞ with xt governed by (1).

Form the Lagrangian

�
1

2
E E

X1
j ¼ 0

expð�EdjÞ½ðlEjÞ2þzðyEj�ynÞ
2
�9F 0

24 35þE
X1
j ¼ 0

expð�EdjÞcEðjþ1Þ½lEj�EðkyEjþcEjþcnÞ�expð�EdÞlðjþ1ÞE�9F 0

24 35: ð8Þ
Remark 3.1. The private sector Euler equation (3) is cast in terms of mathematical expectations conditioned on time t

information. This makes it appropriate to restrict the Lagrange multiplier ctþ E to depend on date t information. We shall
exploit this measurability condition extensively when we drive E to zero to obtain continuous-time limits. This
measurability condition is the source of local predictability of ct .

First-order conditions for maximizing (8) with respect to lt , yt, respectively, are

ctþ E�ct�Elt ¼ 0,

�zðyt�ynÞ�kctþ E ¼ 0: ð9Þ

Combine (9) with the equation system (1) that describes the evolution of fxtg and also the private-sector Euler equation (3). When
the x dynamics (1) are linear, a Ramsey plan without robustness is a stabilizing solution of the resulting system of equations,
which can be computed using a stabilizing subspace method described by Hansen and Sargent (2008, Chapters 4 and 16).

3.3. A recursive formulation

We now propose an alternative approach to the Ramsey problem without robustness that builds on recursive
formulations of Stackelberg or Ramsey problems that were summarized by Ljungqvist and Sargent (2004, Chapters 18 and
19) and extended by Marcet and Marimon (2011). To encode history, view c as an endogenous state variable that evolves
as indicated by (9), namely

ctþ E ¼ Eltþct :

Because the Brownian increment wtþ E�wt does not affect the evolution of ctþe, ctþe is said to be ‘‘locally predictable’’.
In the spirit of dynamic programming, we transform a multi-period problem to a sequence of two-period problems.

Recall that the cost-push shock c is a function f(x) of a Markov state vector x that obeys (1). Guess that an appropriate state
vector for next period is ðxþ ,cþ Þ. Soon we will argue that we can interpret cþ as a commitment multiplier. Let
lþ ¼ Fþ ðxþ ,cþ Þ be a policy function for lþ . Let V þ ðxþ ,cþ Þ denote a planner’s next-period value function inclusive of a
term that encodes commitment. To be more precise Vðx,cÞþcFðx,cÞ will be the discounted expected value of the single
period contributions given by

�
E
2
½ðltÞ

2
þzðyt�ynÞ

2
�

to the Ramsey planner’s objective. In our first recursive formulation, we will take to be the next period function
V þ ðxþ ,cþ Þþcþ F þ ðxþ ,cþ Þ and then compute the current-period functions F and V. To ensure that commitments are
honored we will subtract a term cl from the current-period objective when we optimize with respect l required for
computing F. Notice that V includes this term evaluated at lFðx,cÞ.

It turns out that by virtue of optimization, we can restrict the two functions V þ and Fþ to satisfy

V þ2 ðx
þ ,cþ Þ ¼�Fþ ðxþ ,cþ Þ, ð10Þ

where V þ2 is the derivative of V þ with respect to its second argument cþ . We will show that property (10) is replicated
under iteration on the Bellman equation for the Ramsey planner. The relations between V þ and Fþ and between V and F

will lead us to construct an alternative Bellman equation mapping V þ to V. Our specific tasks in this section are to (i)
provide an evolution equation for cþ and interpret c and cþ formally as commitment multipliers; (ii) show that the
counterpart to restriction (10) applies to F; and (iii) construct a Bellman equation that applies to V and V þ with no specific
reference to F or Fþ .

Problem 3.2. Our first Bellman equation for the Ramsey planner is

Vðx,cÞ ¼max
y,l
�cl�

E
2
½l2
þzðy�ynÞ

2
�þexpð�dEÞE½V þ ðxþ ,cþ Þþcþ F þ ðxþ ,cþ Þ9x,c�, ð11Þ

where the maximization is subject to

l�expð�dEÞE½F þ ðxþ ,cþ Þ9x,c��E½kyþ f ðxÞþcn� ¼ 0, ð12Þ

Elþc�cþ ¼ 0,
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gðx,wþ�wÞ�xþ ¼ 0: ð13Þ

Notice the term �cl on the right side of (11). This term remembers and confirms commitments and plays a vital role when
it comes to optimizing with respect to l. In the special case in which c¼ 0, which happens to be the initial value set at by
the Ramsey planner at date zero, the only date at which the planner is free to set c, this commitment term vanishes. Soon
we will display an alternative Bellman equation (17) that involves only the function V but that nevertheless encodes the
private sector Euler equation.

To justify our interpretation of cþ and c as commitment multipliers, we solve the Bellman equation (11) by first
introducing multipliers ‘1 and ‘2 on the first two constraints (12) and (13) for Problem 3.2. First-order conditions for
maximizing the resulting Lagrangian with respect to l and y are

�Elþ‘1þE‘2�c¼ 0,

�zðy�ynÞ�k‘1 ¼ 0: ð14Þ

Combining the first equation of (14) with the second constraint (13) for Problem 3.2 gives

cþ ¼ ‘1þE‘2:

Our next result justifies our interpretation of cþ and the evolution that we posited for cþ in the constraint (13). We link
the multiplier ‘1 to cþ and verify that this constraint is slack.

Lemma 3.3. In problem 3.2, the multiplier ‘1 on constraint (12) equals cþ and the multiplier ‘2 on constraint (13) equals zero.

Furthermore

y¼ yn�
k
z

� �
ðcþElÞ, ð15Þ

where l¼ Fðx,cÞ satisfies the private firm’s Euler equation (12). Finally, V2ðx,cÞ ¼�Fðx,cÞ.

See Appendix A for a proof.
Finally, we construct a Bellman equation for the Ramsey planner that incorporates the private sector Euler equation by

using our characterization of cþ as a Lagrange multiplier. Express the contribution of the private sector Euler equation to a
Lagrangian formed from the optimization on the right side of (11)

cþ ½l�expð�dEÞE½Fþ ðxþ ,xþ Þ9x,c��EðkyþcþcnÞ� ¼�expð�dEÞE½cþ F þ ðxþ ,cþ Þ9x,c�þcþ ½l�EðkyþcþcnÞ�,

where we have used the fact that cþ is locally predictable. Adding this Lagrangian term to the Ramsey planner’s objective
results in

�cl�
E
2
½l2
þzðy�ynÞ

2
�þexpð�dEÞE½V þ ðxþ ,cþ Þ9x,c�þcþ ½l�EðkyþcþcnÞ�: ð16Þ

Not surprisingly, by differentiating with respect to y, l and cþ , we reproduce consequence (15) of the first-order
conditions reported in Lemma 3.3. This optimization has us maximize with respect to l and y. By maximizing with respect
to l we obtain state evolution (13), and by minimizing with respect to cþ , we obtain the private sector Euler equation
(12).

In what follows we consider cþ as an endogenous state variable and l as a control. After substituting for cþ into the
Lagrangian (16), we are led to study the following recursive, zero-sum game.

Problem 3.4. An alternative Bellman equation for a discrete-time Ramsey planner without robustness is

Vðx,cÞ ¼min
l

max
y

E
2
½l2
�zðy�ynÞ

2
�þexpð�dEÞE½V þ ðxþ ,cþ Þ9x,c��EðcþElÞ½kyþ f ðxÞþcn�, ð17Þ

where the extremization is subject to

cþEl�cþ ¼ 0,

gðx,wþ�w,EÞ�xþ ¼ 0: ð18Þ

Claim 3.5. Discrete-time problems 3.2 and 3.4 share a common value function V and common solutions for y, l as functions of

the state vector ðx,cÞ.

Proof. The first-order condition for y implies the same formula given in Lemma 3.3. To verify the private sector Euler
equation, introduce a multiplier ‘ on constraint (18). Differentiate with respect to l and divide by E

lþ‘�E½kyþ f ðxÞþcn� ¼ 0: ð19Þ

Differentiate with respect to cþ and substitute �Fþ for V þ2 to get

�‘�expð�dEÞE½Fþ ðxþ ,cþ Þ9x,c� ¼ 0:
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Solving this equation for ‘ and substituting into (19) allows us to express the private sector Euler equation as constraint
(12) in Problem 3.2. &

Remark 3.6. In Problem 3.4, the Ramsey planner minimizes with respect to l, taking into account its contribution to the
evolution of the multiplier cþ . That we minimize with respect to l is the outcome of our having substituted for cþ into
(16). In contrast to Problem 3.2, the constraint (13) ceases to be slack. Instead of being included as a separate constraint,
Problem 3.4 embeds the private-sector Euler equation (i.e., Eq. (12)), in the criterion to be optimized.

