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This essay examines the problem of inference 
within a rational expectations model from two 
perspectives: that of an econometrician and that 
of the economic agents within the model. The 
assumption of rational expectations has been 
and remains an important component to quan-
titative research. It endows economic decision 
makers with knowledge of the probability law 
implied by the economic model. As such, it is an 
equilibrium concept. Imposing rational expecta-
tions removed from consideration the need for 
separately specifying beliefs or subjective com-
ponents of uncertainty. Thus, it simplified model 
specification and implied an array of testable 
implications that are different from those con-
sidered previously. It reframed policy analysis 
by questioning the effectiveness of policy levers 
that induce outcomes that differ systematically 
from individual beliefs.

I consider two related problems. The first is  
the problem of an econometrician who follows 
John F. Muth (1961), Robert E. Lucas, Jr., and 
Edward C. Prescott (1971), Lucas (1972a), 
Thomas J. Sargent (1973), and an extensive body 
of research by adopting an assumption of rational 
expectations on the part of economic agents. In 
implementing this approach, researchers abstract 
from hard statistical questions that pertain to 
model specification and estimation. The second 
problem is that of economic decision makers or 
investors who must forecast the future to make 
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sophisticated investment decisions. Should we 
put econometricians and economic agents on 
comparable footing, or should we endow eco-
nomic agents with much more refined statistical 
knowledge?

From an econometric standpoint, the out-
come of the rational expectations approach is 
the availability of extra information about the 
underlying economic model. This information 
is reflected in an extensive set of cross-equation 
restrictions. These restrictions allow an econo-
metrician to extract more precise information 
about parameters or to refine the specification 
of exogenous processes for the model builder. 
To understand the nature of these restrictions, 
consider a dynamic model in which economic 
agents must make investment decisions in physi-
cal, human, or financial capital. The decision to 
invest is forward-looking because an investment 
made today has ramifications for the future 
capital stock. The forward-looking nature of 
investment induces decision makers to make 
predictions or forecasts as part of their current 
period choice of investment. The forward-look-
ing perspective affects equilibrium outcomes 
including market valuations of capital assets. 
Rational expectations econometrics presumes 
that agents know the probabilities determin-
ing exogenous shocks as they formulate their 
choices. This translates to an extensive set of 
cross-equation restrictions that can be exploited 
to aid identification and inference.

The cross-equation restrictions broadly con-
ceived are a powerful tool, but to what extent 
should we as applied researchers rely on it? As 
applied time series econometricians, we routinely 
confront challenging problems in model specifi-
cation. How do we model stochastic dynamics in 
the short and long run? What variables are best 
forecasters? How do we select among competing 
models?

A heuristic defense for rational expectations 
appeals to a Law of Large Numbers and gives 
agents a wealth of data. This allows, at least as 
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an approximation, for us the model builders to 
presume investor knowledge of a probability 
model and its parameters. But statistical infer-
ence, estimation, and learning can be difficult 
in practice. In actual decision making, we may 
be required to learn about moving targets, to 
make parametric inferences, to compare model 
performance, or to gauge the importance of 
long-run components of uncertainty. As the 
statistical problem that agents confront in our 
model is made complex, rational expectations’ 
presumed confidence in their knowledge of the 
probability specification becomes more tenu-
ous. This leads me to ask: (a) how can we bur-
den the investors with some of the specification 
problems that challenge the econometrician, 
and (b) when would doing so have important 
quantitative implications? I confront these ques-
tions formally by exploring tools that quantify 
when learning problems are hard, by examining 
the Bayesian solution to such problems and by 
speculating on alternative approaches.

In this essay, I use the literature that links mac-
roeconomics and asset pricing as a laboratory for 
examining the role of expectations and learning. 
The linkage of macroeconomics and finance is a 
natural choice for study. Even with a rich array 
of security markets, the macroeconomic risks 
cannot be diversified away (averaged out across 
investors), and hence are reflected in equilib-
rium asset prices. Exposure to such risks must be 
rewarded by the marketplace. By studying asset 
pricing, we, as model builders, specify the for-
ward-looking beliefs of investors and how they 
cope with risk and uncertainty. Prior to develop-
ing asset pricing applications, we consider some 
stylized statistical decision and inferential prob-
lems that turn out to be informative.

I ask five questions that are pertinent to mod-
eling the linkages between asset pricing and 
macroeconomics:

• When is estimation difficult?