Remark 3.7. At time 0, c is a choice variable for the Ramsey planner. The optimal choice of c solves

min
c

Vðx,cÞþcFðx,cÞ:

First-order conditions are

V2ðx,cÞþFðx,cÞþcF2ðx,cÞ ¼ 0:

Since V2 ¼�F, a solution to the above equation is c¼ 0, which is consistent with our initial condition c0 ¼ 0.

3.4. Continuous-time recursive formulation

In a continuous-time formulation of the Ramsey problem without concerns about robustness, the exogenous state
vector evolves according to

dxt ¼ mxðxtÞ dtþsxðxtÞ dwt ,

dct ¼ lt dt:

Using Ito calculus, we characterize the effects of the evolution of x,c on the value function V by differentiating the value
function. Subtract V from both sides of (17) and divide by E to obtain

Problem 3.8.

0¼min
l

max
y

1

2
l2
�
z
2
ðy�ynÞ

2
�kcy�cf ðxÞ�ccn�dVþV1 � mxþV2lþ

1

2
traceðs0xV11sxÞ: ð20Þ

From the first-order conditions

y¼ yn�
k
z
c,

l¼�V2:

As in our discrete-time formulation, we used a Lagrangian to impose the private sector Euler equation under the
approximating model. In Appendix A, we verify that satisfaction of the Hamilton–Jacobi–Bellman equation (20) implies
that the Euler equation is also satisfied.

We end the section with a caveat. We have assumed attainment and differentiability without providing formal
justification. We have not established the existence of smooth solutions to our Bellman equations. While we could
presumably appeal to more general viscosity solutions to the Bellman equation, this would require a different approach to
verifying that the private sector’s Euler equation is satisfied than what we have done in Appendix A. In the numerical
example of Section 10, there is a quadratic solution to the Hamilton–Jacobi–Bellman (HJB) equation (20), so there the
required smoothness prevails.

4. Representing probability distortions

To represent an alternative probability model, we use a positive martingale z with a mathematical expectation with
respect to the approximating model equal to unity. By setting z0 ¼ 1, we indicate that we are conditioning on time 0
information. A martingale z is a likelihood ratio process for a probability model perturbed vis-a-vis an approximating
model. It follows from the martingale property that the perturbed probability measure obeys a Law of Iterated
Expectations. Associated with a martingale z are the perturbed mathematical expectations

bEðrtþt9F tÞ ¼ E
ztþt

zt
rtþt

����F t

� �
,

where the random variable rtþt is in the date tþt information set. By the martingale property

E
ztþt

zt

����F t

� �
¼ 1:



L.P. Hansen, T.J. Sargent / Journal of Monetary Economics 59 (2012) 422–445 429
4.1. Measuring probability distortions

To measure probability distortions, we use relative entropy, an expected log-likelihood ratio, where the expectation is
computed using a perturbed probability distribution. Following Hansen and Sargent (2007), the termX1

j ¼ 0

E exp½�Edðjþ1Þ�EðzEðjþ1Þ½log zEðjþ1Þ�log zEj�9F0Þ ¼ ½1�expð�EdÞ�
X1
j ¼ 0

E exp½�Edðjþ1Þ�E½zEðjþ1Þ log zEðjþ1Þ9F 0� ð21Þ

measures discounted relative entropy between a perturbed (by z) probability model and a baseline approximating model.
The component

E½zEðjþ1Þ log zEðjþ1Þ9F 0�

measures conditional relative entropy of perturbed probabilities of date Eðjþ1Þ events conditioned on date zero
information, while

EðzEðjþ1Þ½log zEðjþ1Þ�log zEj�9F EjÞ

measures conditional relative entropy of perturbed probabilities of date Eðjþ1Þ events conditioned on date Ej information.

4.2. Representing continuous-time martingales

We acquire simplifications by working with a continuous time model that emerges from forming a sequence of discrete
time models with time increment E and driving E to zero. For continuous Brownian motion information structures, altering the
probability model changes the drift of the Brownian motion in a way conveniently described in terms of a multiplicative
representation of the martingale fztg

dzt ¼ ztht � dwt :

Under the perturbed model associated with the martingale z, the drift of dwt is htdt. We use Ito’s lemma to characterize the
evolution of log z and z log z

d log zt ¼�
1
29ht9

2
dtþht � dwt ,

dzt log zt ¼
1
2ztðhtÞ

2 dtþztð1þ log ztÞht � dwt :

The drift or local mean of

ztþ E

zt

� �
ðlog ztþ E� log ztÞ,

at t for small positive E is 1
2 ðhtÞ

2. Hansen et al. (2006) used this local measure of relative entropy. Discounted relative entropy in
continuous time is

1

2
E

Z 1
0

expð�dtÞztðhtÞ
2 dt

����F 0

� �
¼ dE

Z 1
0

expð�dtÞzt log zt dt

����F0

� �
:

In our continuous-time formulation, the robust Ramsey planner chooses h.

5. The first type of ambiguity

In the first type of ambiguity, the planner thinks that the private sector knows a model that is distorted relative to the
planner’s approximating model.

5.1. Managing the planner’s ambiguity

To respond to its ambiguity about the private sector’s statistical model, the Ramsey planner chooses z to minimize and
y and l to maximize a multiplier criterion8

�
1

2
E E

X1
j ¼ 0

expð�EdjÞzEj½ðlEj

0@ 1A2

þzðyEj�ynÞ
2
�9F 0ÞþyE

X1
j ¼ 0

E exp½�Edðjþ1Þ�zEðjþ1Þ½log zEðjþ1Þ�log zEj�

������F 0

0@ 1A ð22Þ

subject to the implementability constraint

lt ¼ EðkytþctþcnÞþexpð�dEÞE ztþ E

zt
ltþ E

����F t

� �
, ð23Þ
8 See Hansen and Sargent (2001).
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and the exogenously specified cost-push process. Here the parameter y penalizes martingales z with large relative
entropies. Setting y arbitrarily large makes this problem approximate a Ramsey problem without robustness. In (22), the
Ramsey planner evaluates its objective under the perturbed probability model associated with the martingale z. Also, in
the private sector’s Euler equation (23), the Ramsey planner evaluates the expectation under the perturbed model. These
choices capture the planner’s belief that the private sector knows a correct probability specification linked to the planner’s
approximating model by a probability distortion z that is unknown to the Ramsey planner but known by the private sector.

Evidently

E
ztþ E

zt
ðctþ E�ctÞ

����F t

� �
¼ EncctþE

ztþ E

zt
ðwtþ E�wtÞ

����F t

� �
,

where

E
ztþ E

zt
ðwtþ E�wtÞ9F t

� �
is typically not zero, so that the martingale fztg alters the conditional mean of the cost-push process.

Form the Lagrangian

�
1

2
E E

X1
j ¼ 0

expð�EdjÞzEj½ðlEjÞ2þzðyEj�ynÞ
2
�

������F 0

24 35þyE
X1
j ¼ 0

E exp½�Edðjþ1Þ�zEðjþ1Þ½log zEðjþ1Þ� log zEj�

������F 0

0@ 1A

þE
X1
j ¼ 0

expð�EdjÞzEðjþ1ÞcEðjþ1Þ½lEj�EðkyEjþcEjþcnÞ�expð�EdÞlðjþ1ÞE�

������F 0

24 35: ð24Þ

First-order conditions for maximizing (24) with respect to lt and yt, respectively, are

ztctþ E�ztct�Eztlt ¼ 0,

�zztðyt�ynÞ�kztctþ E ¼ 0,

where we have used the martingale property Eðztþ E9F tÞ ¼ zt . Because zt is a common factor in both first-order conditions,
we can divide both by zt and thereby eliminate zt.
5.2. Recursive formulation with arbitrarily distorted beliefs

For our recursive formulation in discrete time, initially we posit that the cost-push process c is a function f(x) of a
Markov state vector x and that the martingale z itself has a recursive representation, so that

xþ ¼ gðx,wþ�w,EÞ,

zþ ¼ zkðx,wþ�w,EÞ, ð25Þ

where we impose the restriction E½kðx,wþ�w,EÞ9x� ¼ 1 that lets us interpret zþ =z¼ kðx,wþ�w,EÞ as a likelihood ratio that
alters the one-step transition probability for x. For instance, since wþ�w is a normally distributed random vector with
mean zero and covariance EI, suppose that

kðx,wþ Þ ¼ exp qðxÞ0ðwþ�wÞ�
E
2

qðxÞ0qðxÞ
h i

:

Then the multiplicative martingale increment

zþ

z
¼ kðx,wþ�w,EÞ

transforms the distribution of the increment ðwþ�wÞ from a normal distribution with conditional mean zero to a normal
distribution with conditional mean q(x).