• What are the consequences for the econo- 
metrician?

• What are the consequence for economic 
agents and for equilibrium outcomes?

• What are the real time consequences of 
learning?

• How is learning altered when decision mak-
ers admit that the models are misspecified or 
simplified?

By answering these questions, we will see 
how statistical ambiguity alters the predicted 
risk-return relation, and we will see when 
learning induces model uncertainty premia 
that are large when macroeconomic growth is 
sluggish.

I.  Rational Expectations and Econometrics

The cross-equation restrictions are the novel 
component to rational expectations economet-
rics. They are derived by assuming investor 
knowledge of parameters and solving for equi-
librium decision rules and prices. I consider 
two examples of such restrictions from the asset 
pricing literature, and review some estimation 
methods designed for estimating models subject 
to such restrictions. One example is the equilib-
rium wealth-consumption ratio and the other is 
a depiction of risk prices.

A. Cross-Equation Restrictions

Consider an environment in which equilib-
rium consumption evolves as:

(1)  ct11 2 ct 5 mc 1 a · t 1 scut11

 zt11 5 Azt 1 szut11,

where ct is the logarithm of consumption, {ut} 
is an i.i.d. sequence of normally distributed 
random vectors with mean zero and covariance 
matrix I, and { t} is the process used to forecast 
consumption growth rates. I take equation (1) as 
the equilibrium law of motion for consumption.

Following David M. Kreps and Evan L. 
Porteus (1978) and Larry G. Epstein and Stanley 
E. Zin (1989), I use a model of investor prefer-
ences in which the intertemporal composition 
of risk matters. I will have more to say about 
such preferences subsequently. As emphasized 
by Epstein and Zin (1989), such preferences give 
a convenient way to separate risk and intertem-
poral substitution. John Y. Campbell (1996) and 
others have used log linear models with such 
investor preferences to study cross-sectional 
returns.
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Wealth-Consumption Ratio.—Let r be the 
inverse of the intertemporal elasticity of substi-
tution and b be the subjective discount factor. 
Approximate (around r 5 1):

(2)  wt 2 ct < 2log 11 2 b 2

   1 11 2 r 2 3ba r 1I 2 bA 221zt 1 mv 4,

where wt is log wealth. The constant term mv 
includes a risk adjustment. A key part of this 
relation is the solution to a prediction problem:

 E ca
`

j51
bj 1ct1j 2 ct1j21 2 mc 2 0zt d  

   5 ba9(I 2 bA)21zt.

Formula (2) uses the fact that preferences I con-
sider are represented recursively with an aggre-
gator that is homogeneous of degree one. As a 
consequence, Euler’s theorem gives a simple 
relation between the shadow value of the con-
sumption process and the continuation value 
for that process. This shadow value includes the 
corresponding risk adjustments. The intertem-
poral budget constraint says that wealth should 
equal the value of the consumption process. 
The formula follows by taking a derivative with 
respect to r.1

The restriction across equations (1) and (2) is 
exemplary of the type of restrictions that typi-
cally occur in linear rational expectations mod-
els. The matrix A that governs the dynamics of 
the {zt} process also shows up in the formula 
for the wealth-consumption ratio, and this is the 
cross-equation restriction. Very similar formu-
las emerge in models of money demand (Rusdu 
Saracoglu and Sargent 1978), quadratic adjust-
ment cost models (Hansen and Sargent 1980) 
and in log-linear approximations of present-
value models (Campbell and Robert J. Shiller 
1988).

1 See Hansen, et al. (forthcoming) for a derivation and 
see Campbell and Shiller (1988) and Restoy and Weil (1998) 
for closely related log-linear approximations.

Shadow Risk Prices.—Assume a unitary 
elasticity of substitution and a recursive  utility 
risk parameter g and a discount factor b and 
the same consumption dynamics. Consider 
the price of the one-period exposure to the 
shock vector ut11. Following the convention in 
finance, let the price be quoted in terms of the 
mean reward for being exposed to uncertainty. 
For Kreps and Porteus (1978) preferences, the 
intertemporal composition of risk matters, and 
as a consequence the consumption dynamics are 
reflected in the equilibrium prices, including the 
one-period risk prices. This linkage has been a 
focal point of work by Ravi Bansal and Amir 
Yaron (2004) and others. Specifically, the one-
period price vector is

   p 5 sc 1 3b 1g 2 1 2a r 1I 2 bA 221sz 4.
Later, I will add more detail about the construc-
tion of such prices. For now, I simply observe 
that while this price vector is independent of the 
state vector zt, it depends on the vectors sc and sz 
along with the A matrix. Again, we have cross-
equation restrictions, but now the coefficients 
that govern variability also come into play.

Pricing a claim to the next period shock is 
only one of many prices needed to price a cash 
flow or a hypothetical claim to future consump-
tion. Indeed, risk prices can be computed for 
all horizons. Moreover, as shown by Hansen, 
John C. Heaton, and Nan Li (2006) for log lin-
ear models like this one, and more generally by 
Hansen and Jose Scheinkman (2006), the limit 
prices are also well defined. In this example the 
limit price is

 3sc 1 a9 1I 2 A221sz 4
 1 3b 1g 2 12a9 1I 2 bA221sz 4 .
Cross-equation restrictions again link the con-
sumption dynamics and the risk prices.

For these asset pricing calculations and for 
some that follow, it is pedagogically easiest to 
view (1) as the outcome of an endowment econ-
omy as in Lucas (1978). There is a simple produc-
tion economy interpretation, however. Consider 
a so-called Ak production economy where output 
is a linear function of capital and a technology 
shock. Since consumers have unitary elasticity 
of intertemporal substitution (logarithmic utility 
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period utility function), it is well-known that the 
wealth-consumption ratio should be constant. 
The first-difference in consumption reveals the 
logarithm of the technology shock. The process 
{ t} is a predictor of the growth rate in the tech-
nology. Of course this is a special outcome of 
this model, driven in part by the unitary elastic-
ity assumption. The setup abstracts from issues 
related to labor supply, adjustment costs, and 
other potentially important macroeconomic 
ingredients, but it gives pedagogical simplicity 
that we will put to good use.2 In summary, under 
the simple production-economy interpretation, 
our exogenous specification of a consumption-
endowment process becomes a statement about 
the technology shock process.

In computing the equilibrium outcomes in  
both examples, I have appealed to rational 
expectations by endowing agents with knowl-
edge of parameters. A rational expectations 
econometrician imposes this knowledge on the 
part of agents when constructing likelihood 
functions, but necessarily confronts statistical 
uncertainty when conducting empirical investi-
gations. Economic agents have a precision that 
is absent for the econometrician. Whether this 
distinction is important will depend on applica-
tion, but I will suggest some ways to explore to 
assess this. Prior to considering such questions, 
I describe some previous econometric develop-
ments that gave economic agents more informa-
tion in addition to knowledge of parameters that 
generate underlying stochastic processes.

B. Econometrics and Limited Information

Initial contributions to rational expecta-
tions econometrics devised methods that per-
mitted economic agents to observe more data 
that an econometrician used in an empirical 
investigation. To understand how such meth-
ods work, consider again the implied model 
of the wealth consumption ratio, and ask what 
happens if the econometrician omits infor-
mation by omitting components of t. Let Ht 
denote the history up to date t of data used 

2 Thomas D. Tallarini, Jr. (2000) considers a production 
counterpart with labor supply, but without the extra depen-
dence in the growth rate of technology shock, and without 
adjustment costs.

by the econometrician. Rewrite the representa-
tion of the wealth-consumption ratio as:

wt 2 ct L 2log(1 2 b) 1 mc 1 (1 2 r)

    3 qE ca
`

j51
bj 1ct1j 2 ct1j21 2 mc 2 0Ht d 1 mvr

     1 et.

The “error” term et captures omitted informa-
tion. Given that the econometrician solves the 
prediction problem correctly based on his more 
limited information set, the term et satisfies

E 3et Z Ht 4 5 0,

and this property implies orthogonality condi-
tions that are exploitable in econometric esti-
mation. Econometric relations often have other 
unobservable components or measurement errors 
that give additional components to an error term. 
Alternative econometric methods were devel-
oped for handling estimation in which informa-
tion available to economic agents is omitted by 
an econometrician (see Shiller 1972; Hansen and 
Sargent 1980; Hansen 1982; Robert E. Cumby, 
John Huizinga, and Maurice Obstfeld 1983; and 
Funio Hayashi and Christopher A. Sims 1983). 
A reduced-information counterpart to the ratio-
nal expectations cross-equation restrictions is 
present in such estimation.