Using this recursive specification, we can adapt the analysis in Section 3.3 to justify solving

Vðx,cÞ ¼min
l

max
y

E
2
½l2
�zðy�ynÞ

2
�þexpð�dEÞE½kðx,wþ�w,EÞV þ ðxþ ,cþ Þ9x,c�

�EðcþElÞ½kyþ f ðxÞþcn�þyE½kðx,wþ�w,EÞ log kðx,wþ�w,EÞ9x,c�,

where the extremization is again subject to (18). We minimize with respect to l, taking into account the contribution of l
to the evolution of c. This takes the specification of the martingale as given. To manage ambiguity of the first type, we
must contemplate the consequences of alternative z’s.
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5.3. A Ramsey planner’s HJB equation for the first type of ambiguity

In a continuous-time formulation of the Ramsey problem with concerns about the first type of ambiguity, we confront
the Ramsey planner with the state vector evolution

dxt ¼ mxðxtÞ dtþsxðxtÞ dwt ,

dzt ¼ ztht � dwt ,

dct ¼ lt dt:

We characterize the impact of the state evolution on continuation values by applying the rules of Ito calculus under the
change of measure. We add a penalty term ðy=2Þ9h92

to the continuous-time objective to limit the magnitude of the drift
distortions for the Brownian motion and then by imitating the derivation of HJB equation (20) deduce

0¼min
l,h

max
y

1

2
l2
�
z
2
ðy�ynÞ

2
þ
y
2
9h92
�kcy�cf ðxÞ�ccn�dVþV1 � ðmxþsxhÞþV2lþ

1

2
trace s0xV11sx

	 

: ð26Þ

Notice how (26) minimizes over h.
The separable form of the objective implies that the order of minimization and maximization can be exchanged. First-

order conditions imply

y¼ yn�
k
z
c,

h¼�
1

y
ðsxÞ

0V1,

l¼�V2: ð27Þ

As in the Ramsey problem without robustness (see Appendix A), to verify that the private sector Euler condition is
satisfied, differentiate the HJB equation (26) for V with respect to c and apply the envelope condition.

5.4. Interpretation of worst-case dynamics

The worst-case ht ¼�ð1=yÞðsxÞ
0V1ðxt ,ctÞ from (27) feeds back on the endogenous state variable ct . As a consequence, the

implied worst-case model makes this endogenous state influence the dynamics of the exogenous state vector xt. The peculiar
feature that fctg Granger-causes fxtg can make the worst-case model difficult to interpret. What does it mean for the Ramsey
planner to believe that its decisions influence the motion of exogenous state variables? To approach this question, Hansen et al.
(2006) develop an alternative representation. As shown by Fleming and Souganidis (1989), in a two-player zero-sum HJB
equation, if a Bellman–Isaacs condition makes it legitimate to exchange orders of maximization and minimization for the
recursive problem, then orders of maximization and minimization can also be exchanged for a corresponding zero-sum game
that constitutes a date zero, formulation of a robust Ramsey problem in the space of sequences. That allows us to construct an
alternative representation of the worst-case model without dependence of the dynamics of the exogenous state vector xt on ct .
We accomplish this by augmenting the exogenous state vector as described in detail by Hansen et al. (2006) and Hansen and
Sargent (2008, Chapter 7) in what amounts to an application of the ‘‘Big K, little k’’ trick common in macroeconomics. In
particular, we construct a worst-case exogenous state-vector process

d
xt

Ct

" #
¼

mxðxtÞ

Fðct ,CtÞ

" #
dtþ

sxðxtÞ

0

� �
�

1

y
sxðxtÞ

0V1ðxt ,CtÞ dtþd ~wt

� �
ð28Þ

for a multivariate standard Brownian increment d ~wt . We then construct a Ramsey problem without robustness but with this
expanded state vector. This yields an HJB equation for a value function ~V ðx,C,cÞ that depends on both big C and little c. After
solving it, we can construct ~F via

~F ¼� ~V 3:

Then

Fðc,cÞ ¼ ~F ðc,c,cÞ:

Provided that we set c0 ¼C0 ¼ 0, it will follow that ct ¼Ct and that the resulting fltg and fytg processes from our robust
Ramsey plan with the first type of ambiguity will coincide with the Ramsey processes under specification (28) for the cost-push
process.

5.5. Relation to previous literature

The form of HJB equation (26) occurs in the literature on continuous time robust control. For instance, see James (1992)
and Hansen et al. (2006). It is also a continuous-time version of a discrete-time Ramsey problem studied by researchers
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including Walsh (2004), Giordani and Soderlind (2004), Leitemo and Soderstrom (2008), Dennis (2008), and Olalla and
Gomez (2011). We have adapted and extended this literature by suggesting an alternative recursive formulation together
with appropriate HJB equations. In the next subsection, we correct misinterpretations in some of the earlier literature.

5.5.1. Not sharing worst-case beliefs

Walsh (2004) and Giordani and Soderlind (2004) argue that private agents share the government’s concern about
robustness so that when the government chooses beliefs in a robust fashion, agents act on these same beliefs. We think
that interpretation is incorrect and prefer the one we have described as the first type of ambiguity. In selecting a worst-
case model, the private sector would look at its own objective functions and constraints, not the government’s, so robust
private agents’ worst-case models would differ from the government’s. Even if the government and the private agents
were to share the same value of y, they would compute different worst-case models.9 Dennis (2008) argues that ‘‘the
Stackelberg leader believes the followers will use the approximating model for forming expectations and formulates policy
accordingly.’’ Our Ramsey problem for the second type of ambiguity has this feature, but not our Ramsey problem for the
first type, as was mistakenly claimed by Dennis.

As emphasized above, we favor an interpretation of the robust Ramsey plans of Walsh (2004) and others as one in
which the Ramsey planner believes that private agents know the correct probability model. Because the associated
inference problem is so immense, the Ramsey planner cannot infer private agents’ model by observing their decisions (see
Section 5.5.2). The Ramsey planner’s worst-case z is not intended to ‘‘solve’’ this impossible inference problem. It is just a
device to construct a robust Ramsey policy. It is a cautious inference about private agents’ beliefs that helps the Ramsey
planner design that robust policy. Since private firms know the correct model, they would actually make decisions by
using a model that generally differs from the one associated with the Ramsey planner’s minimizing fztg. Therefore, the
Ramsey planner’s ex post subjective decision rule for the firm as a function of the aggregate states, obtained by solving its
Euler equation with the minimizing fzg, will not usually produce the observed value of ptþ E�pt . This discrepancy will not
surprise the Ramsey planner, who knows that discrepancy is insufficient to reveal the process fztg actually believed by the
private sector.

5.5.2. An intractable model inference problem

The martingale fztg defining the private sector’s model has insufficient structure to allow the Ramsey planner to infer
the private sector’s model from observed outcomes fptþ E�pt ,xt ,ytg. The Ramsey planner knows that the probability
perturbation fztg gives the private sector a model that has constrained discounted entropy relative to the approximating
model. This leaves the immense set of unknown models so unstructured that it is impossible to infer the private sector’s
model from histories of outcomes for yt ,xt , and lt . The Ramsey planner does not attempt to reverse engineer fztg from
observed outcomes because it cannot. To indicate the magnitude of the inference problem, consider a discrete time
specification and suppose that after observing inflation, the Ramsey planner solves an Euler equation forward to infer a
discounted expected linear combination of output and a cost-push shock. If the Ramsey planner were to compare this to
the outcome of an analogous calculation based on the approximating model, it would reveal a distorted expectation. But
there are many consistent ways to distort dynamics that rationalize this distorted forecast. One would be to distort only
the next period transition density and leave transitions for subsequent time periods undistorted. Many other possibilities
are also consistent with the same observed inflation. The computed worst-case model is one among many perturbed
models consistent with observed data.