When the only source of an “error term” is 
omitted information, then there is another pos-
sible approach. The wealth-consumption ratio 
may be used to reveal to the econometrician 
an additional component of the information 
available to economic agents (see, for example, 
Hansen and Sargent 1991; and Hansen, Robards, 
and Sargent 1991). This is the econometricians’ 
counterpart to the literature on rational expecta-
tions with private information in which prices 
reveal information to economic agents.

There is related literature on estimating and 
testing asset pricing restrictions. Asset pric-
ing implications are often represented con-
veniently as conditional moment restrictions 
where the conditioning information set is that 
of economic agents. By applying the Law of 
Iterated Expectations, an econometrician can, 
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in effect, use a potentially smaller information 
set in empirical investigation (see Hansen and 
Kenneth J. Singleton 1982; Hansen and Scott F. 
Richard 1987; and others).

All these methods exploit the potential infor-
mation advantage of investors in deducing 
testable restrictions. The methods work if the 
information that is omitted can be averaged out 
over time. These methods lose their reliability, 
however, when omitted information has a very 
low frequency or time invariant component, as 
in the case of infrequent regime shifts.

While this literature aimed at giving eco-
nomic agents more information than an econo-
metrician along with knowledge of parameters, 
in what follows, I will explore ways to remove 
some of this disparity, and I will illustrate some 
tools from statistics that are valuable in quanti-
fying when model selection is difficult.

II.  Statistical Precision

Statistical inference is at the core of decision 
making under uncertainty. According to statisti-
cal decision theory, enlightened choices are those 
based on the data that have been observed. When 
imposing rational expectations, a researcher 
must decide with what prior information to 
endow the decision maker. This specification 
could have trivial consequences, or it could have 
consequences of central interest. In this section, 
I consider a measure of statistical closeness that 
will be used later in this paper. This measure 
helps quantify statistical challenges for econo-
metricians as well as economic agents.

Suppose there is some initial uncertainty about 
the model. This could come from two sources: 
the econometrician not knowing the model 
(this is a well-known phenomenon in rational 
expectations econometrics) or the agents them-
selves not knowing it. Past observations should 
be informative in model selection for either the 
econometrician or economic agent. Bayesian 
decision theory offers a tractable way to pro-
ceed. It gives us an excellent benchmark and 
starting point for understanding when learning 
problems are hard.

In a Markov setting, a decision maker observes 
states or signals, conditioning actions on these 
observations. Models are statistically close if 
they are hard to tell apart given an observed 
history. With a richer history, i.e., more data, a 

 decision maker can distinguish between compet-
ing models more easily. Rational expectations 
as an approximation conceive of a limit that is 
used to justify private agents’ commitment to 
one model. When is this a good approximation? 
A statistical investigation initiated by Herman 
Chernoff (1952) gives a way to measure how close 
probability models are, one to another. It quanti-
fies when statistical discrimination is hard, and 
what in particular makes learning challenging.

Suppose there is a large dataset available that 
is used prior to a decision to commit to one of 
two models, say model a or model b. Consider 
an idealized or simplified decision problem in 
which one of these models is fully embraced, 
given this historical record, without challenge. 
By a model, I mean a full probabilistic specifi-
cation of a vector of observations Y. Each model 
provides an alternative probability specification 
for the data. Thus, a model implies a likelihood 
function, whose logarithms we denote by /(Y Z m 
5 a) and /(Y Z m 5 b), respectively, where m 
is used to denote the model. The difference in 
these log-likelihoods summarizes the statistical 
information that is available to tell one model 
from another given data, but more information 
is required to determine the threshold for such a 
decision. For instance, Bayesian and mini-max 
model selection lead us to a decision rule of the 
form: choose model a if

/(Y Z m 5 a) 2 /(Y Z m 5 b) $ d,

where d is some threshold value. What deter-
mines the threshold value d? Two things: the 
losses associated with selecting the wrong model 
and the prior probabilities. Under symmetric 
losses and equal prior probabilities for each 
model, the threshold c is zero. Under symmetric 
losses, the mini-max solution is to choose d so 
that the probability of making a mistake when 
model a is true is the same as the probability of 
making a mistake when model b is true. Other 
choices of loss functions or priors result in other 
choices of d. As samples becomes more infor-
mative, the mistake probabilities converge to 
zero either under nondegenerate Bayesian priors 
or under the mini-max solution.