6. Heterogeneous beliefs without robustness

In Section 7, we shall study a robust Ramsey planner who faces our second type of ambiguity. Section 7 planner
distrusts an approximating model but believes that private agents trust it. Because ex post the Ramsey planner and the
private sector have disparate beliefs, many of the same technical issues for coping with the second type of ambiguity arise
in a class of Ramsey problems with exogenous heterogeneous beliefs. So we begin by studying situations in which both the
Ramsey planner and the private agents completely trust different models.

To make a Ramsey problem with heterogeneous beliefs manageable, it helps to use the perturbed probability model
associated with fztg when computing the mathematical expectations that appear in the system of equations whose
solution determines an equilibrium. To prepare a recursive version of the Ramsey problem, it also helps to transform the
ct variable that measures the Ramsey planner’s commitments in a way that reduces the number of state variables. We
extend the analysis in Section 3.3 to characterize the precise link between our proposed state variable and the multiplier
on the private sector Euler equation.
9 Giordani and Soderlind (2004), in particular, argue that ‘‘we follow Hansen and Sargent in taking the middle ground, and assume that the private

sector and government share the same loss function, reference model and degree of robustness.’’ But even if the government and private sector share the

same loss function, the same reference model, and the same robustness parameter, they still might very well be led to different worst-case models

because they face different constraints. We do not intend to criticize Walsh (2004) and Giordani and Soderlind (2004) unfairly. To the contrary, it is a

strength that on this issue their work is more transparent and criticizable than many other papers.
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With exogenous belief heterogeneity, it is analytically convenient to formulate the Lagrangian for a discrete time
version of the Ramsey planner’s problem as

�
1

2
E E

X1
j ¼ 0

expð�EdjÞzEj½ðlEjÞ2þzðyEj�ynÞ
2
�

������F 0

24 35þE
X1
j ¼ 0

expð�EdjÞzEjcEðjþ1Þ½lEj�EðkyEjþcEjþcnÞ�expð�EdÞlðjþ1ÞE�9F0

24 35:
ð29Þ

6.1. Explanation for treatment of ctþ E

Compare (29) with the corresponding Lagrangian (24) for the robust Ramsey problem for the first type of ambiguity
from Section 5. There we used ztþ Ectþ E as the Lagrange multiplier on the private firm’s Euler equation at the date t

information set. What motivated that choice was that in Section 5 model with the first type of ambiguity, private agents
use the z-perturbed model, so their expectations can be represented as

E
ztþ E

zt
ltþ E

����F t

� �
,

where zt is in the date t information set. Evidently

ztþ E

zt
ztctþ E ¼ ztþ Ectþ E,

which in Section 5 allowed us to adjust for the probability perturbation by multiplying ctþ e by ztþ e and then appropriately
withholding ztþ e as a factor multiplying ltþ e in the Euler equation that ctþ eztþ e multiplies. In contrast to the situation in
Section 5, here the private sector embraces the original benchmark model, so the private firm’s Euler equation now
involves the conditional expectation Eðltþ E9F tÞ taken with respect to the approximating model. The form of this
conditional expectation leads us to attach Lagrange multiplier ztctþ E to the private firm’s Euler equation at the
information set at date t, a choice that implies that the ratio ðztþ EÞ=zt does not multiply ltþ E in the Lagrangian (29).

6.2. Analysis

First-order conditions associated with lt for tZ0 are

ztctþ E�Eztlt�zt�Ect ¼ 0, ð30Þ

and first-order conditions for yt for tZ0 are

�Ezztðyt�ynÞ�Ekctþ Ezt ¼ 0:

To facilitate a recursive formulation, define

xtþ E ¼
zt

ztþ E
ctþ E, ð31Þ

which by virtue of (30) implies

xtþ E ¼ E
zt

ztþ E
ltþ

zt

ztþ E
xt :

While the process fxtg is not locally predictable, the exposure of xtþ E to shocks comes entirely through ztþ E. The
conditional mean of xtþ E under the perturbed measure associated with {zt} satisfies

E
ztþ E

zt
xtþ E

����F t

� �
¼ Eltþxt :

First-order conditions for yt imply

ðyt�ynÞ ¼�
k
z

� �
ztþ E

zt
xtþ E:

Evidently

E
ztþ E

zt

� �
xtþ Eltþ E

����F t

� �
¼ctþ EEðltþ E9F tÞ,

a prediction formula that suggests a convenient way to pose the Ramsey planner’s optimization under the z model.

6.3. Recursive formulation with exogenous heterogeneous beliefs

We continue to view the cost-push shock c is a function f(x) of a Markov state vector x and use evolution equation (25)
for xþ and zþ . As a prolegomenon to studying robustness, we extend the analysis of Section 3.3 to describe a recursive way
to accommodate exogenous heterogeneity in beliefs described by the likelihood ratio kðx,wþ�w,EÞ. We again work
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backwards from a continuation-policy function Fþ ðxþ ,xþ Þ for the private-sector co-state variable lþ and a continuation-
value function V þ ðxþ ,xþ Þ. To start our backwards recursions, we assume that

V þ2 ðx
þ ,xþ Þ ¼�Fþ ðxþ ,xþ Þ: ð32Þ

Problem 6.1. The Ramsey planner’s Bellman equation is

Vðx,xÞ ¼max
y,l
�xl�

E
2
½l2
þzðy�ynÞ

2
�þexpð�dEÞE zþ

z

� �
½V þ ðxþ ,xþ Þþxþ Fþ ðxþ ,xþ Þ�

����x,x
� �

,

where the maximization is subject to

l�expð�dEÞE½F þ ðxþ ,xþ Þ9x,x��E½kyþ f ðxÞþcþ � ¼ 0, ð33Þ

z

zþ

� �
ðElþxÞ�xþ ¼ 0, ð34Þ

gðx,wþ�w,EÞ�xþ ¼ 0,

zkðx,wþ�w,EÞ�zþ ¼ 0:

We now construct an alternative Bellman equation for the Ramsey planner. It absorbs the forward-looking
private sector Euler equation into the planner’s objective function. We still carry along a state transition equation
for xþ .

Introduce multipliers ‘1 and ðzþ =zÞ
	 


‘2 on the constraints (33) and (34). Maximizing the resulting Lagrangian with
respect to l and y gives

�Elþ‘1þE‘2�x¼ 0,

�zðy�ynÞ�k‘1 ¼ 0:

Thus,

zþ

z

� �
xþ�‘1 ¼ E‘2:

Therefore, from what we have imposed so far, it seems that cþ can differ from ‘1, so we cannot yet claim that cþ is ‘‘the
multiplier on the multiplier’’. Fortunately, there is more structure to exploit.

Lemma 6.2. The multiplier ‘1 on constraint (33) equals ðzþ =zÞxþ and the multiplier ‘2 on constraint (34) equals zero. Furthermore,

y¼ yn�
k
z

� �
xþElð Þ,

where l¼ Fðx,xÞ solves the private firm’s Euler equation (33). Finally, V2ðx,xÞ ¼ �Fðx,xÞ.

See Appendix A for a proof. Lemma 6.2 extends Lemma 3.3 to an environment with heterogeneous beliefs.
Finally, we deduce an alternative Bellman equation that accommodates heterogeneous beliefs. From Lemma 6.2, the

Ramsey planner’s value function Vðx,xÞ satisfies

Vðx,xÞ ¼max
y,l
�xl�

E
2
½l2
þzðy�ynÞ

2
�þexpð�dEÞE zþ

z

� �
½V þ ðxþ ,xþ Þþxþ Fþ ðxþ ,xþ Þ�

����x,x
� �

,

where the maximization is subject to constraints (33) and (34) and where l¼ Fðx,xÞ. Express the contribution of the
private sector Euler equation to a Lagrangian as

zþ

z

�
xþ ½l�expð�dEÞE½Fþ ðxþ ,xþ Þ

� ����x,x��Eðkyþcþcþ Þ� ¼�expð�dEÞE zþ

z

� �
½xþ F þ ðxþ ,xþ Þ�

����x,x
� �

þ
zþ

z

� �
xþ ½l�EðkyþcþcnÞ�,

where we have used the fact that zþ =z
	 


xþ is locally predictable. Adding this term to the Ramsey planner’s objective
results in the Lagrangian

�xl�
E
2
½l2
þzðy�ynÞ

2
�þexpð�dEÞE zþ

z

� �
½V þ ðxþ ,xþ Þ�

����x,x
� �

þ
zþ

z

� �
xþ ½l�Eðkyþcþcþ Þ�:

Next we substitute from

zþ

z

� �
xþ ¼ xþEl

to arrive at
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Problem 6.3. An alternative Bellman equation for a discrete-time Ramsey planner with belief heterogeneity is

Vðx,cÞ ¼min
l

max
y

E
2
½l2
�zðy�ynÞ

2
�þexpð�dEÞE½kðx,wþ�w,EÞ½V þ ðxþ ,xþ Þ�9x,x�

�EðxþElÞ½kyþ f ðxÞþcn�, ð35Þ

where the extremization is subject to

z

zþ

� �
Elþxð Þ�xþ ¼ 0,

gðx,wþ�w,EÞ�xþ ¼ 0,

where we have used zþ ¼ zkðx,wþ�w,EÞ to eliminate the ratio zþ =z.

Claim 6.4. Discrete-time problems 6.1 and 6.3 share a common value function V and common solutions for y, l as functions of

the state vector ðx,xÞ.

In problem 6.3, we minimize with respect to l, taking into account its contribution to the evolution of the transformed
multiplier xþ .

In the next subsection, we study the continuous-time counterpart to Problem 6.3. Taking a continuous-time limit adds
structure and tractability to the probability distortions in ways that we can exploit in formulating a robust Ramsey
problem.

6.4. Heterogeneous beliefs in continuous time

Our first step in producing a continuous-time formulation is to characterize the state evolution. For a Brownian motion
information structure, a positive martingale fztg evolves as

dzt ¼ ztht � dwt ,

for some process fhtg. In this section where we assume exogenous belief heterogeneity, we suppose that h is a given
function of the state, but in Section 7 we will study how a robust planner chooses ht. When used to alter probabilities, the
martingale zt changes the distribution of the Brownian motion w by appending a drift htdt to a Brownian increment. Recall
from (31) that

xtþ E ¼
zt

ztþ E
ctþ E:

The ‘‘exposure’’ of dzt to the Brownian increment dwt determines the exposure of dxt to the Brownian increment and
induces a drift correction implied by Ito’s Lemma. By differentiating the function 1=z of the real variable z with respect to z

and adjusting for the scaling by zt ¼ z, it follows that the exposure is �xtht dwt . By computing the second derivative of 1
z

and applying Ito’s Lemma, we obtain the drift correction xt9ht9
2
. Thus,

dxt ¼ lt dtþxt9ht9
2

dt�xth
0
t dwt :

Also suppose that

dxt ¼ mxðxtÞ dtþsxðxtÞ dwt :

While we can avoid using zt as an additional state variable, the fxtg process has a local exposure to the Brownian motion
described by �ht � dwt . It also has a drift that depends on ht under the approximating model.

Write the law of motion in terms of dwt as

d
xt

xt

" #
¼

mxðxtÞ

ltþxt9ht9
2

" #
dtþ

sxðxtÞ

�xth
0
t

" #
dwt ,

where fwtg is standard Brownian motion under the approximating model. Under the distorted model

d
xt

xt

" #
¼

mðxtÞþsxðxtÞht

lt

" #
dtþ

sxðxtÞ

�xh0t

" #
dŵt ,

where fŵtg is a Brownian motion.
In continuous time, we characterize the impact of the state evolution using Ito calculus to differentiate the value

function. We subtract V from both sides of (35) and divide by E to obtain

0¼ min
l

max
y

1

2
l2
�
z
2
ðy�ynÞ

2
�kxy�xc�xcn

�dVþV1 � mxþV2lþðV1Þ
0sxh�xV21sxhþ

1

2
x2V229h9

2
þ

1

2
trace s0xV11sx

	 

, ð36Þ
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where we use the distorted evolution equation. From the first-order conditions

y¼ yn�
k
z
x,

l¼�V2:

As hoped, the private sector Euler equation under the approximating model imposed by the Lagrangian is satisfied as
we verify in Appendix A.

Remark 6.5. To accommodate belief heterogeneity, we have transformed the predetermined commitment multiplier. Via
the martingale used to capture belief heterogeneity, the transformed version of this state variable acquires a
nondegenerate exposure to the Brownian increment. This structure is reminiscent of the impact of belief heterogeneity
in continuous-time recursive utility specifications. Dumas et al. (2000) show that conveniently chosen Pareto weights are
locally predictable when beliefs are homogeneous, but with heterogeneous beliefs Borovička (2012) shows that the Pareto
weights inherit an exposure to a Brownian increment from the martingale that alters beliefs of some economic agents.

7. The second type of ambiguity

By exploiting the structure of the exogenous heterogeneous beliefs Ramsey problem of Section 6, we now analyze a
concern about robustness for a Ramsey planner who faces our second type of ambiguity. In continuous time, we add a
penalty term yð9h92

=2Þ to the planner’s objective and minimize with respect to h

0¼ min
l,h

max
y

1

2
l2
�
z
2
ðy�ynÞ

2
þ
y
2
9h92
�kxy�xc�xcn

�dVþV1 � mxþV2lþðV1Þ
0sxh�xV12sxh�

1

2
x2V229h9

2
þ

1

2
traceðs0xV11sxÞ:

Recursive formulas for y and l remain

y¼ yn�
k
z
x,

l¼�V2,

but now we add minimization over h to Section 6 statement of the Ramsey problem. First-order conditions for h are

yhþðsxÞ
0V1�xðsxÞ

0V12þx
2V22h¼ 0,

so the minimizing h is

h¼�
1

yþx2V22

 !
ðV1Þ

0sx�xV12sx

� �0
: ð37Þ

As was the case for the Ramsey plan under the first type of ambiguity, separability of the recursive problem implies that a
Bellman–Isaacs condition is satisfied. Again in the spirit of Hansen and Sargent (2008, Chapter 7), we can use a date zero
sequence formulation of the worst-case model to avoid having the exogenous state vector feed back onto the endogenous state
variable xt . For a Ramsey plan under the second type of ambiguity, we use this construction to describe the beliefs of a Ramsey
planner while the private sector continues to embrace the approximating model. This makes heterogeneous beliefs endogenous.

8. The third type of ambiguity

We now turn to our third type of ambiguity. Here, following Woodford (2010), a Ramsey planner trusts an approximating
model but does not know the beliefs of private agents. We use fztg to represent the private sector’s unknown beliefs.

8.1. Discrete time

Here the Lagrangian associated with designing a robust Ramsey plan is

�
1

2
E E

X1
j ¼ 0

expð�EdjÞ ðlEjÞ2þzðyEj�ynÞ
2

h i24 ������F0

35þy X1
j ¼ 0

Eexp½�Edðjþ1Þ�
zEðjþ1Þ

zEj

� �
½log zEðjþ1Þ�log zEj�9F 0

24 35
þE

X1
j ¼ 0

expð�EdjÞcEðjþ1Þ lEj�E kyEjþcEjþcn

� �
�expð�EdÞ

zEðjþ1Þ

zEj

� �
lðjþ1ÞE

� �
9F0

24 35:
First-order conditions for lt are

ctþ E�Elt�
zt

zt�E

� �
ct ¼ 0:
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Let

xtþ E ¼
ztþ E

zt

� �
ctþ E,

so that

xtþ E ¼ E
ztþ E

zt

� �
ltþ

ztþ E

zt

� �
xt : ð38Þ

We can imitate the argument underlying Claim 6.4 to construct a Bellman equation

Vðx,xÞ ¼min
l

max
y

E
2
½l2
�zðy�ynÞ

2
�þexpð�dEÞE½V þ ðxþ ,xþ Þ9x,x��EðxþElÞðkyþcþcnÞ, ð39Þ

where the extremization is subject to

xþ ¼ gðx,wþ�w,EÞ,

xþ ¼ kðx,wþ�w,EÞxþEkðx,wþ�w,EÞl,

where we have used zþ ¼ zkðx,wþ�w,EÞ to rewrite the evolution equation for xþ .