Limiting arguments can be informative. After 
all, rational expectations is itself motivated by a 
limiting calculation, the limit of an infinite num-
ber of past observations in which the unknown 
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model is fully revealed. Chernoff’s method sug-
gests a refinement of this by asking what hap-
pens to mistake probabilities as the sample size 
of signals increases. Chernoff (1952) studies 
this question when the data generation is i.i.d., 
but there are extensions designed to accommo-
date temporal dependence in Markov environ-
ments (see for example Charles M. Newman and 
W. Barton Stuck 1979). Interestingly, the mis-
take probabilities eventually decay at a common 
geometric rate. The decay rate is independent of 
the precise choice of priors, and it is the same 
for the mini-max solution. I call this rate the 
Chernoff rate and denote it by r.3

In an i.i.d. environment, Chernoff’s analysis 
leads to the study of the following entity. Both 
densities are absolutely continuous with respect 
to a measure h. This absolute continuity is per-
tinent so that we may form likelihood functions 
that can be compared. The Chernoff rate for 
i.i.d. data is:

 r 5 2log sup

 0#a#1

E(exp [a/(Yi Z m 5 b) 

 2 a/(Yi Z m 5 a)] Z m 5 a).

This formula is symmetric in the role of the 
models, as can be verified by interchanging 
the roles of the two models throughout and 
by replacing a by 1 2 a. The Chernoff rate is 
justified by constructing convenient bounds of 
indicator functions with exponential functions.4 
Chernoff’s (1952) elegant analysis helped to ini-
tiate an applied mathematics literature on the 
theory of large deviations.

The following example is simple but reveal-
ing, nevertheless.

ExAMPLE 1: Suppose that xt is i.i.d. nor-
mal. under model a, the mean is ma and under 
model b, the model is mb. For both models the 
covariance matrix is S. In addition, suppose 
that model a is selected over model b if the log-
 likelihood exceeds a threshold. This selection 

3 It is often called Chernoff entropy in the statistics 
literature.

4 While it is the use of relative likelihood functions 
that links this optimal statistical decision theory, Chernoff 
(1952) also explores discrimination based on other ad hoc 
statistics.

criterion leads us to compute the difference in 
the log likelihood:

 2
1
2 a

T

t51
1xt 2 ma 29S211xt 2 ma 2

 1
1
2 a

T

t51
1xt 2 mb 29S211xt 2 mb 2

 5 2a
T

t51
1xt 29S211mb 2 ma 2

 1
T
2 1mb 29S21mb 2 

T
2 1ma 29S21ma.

Notice that the random variable in the second 
equality is normally distributed under each 
model. under model a, the distribution is nor-
mal with mean:

 
T
2  322 1ma 29S211mb 2 ma 2

 1 1mb 29S21mb 2 1ma 29S21ma 4

 5 
T
2  1ma 2 mb 29S211ma 2 mb 2

and variance equal to twice this number. under 
model b, the mean is the negative of this quan-
tity and the variance remains the same. Thus, 
the detection error probabilities are represent-
able as probabilities that normally distributed 
random variables exceeds a threshold.

In this simple example, the Chernoff rate is

 r 5 
1
8

 3 1ma 2 mb 29S211ma 2 mb 2 4 .

This can be inferred directly from properties of 
the cumulative normal distribution, although the 
Chernoff (1952) analysis is much more generally 
applicable. The logarithm of the average proba-
bility of making a mistake converges to zero at a 
rate r given by this formula. This representation 
captures, in a formal sense, the simple idea that 
when the population means are close together, 
they are very hard to distinguish statistically. In 
this case, the resulting model classification error 
probabilities converge to zero very slowly and, 
conversely, when the means are far apart.



VOL. 97 NO. 2 7RIChARD T. ELY LECTuRE

While the simplicity of this example is reveal-
ing, the absence of temporal dependence and 
nonlinearity is limiting. I will explore a dynamic 
specification next.

ExAMPLE 2: Following hansen and Sargent 
(200�), consider two models of consumption: 
one with a long-run risk component and one 
without. Model a is a special case of the con-
sumption dynamics given in (1) and is motivated 
by the analysis in Bansal and Yaron (200�):

(3)  ct11 2 ct 5 0.0056 1 zt 1 0.0054u1, t11,

 zt11 5 0.98zt 1 0.00047u2, t11,

and model b has the same form, but with zt 5 
0 implying that consumption growth rates are 
i.i.d.5

5 The mean growth rate 0.0056 is the sample mean for 
postwar consumption growth, and coefficient on 0.0054 on

Are the models a and b easy to distinguish? 
The mistake probabilities and their logarithms 
are given in Figures 1 and 2. These figures 
quantify the notion that the two models are 
close using an extension to Chernoff’s (1952) 
calculations. For both models the statistician is 
presumed not to know the population mean, and 
for model a the statistician does not know the 
hidden state. All other parameters are known, 
arguably simplifying the task of a decision 
maker. Data on consumption growth rates are 
used when attempting to tell the models apart.

From Figure 1, we see that even with a sample 
size of 100 (say 25 years) there is more than a 20 
percent chance of making a mistake. Increasing 
the sample size to 200 reduces the probability 
to about 10 percent. By sample size 500, a deci-
sion maker can confidently determine the cor-
rect model. Taking logarithms, in Figure 2, the 
growth rate analyzed by Chernoff (1952) and 
Newman and Stuck (1979) becomes evident. 
After an initial period or more rapid learn-
ing, the logarithm of the probabilities decays 
approximately linearly. The limiting slope is 
the Chernoff rate. This is an example in which 

u1, t11 is the sample standard deviation. In some of my calcu-
lations, using continuous-time approximations, simplicity

Figure 1. Mistake Probabilities

Notes: This figure displays the probability of making a mis-
take as a function of sample size when choosing between 
the predictable consumption growth rate model and the 
i.i.d. model for consumption growth. The probabilities 
assume a prior probability of one-half for each model. 
The mistake probabilities are essentially the same if mini-
max approach is used in which the thresholds are chosen 
to equate the model-dependent mistake probabilities. The 
curve was computed using Monte Carlo simulation. For the 
predictabale consumption growth model, the state {zt} is 
unobservable and initialized in its stochastic steady state. 
For the i.i.d. model, the prior mean for mc is 0.0056 and the 
prior standard deviation is 0.0014.

Figure 2. Logarithm of Mistake Probabilities

Note: This figure displays the logarithm of the probabil-
ity of making a mistake as a function of sample size when 
choosing between the predictable consumption growth 
model and the i.i.d. model for consumption growth. This 
curve is the logarithm of the curve in Figure 1.
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model selection is difficult for an econometri-
cian, and it is arguably problematic to assume 
that investors inside a rational expectations 
model solved it ex ante.

Arguably, sophisticated investors know more 
and process more information. Perhaps this is 
sufficient for confidence to emerge. There may 
be other information or other past signals used 
by economic agents in their decision making. 
Our simplistic one-signal model may dramati-
cally understate prior information. To the con-
trary, however, the available history may be 
limited. For instance, endowing investors with 
full confidence in model a applied to postwar 
data could be misguided, given that the previous 
era was characterized by higher consumption 
volatility, two world wars, and a depression.

III.  Risk Prices and Statistical Ambiguity

In this section, I will show that there is an 
intriguing link between the statistical detec-
tion problem we have just described and what 
is known as a risk price vector in the finance lit-
erature. First, I elaborate on the notion of a risk 
price vector by borrowing some familiar results, 
and then I develop a link between the Chernoff 
rate from statistics and the maximal Sharpe 
ratio. With this link, I quantify sensitivity of the 
measured trade-off between risk and return to 
small statistical changes in the inputs.

A. A Digression on Risk Prices

Risk prices are the compensation for a given 
risk exposure. They are expressed conveniently 
as the required mean rewards for confronting 
the risk. Such prices are the core ingredients 
in the construction of mean-standard deviation 
frontiers and are valuable for summarizing asset 
pricing implications.

Consider an n-dimensional random vector 
of the form: m 1 Lu, where u is a normally 
distributed random vector with mean zero and 
covariance matrix I. The matrix L determines 
the risk exposure to be priced. This random vec-
tor has mean m and covariance matrix S 5 LL9. 

is achieved by assuming a common value for this coeffi-
cient for models with and without consumption predictabil-
ity. The parameter value 0.0047 is the mode of a very flat 
likelihood function constructed by fixing the two volatility

I price risks that are lognormal and constructed 
as a function of this random vector:

 exp Qv · m 1 v9Lu 2 
1
2 v9SvR

for alternative choices of the n-dimensional vec-
tor v. The quadratic form in v is subtracted so 
that this risk has a mean with a logarithm given 
by v · m.