8.2. Woodford’s way of restraining perturbations of beliefs

His assumption that the Ramsey planner embraces the approximating model prompted Woodford (2010) to measure
belief distortions in his own special way. Thus, while we have measured model discrepancy by discounted relative entropy
(21), Woodford (2010) instead usesX1

j ¼ 0

E exp½�Edðjþ1Þ�E
zEðjþ1Þ

zEj

� �
½log zEðjþ1Þ�log zEj�9F 0

� �
: ð40Þ

Whereas at date zero we weight ðlog ztþ E�log ztÞ by ztþ E, Woodford weights it by ðztþ EÞ=zt .

Remark 8.1. In discrete time, Woodford’s measure (40) is not relative entropy, but a continuous-time counterpart
1
2 E½
R1

0 expð�dtÞðhtÞ
2 dt9F0� is relative entropy with a reversal of models. To see this, consider the martingale evolution

dzt ¼ ztht � dwt ð41Þ

for some process fhtg. By applying Ito’s Lemma

lim
Ek0

E
ztþ E

zt
ðlog ztþ E�log ztÞ9F t

� �
¼

1

2
9ht9

2
:

Thus, the continuous-time counterpart to Woodford’s discrepancy measure is

1

2
E

Z 1
0

expð�dtÞðhtÞ
2 dt9F 0

� �
¼�dE

Z 1
0

expð�dtÞ log zt dt9F 0

� �
,

where the right side is a measure of relative entropy that switches roles of the fztg-perturbed model and the
approximating model.

8.3. Third type of ambiguity in continuous time

We use Eq. (41) for dzt to depict the small E limit of (38) as

dxt ¼ lt dtþxtht � dwt :

For a Ramsey planner confronting our third type of ambiguity, we compute a robust Ramsey plan under the approximating
model. Stack the evolution equation for xt together with the evolution equation for xt

d
xt

xt

" #
¼

mðxtÞ

lt

" #
dtþ

sxðxtÞ

xth
0
t

" #
dwt :

The continuous-time counterpart to the Hamilton–Jacobi–Bellman equation (39) adjusted for a robust choice of h is

0¼min
l,h

max
y

1

2
½l2
�zðy�ynÞ

2
��kxy�xc�xcnþV1mxþV2l�dVðxÞþ

y
2
9h92
þ

1

2
trace s0xV11sx

� �
þxh0s0xV12þ

1

2
ðxÞ29h92

V22:

First-order conditions for extremization are

y¼ yn�
k
z
x,

l¼�V2,
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h¼�
1

yþx2V22

xs0xV12: ð42Þ

We can verify the private sector Euler equation as we did earlier, except that now we have to make sure that the private
sector expectations are computed with respect to a distorted model that assumes that dwt has drift ht dt, where ht is
described by Eq. (42).

As with the robust Ramsey planner under the first and second types of ambiguity, we can verify the corresponding
Bellman–Isaacs condition. Under the third type of ambiguity, the worst-case model is attributed to the private sector while
the Ramsey planner embraces the approximating model.

9. Comparisons

In this section, we use new types of local approximations to compare models. We modify earlier local approximations
in light of the special structures of our three types of robust Ramsey problems, especially the second and third types, which
appear to be unprecedented in the robust control literature. It is convenient to refer to robust Ramsey plans under our
three types of ambiguity as Types I, II, and III, respectively.

James (1992) constructs expansions that simultaneously explore two dimensions unleashed by increased conditional
volatility, namely increased noise and increased concern about robustness.10 In particular, within the context of our model,
he would set sx ¼

ffiffiffi
t
p

Bx, y¼ 1=Wt, and then compute first derivatives with respect to t and W. James’s approach is
enlightening for Type I, but not for Type II or Type III. To provide insights about Type II and Type III, we compute two first-
order expansions, one that holds yo1 fixed when we differentiate with respect to t; and another that holds fixed t when
we differentiate with respect g¼ 1=y. For both computations, our New Keynesian economic example is simple enough to
allow us to attain quasi-analytical solutions for the parameter configurations around which we approximate. We use these
first-order approximations to facilitate comparisons.11

Suppose that

dxt ¼ A11xt dtþsx dwt ,

ct ¼H � xt ,

where sx is a vector of constants.
Recall the adjustments (27), (37) and (42) in the drift of the Brownian motion that emerge from our three types of

robustness

Type I : hn
¼�

1

y
½s0xV1ðx,xÞ�,

Type II : hn
¼�

1

yþx2V22ðx,xÞ
½s0xV1ðx,xÞ�xs0xV12ðx,xÞ�,

Type III : hn
¼�

1

yþx2V22ðx,xÞ
½xs0xV12ðx,xÞ�,

where the value functions Vðx,xÞ and the scaling of the commitment multiplier xt differs across our three types of
ambiguity. In particular, for Type I we used the commitment multiplier ct and did not rescale it as we did for the Type II
and III models. To facilitate comparisons, for the Type I Ramsey problem we take xt ¼ct . For Type I, the drift adjustment
includes only a contribution from the first derivative of the value function as is typical for problems studied in the robust
control literature. For our Type II and III problems, the second derivative also makes contributions. The associated
adjustments to the planner’s value function in our three types of Ramsey problems are

Type I : �
1

2y
9s0xV1ðx,xÞ92

þ
1

2
trace½s0xV11ðx,xÞsx�,

Type II : �
1

2½yþx2V22ðx,xÞ�
9s0xV1ðx,xÞ�xs0xV12ðx,xÞ92

þ
1

2
trace½s0xV11ðx,xÞsx�,

Type III : �
1

2½yþx2V22ðx,xÞ�
9xs0xV12ðx,xÞ92

þ
1

2
trace½s0xV11ðx,xÞsx�, ð43Þ

where we have included terms involving sx. For each Ramsey plan, let FðV ,sx,yÞ denote the adjustment described in (43).
These adjustment formulas are suggestive but also potentially misleading as a basis for comparison because the

Ramsey planner’s value functions themselves differ across our three types of ambiguity. In the following section, we
10 See Anderson et al. (2012) and Borovička and Hansen (2011) for related approaches.
11 James (1992) provides formal justification for his bi-variate expansion. Our presentation is informal in some respects. Modifications of our

calculations will be required before they can be applied to a broader class of models.
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propose more even-footed comparisons by taking small noise and small robustness approximations around otherwise
linear-quadratic economies.

9.1. Common baseline value function

The baseline value function is the same as that given in Appendix B except the constant term differs because we now
set sx ¼ 0 when computing W. The minimization problem

0¼min
l

1

2
l2
þ
k2

2z
ðxÞ2�kxyn�xc�xcn�dWðx,xÞþ½W1ðx,xÞ� � A11xþW2ðx,xÞl

yields a quadratic value function Wðx,xÞ that we propose to use as a baseline with respect to which we compute
adjustments for our three types of robust Ramsey problems. The Riccati equation is the same one given in Appendix B for
the stochastic problem without a concern for robustness except that initially we ignore a constant term contributed by the
shock exposure sx, allowing us to solve a deterministic problem.

9.2. A small-noise approximation

To facilitate comparisons, we study effects of variations in t for small t under the ‘‘small noise’’ parameterization
sx ¼

ffiffiffi
t
p

Bx, where Bx is a vector with the same number of columns as x.
We deduce the first-order value function expansion

Vðx,xÞ �Wðx,xÞþtNðx,xÞ:

We approximate the optimal l by

l��W2ðx,xÞ�tN2ðx,xÞ,

where N2 differs across our three types of robust Ramsey problems.
We study a parameterized HJB equation of the form

0¼�
1

2
V2ðx,xÞ2þ

k2

2z
ðxÞ2�kxyn�xc�xcn�dVðx,xÞþ½V1ðx,xÞ� � A11xþFðV ,tBx,yÞðx,xÞ: ð44Þ

We can ignore the impact of minimization with respect to l and h because of the usual ‘‘Envelope Theorem’’ that exploits
first-order conditions to eliminate terms involving derivatives of l and h.

We start by computing derivatives with respect to t of the terms included in (43). Thus, we differentiate FðV ,tBx,yÞ
with respect to t for all three plans. These derivatives are

Type I : Sðx,xÞ ¼�
1

2y
9B0xW1ðx,xÞ92

þ
1

2
trace½B0xW11Bx�,

Type II : Sðx,xÞ ¼�
1

2½yþx2W22�
9B0xW1ðx,xÞ�xB0W129

2
þ

1

2
trace½B0xW11B�,

Type III : Sðx,xÞ ¼�
1

2½yþx2W22�
9xB0xW129

2
þ

1

2
trace½B0xW11Bx�:

The function S is then used to compute N. To obtain the equation of interest, differentiate the (parameterized by t) HJB
equation (44) with respect to t to obtain

0¼�W2ðx,xÞ � N2ðx,xÞ�dNðx,xÞþN1ðx,xÞ0A11xþSðx,xÞ, ð45Þ

where we have used the first-order conditions for l to inform us that

l
@l
@t þV2

@l
@t ¼ 0:

Then N solves the Lyapunov equation (45). Notice that S is a quadratic function of the states for Type I, but not for Types II
and III. For Types II and III, this equation must be solved numerically, but it has a quasi-analytic, quadratic solution for
Type I.

9.3. A small robustness approximation

So far we have kept y fixed. Instead, we now let y¼ 1=g and let g become small and hence y large. The relevant
parameterized HJB equation becomes

0¼�
1

2
V2ðx,xÞ2þ

k2

2z
ðxÞ2�kxyn�xc�xcn�dVðx,xÞþ½V1ðx,xÞ� � A11xþF V ,sx,

1

g

� �
ðx,xÞ, ð46Þ
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where FðV ,sx,yÞ is given by (43). Write the three respective adjustment terms FðV ,tBx,ð1=gÞÞ defined in (43) as

Type I : �
g
2
9s0xV1ðx,xÞ92

þ
1

2
trace½s0xV11ðx,xÞsx�,

Type II : �
g

2½1þgx2V22ðx,xÞ�
9s0xV1ðx,xÞ�xs0xV12ðx,xÞ92

þ
1

2
trace½s0xV11ðx,xÞsx�,

Type III : �
g

2½1þgx2V22ðx,xÞ�
9xs0xV12ðx,xÞ92

þ
1

2
trace½s0xV11ðx,xÞsx�: ð47Þ

Since sx is no longer made small in this calculation, we compute the limiting value function as g becomes small to be

Wðx,xÞþ
1

2d
trace½s0xW11sx�,

where the additional term is constant and identical for all three robust Ramsey plans. This outcome reflects a standard
certainty equivalent property for linear-quadratic optimization problems.

We now construct a first-order robustness adjustment

V �Wþ
1

2d
trace s0xW11sx

� �
þgGl

��W2�gG2:

As an intermediate step on the way to constructing G, first differentiate (47) with respect to g

Type I : Hðx,xÞ ¼ �1
29s
0
xW1ðx,xÞ92

,

Type II : Hðx,xÞ ¼�1
29s
0
xW1ðx,xÞ�xs0xW129

2
,

Type III : Hðx,xÞ ¼�1
29xs

0
xW129

2
:

To obtain the equation of interest, differentiate the parameterized HJB equation (46) with respect to g to obtain

0¼�W2ðx,xÞ � G2ðx,xÞ�dGðx,xÞþG1ðx,xÞ0A11xþHðx,xÞ: ð48Þ

Given H, we compute the function G by solving Lyapunov equation (48). See Appendix D for more detail.

9.4. Relation to previous work

To relate our expansions to an approach taken in Hansen and Sargent (2008, Chapter 16), we revisit Type II. Using the same
Section 9.3 parameterization that we used to explore small concerns about robustness, we express the HJB equation as

0¼min
l,h

max
y

1

2
l2
�
z
2
ðy�ynÞ

2
þ

1

2g
9h92
�kxy�xc�xcn�dVþV1 � mxþV2l

þðV1Þ
0sxh�xV21sxh�

1

2
x2V229h9

2
þ

1

2
traceðs0xV11sxÞ: ð49Þ

In Hansen and Sargent (2008, Chapter 16), we arbitrarily modified this HJB equation to become

0¼ min
l,h

max
y

1

2
l2
�
z
2
ðy�ynÞ

2
þ

1

2g
9h92
�kxy�xc�xcn�dUþU1 � mxþU2l

þðU1Þ
0sxh�xU21sxhþ

t
2

traceðs0xU11sxÞ, ð50Þ

which omits the term � 1
2 x

2V229h9
2

that is present in (49). A quadratic value function solves the modified HJB equation (50)
provided that g is not too large. Furthermore, it shares the same first-order robustness expansions that we derived for Type II.
The worst-case h distortion associated with the modified HJB equation (50) is

h¼�gs0x½U1ðx,xÞ�xU12�:

Hansen and Sargent (2008) solve a version of the modified HJB equation (50) iteratively. They guess s0xU12 solves the
resulting Riccati equation, compute a new guess for s0xU12, and then iterate to a fixed point. Thus, the Hansen and Sargent
(2008, Chapter 16) approach yields a correct first-order robustness expansion for a value function that itself is actually
incorrect because of the missing term that appears in the HJB equation (49) but not in (50).12

Consider the first-order robustness expansion for Type II. Since W is quadratic, W1ðx,xÞ�xW12 depends only on x and
not on x. Also, H and G both depend only on x and not on x, so G2 is zero and there is no first-order adjustment for l. The
approximating continuation value function is altered, but only those terms that involve x alone. Given the private sector’s
12 Hansen and Sargent (2008) take the shock exposure of dxt to be zero, as is the case for dct . The correct shock exposure for dxt scales with g and is

zero only in the limiting case. Hansen and Sargent (2008) interpret s0xU12 as the shock exposure for lt , which is only an approximation.
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trust in the approximating model, even though the Ramsey planner thinks that the approximating model might misspecify
the evolution of fxtg, there is no impact on the outcome for l. That same statement applies to Uðx,xÞ�xU12, which illustrates
an observation made by Dennis (2008) in the context of the approach suggested in Hansen and Sargent (2008, Chapter 16).
When we use that original HJB equation to compute the value function, this insensitivity of l to g may not hold.

10. Numerical example

Using parameter values given in Appendix C and a robustness parameter y¼ :014, we illustrate the impact of a concern
for robustness. Most of these parameter values are borrowed from Woodford (2010). Woodford takes the cost-push shock
to be independent and identically distributed. In our continuous-time specification, we assume an AR process with the
same unconditional standard deviation :02 assumed by Woodford. Since y acts as a penalty parameter, we find it revealing
to think about the consequences of y for the worst-case model when setting y. Under the worst-case model, the average
drift distortion for the standardized Brownian increment is about :34. We defer to later work a serious quantitative
investigation including the calibration of y.13 What follows is for illustrative purposes only. Appendix C contains more
numerical details.

10.1. Type I

For Type I ambiguity, we have quasi-analytical solutions. Under the approximating model, the cost-push shock evolves
as

dct ¼�:15ct dtþ :011 dwt , ð51Þ

while under the worst-case model it evolves as

d
ct

Ct

" #
¼
�:0983 :0107

1:2485 �:6926

� �
ct

Ct

" #
dtþ

:0017

:0173

� �
dtþ

:011

0

� �
dwt , ð52Þ

a system in which fCtg Granger causes fctg. In what follows we construct ordinary (non-robust) Ramsey plans for both
cost-push shock specifications (51) and (52). If we set C0 ¼ 0 in (52), the time series trajectories under the ordinary
Ramsey plan constructed assuming that the planner completely trusts the above worst-case cost-push shock model will
coincide with time series trajectories chosen by the robust Ramsey planner who distrusts the approximating model (51).

To depict dynamic implications, we report impulse response functions for the output gap and inflation using the two
specifications (51) and (52) for the cost-push process. Fig. 2 reports impulse responses under the approximating model
(51) and these same responses under the worst-case model (52). Outcomes for the different cost-push shock models are
depicted in the two columns of this figure. We also compute optimal plans for both cost-push shock specifications and
consider the impact of misspecification. Thus, we plot two impulse response functions depending on which cost-push
shock model, (51) or (52), is imputed to the planner who computes an ordinary non-robust Ramsey plan. The impulse
response functions plotted in each of the panels line up almost on top of each other even though the actual cost processes
are quite different. The implication is that the important differences in outcomes do not come from misspecification in the
mind of the Ramsey planner but from what we can regard as different models of the cost-push process imputed to an
ordinary non-robust Ramsey planner.

The worst-case drift distortion includes a constant term that has no impact on the impulse response functions. To shed
light on the implications of the constant term, we computed trajectories for the output gap and inflation under the
approximating model, setting the initial value of the cost-push variable to zero. Again we compare outcomes under a
robust Ramsey plan with those under a Ramsey planner who faces type I ambiguity. The left panel of Fig. 3 reports
differences in logarithms scaled by one-hundred. By construction, the optimal Ramsey plan computed under the
approximating model gives a higher value of the objective function when the computations are done under the
approximating model. The optimal plan begins at yn and diminishes to zero. Under the robust Ramsey plan (equivalently
the plan that is optimal under the worst-case cost model), output starts higher than the target yn and then diminishes to
zero. Inflation is also higher under the robust Ramsey plan. The right panel of Fig. 3 reports these differences under the
worst-case model for the cost process. We initialize the calculation at

c0

C0

c0

264
375¼ :0249

0

0

264
375,

where :0249 is the mean of the cost-push shock under the worst-case model. Again the output gap and inflation are higher
under this robust Ramsey plan. If the worst-case model for the cost-push shock were to be completely trusted by a Ramsey
planner, he would choose the same plan as the robust Ramsey planner. As a consequence, the output gap starts at yn and
13 See Anderson et al. (2003) for a discussion of an approach to calibration based on measures of statistical discrimination.
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diminishes to zero. The optimal plan under the approximating model starts lower and diminishes to zero. The percentage
differences depicted in the right panel of Fig. 3 are substantially larger than those depicted in the left panel.

To summarize our results for Type I ambiguity, while the impulse response function depend very little on whether or
not the robustness adjustment is made, shifts in constant terms do have a nontrivial impact on the equilibrium dynamics
that are reflected in transient responses from different initial conditions.

10.2. Comparing Types II and III to Type I

To compare Type I with Types II and III, we compute derivatives for the worst-case drift distortion and for the decision
rule for l. The worst-case drift coefficients are shown in Table 1. Notice the structure in these coefficients. Recall that the
Type II problem has the private sector embracing the approximating model, and that this substantially limits the impact of
robustness. The coefficient on the (transformed) commitment multiplier is zero, but the other two coefficients remain the
same as in Type I. In contrast, for Type III only the coefficient on x is different from zero. The coefficient is the negative of
that for Type I because the Ramsey planner now embraces the approximating model in contrast to Type I. Since the
constant term is zero for Type III, the impact of robustness for a given value of y, say y¼ :014 as in our previous
calculations, will be small. A calibration of y using statistical criteria in the style of Anderson et al. (2003) would push us to
much lower values of y.



Fig. 3. The left panels assume the approximating model for the cost process initialized at its unconditional mean, 0. The right panels assume the worst-

case models for the cost process initialized at its unconditional mean, :0249. The top panels give trajectory differences without shocks for the logarithm of

the output gap (times one hundred), and the bottom panels give trajectory differences (times one hundred) for inflation without shocks. The time units

on the horizontal axis are quarters.

Table 1
Coefficients for the derivatives of the drift distortion with respect to g times 10.

Ambiguity type c x 1

I .4752 .1271 .0111

II .4752 0 .0111

III 0 – .1271 0
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Robustness also alters the decision rule for l as reflected in the derivatives with respect to g, as shown in Table 2. The
Type II adjustments are evidently zero because the private sector embraces the approximating model. Type III derivatives
are relatively small for the coefficients on ct and xt .

While we find these derivatives to be educational, the numerical calculations for Type I reported in Section 10 are apparently
outside the range to which a linear approximation in g is accurate. This suggests that better numerical approximations to the HJB
equations for Types II and III ambiguity will be enlightening. We defer such computations to future research.
11. Concluding remarks

This paper has made precise statements about the seemingly vague topic of model ambiguity within a setting
with a timing protocol that allows a Ramsey planner who is concerned about model misspecification to commit to



Table 2
Coefficients for the derivatives for inflation with respect to g times 100.

Ambiguity type c x 1

I 0.0854 0.0114 0.0022

II 0.0000 0.0000 0.0000

III 0.0154 0.0114 0.0002
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history-contingent plans to which a private sector adjusts. There are different things that decision makers can be
ambiguous about, which means that there are different ways to formulate what it means for either the planner or the
private agents to experience ambiguity. We have focused on three types of ambiguity. We chose these three partly because
we think they are intrinsically interesting and have potential in macroeconomic applications, and partly because they are
susceptible to closely related mathematical formulations. We have used a very simple New Keynesian model as a
laboratory to sharpen ideas that we aspire to apply to more realistic models.

We are particularly interested in Type II ambiguity because here there is endogenous belief heterogeneity. Since our
example precluded endogenous state variables other than a commitment multiplier, robustness influenced the Ramsey
planner’s value function but not Ramsey policy rules. In future research, we hope to study settings with other endogenous
state variables and with pecuniary externalities that concern a Ramsey planner and whose magnitudes depend partly on
private-sector beliefs.

In this paper, we started with a model that might be best interpreted as the outcome of a log-linear approximation, but
then ignored the associated approximation errors when we explored robustness. Interestingly, even this seemingly log-
linear specification ceased to be log-linear in the presence of the Types II and III forms of ambiguity. In the future, we
intend to analyze more fully the interaction between robustness and approximation. The small noise and small robustness
expansions and related work in Adam and Woodford (in this issue) are steps in this direction, but we are skeptical about
the sizes of the ranges of parameters to which these local approximations apply and intend to explore global numerical
analytic approaches. Our exercises in the laboratory provided by the New Keynesian model of this paper should pave the
way for attacks on more quantitatively ambitious Ramsey problems.
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Appendix A. Some basic proofs

Lemma 3.3 is a special case of Lemma 6.2 with zþ ¼ z40, cþ ¼ xþ and c¼ x. We restate and prove Lemma 6.2.

Lemma 1.1. The multiplier ‘1 on constraint (33) equals zþ

z

	 

xþ and the multiplier ‘2 on constraint (34) equals zero.

Furthermore,

y¼ y��
k
z

� �
xþElð Þ,

where l¼ Fðx,xÞ solves the private firm’s Euler equation (33). Finally, V2ðx,xÞ ¼�Fðx,xÞ.

Proof. From relation (32)

@

@xþ
V þ ðxþ ,xþ Þþxþ Fþ ðxþ ,xþ Þ
� �

¼ xþ Fþ2 ðx
þ ,xþ Þ:

Differentiate the Lagrangian with respect to xþ to obtain

�
zþ

z

� �
‘2�‘1expð�dEÞFþ2 ðx

þ ,xþ Þþexpð�dEÞ zþ

z

� �
xþ Fþ2 ðx

þ ,xþ Þ ¼ 0:

Taking conditional expectations gives

�‘2þ
zþ

z

� �
xþ�‘1

� �
expð�dEÞE Fþ2 ðx

þ ,xþ Þ9x,x
� �

¼ 0

so that

‘2 1�Eexpð�dEÞE Fþ2 ðx
þ ,xþ Þ9x,x

� �	 

¼ 0:

We conclude that ‘1 ¼
zþ

z

	 

xþ . The relation V2ðx,cÞ ¼�Fðx,cÞ follows from an envelope condition.&
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Next we verify that HJB equation (20) or (36) assures that the firm’s Euler equation is satisfied. We carry out this
verification for HJB equation (36), but the same argument applies for HJB equation (20) after we set h¼ 0 and x¼c.
Differentiating the objective of the planner with respect to x and using V2 ¼�F gives

0¼�ky�c�c�þdF�F1 � mx�F2l

�ðF1Þ
0sxhþxF12sxh�

1

2
x2F229h9

2

�
1

2
trace sx

0F11sxð ÞþðF1Þ
0sxh�xF29h9

2
,

where we have used the envelope condition to adjust for optimization. Multiplying by minus one and simplifying gives

0¼ kyþcþc��dFþF1 � mxþF2lþxF29h9
2

þ
1

2
trace sx

0F11sxð Þ�xF12sxhþ
1

2
x2F229h9

2
:

Observe that

ml,t ¼ F1ðxt ,ctÞ � mxðxtÞþF2ðxt ,ctÞltþxtF2ðxt ,ctÞ9ht9
2

þ
1

2
trace sxðxtÞ

0F11ðxt ,ctÞsxðxtÞ
� �

�xtF12ðxt ,xtÞsxðxtÞhtþ
1

2
ðxtÞ

2F22ðxt ,xtÞ9ht9
2
:

Thus, the Euler equation ml,t ¼�kyt�ct�c�þdFðxt ,ctÞ is satisfied.

Appendix B. Supplementary data

Supplementary data associated with this article can be found in the online version at 10.1016/j.jmoneco.2012.06.003.
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