Let exp(r f ) be the risk-free return. The loga-
rithm of the prices can often be represented as

 log P 1v 2 5 v · m 2 r f  2 v9L p

for some n-dimensional vector p, where the vec-
tor p contains what are typically called the risk 
prices.

Suppose that the matrix L is restricted so that 
whenever v is a coordinate vector, a vector with 
zeros, except for one entry which instead con-
tains a one, the risk has a unit price P(v) or a 
zero logarithm of a price. Such an asset payoff is 
a gross return. Moreover, the payoff associated 
with any choice of v with coordinates that sum 
to one, i.e., v · 1n 5 1, is also a gross return, and 
hence has a price with logarithms that is zero. 
Thus, in logarithms, the excess return over the 
risk-free return is

 v · m 2 r f  5 v9L p

for any v such that v · 1n 5 1. The vector p 
prices the exposure to shock u and is the risk 
price vector. It gives the compensation for risk 
exposure on the part of investors in terms of 
logarithms of means.

Such formulas generalize to continuous time 
economies with Brownian motion risk. The risk 
prices given in Section I have this form, where u 
is a shock vector at a future date. While the risk 
prices in that example are constant over time, 
in Section VII, I will give examples where they 
vary over time.

parameters and the autoregressive parameter for {zt}. The 
data and the likelihood function construction are the same 
as in Hansen and Sargent (2006).
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B. Sharpe Ratios

The familiar Sharpe ratio (William F. Sharpe 
1964) is the ratio of an excess return to its vola-
tility. I consider the logarithm counterpart and 
maximize by choice of v:

 max 
v # m 2 r  

f
 

"v rSv
 5 max  

v rLp

"v rSv

 5 Z pZ

 5 C(m 2 r f)9S21(m 2 r f)D1/2.

The solution measures how steep the risk-return 
trade-off is, but it also reveals how large the 
price vector p should be. A steeper slope of 
the mean-standard deviation frontier for asset 
returns imposes a sharper lower bound on Z pZ.

Both risk prices and maximal Sharpe ratios 
are of interest as diagnostics for asset pricing 
models. Risk prices give a direct implication 
when they can be measured accurately, but a 
weaker challenge is to compare Z pZ from a model 
to the empirical solution to (4) for a limited 
number of assets used in an empirical analysis. 
Omitting assets will still give a lower bound on 
Z pZ. Moreover, there are direct extensions that 
do not require the existence of a risk-free rate 
and are not premised on log-normality (e.g., see 
Shiller 1982, and Hansen and Ravi Jagannathan 
1991). Omitting conditioning information has a 
well-known distortion characterized by Hansen 
and Richard (1987).6

C. Statistical Ambiguity

Even if all pertinent risks can be measured by 
an econometrician, the mean m is not revealed 
perfectly to an econometrician or perhaps even 

6 Much has been made of the equity premium puzzle in 
macroeconomics including, in particular, Rajnish Mehra 
and Prescott (1985). For our purposes it is better to explore 
a more flexible characterization of return heterogeneity 
as described here. Particular assets with “special” returns 
can be easily omitted from an empirical analysis. While 
Treasury bills may contain an additional liquidity premia, 
because of their role as close cash substitutes, an econome-
trician can compute the maximal Sharpe ratio from other 
equity returns and alternative risk-free benchmarks.

v · 1n51v · 1n51

ˆ̂

v · 1n51v · 1n51

to investors. Both perspectives are of interest. I 
now suggest an approach and answer to the ques-
tion: Can a small amount of statistical ambigu-
ity explain part of the asset pricing anomalies? 
Part of what might be attributed to a large risk 
price p is perhaps small statistical change in the 
underlying probability model.

Suppose statistical ambiguity leads us to con-
sider an alternative mean m*. The change m* 2 
m alters the mean-standard deviation trade-off. 
Substitute this change into the maximal Sharpe 
ratio:

C(m* 2 m 1 m 2 1nr
f )9S21(m* 2 m 1 m 2 1nr

f )D1/2.

Using the Triangle Inequality,

	 C(m* 2 m)9S21(m* 2 m)D1/2

 2 C(m 2 1nr f )9S21(m 2 1nr f )D1/2

 # C(m* 2 1nr f )9S21(m* 2 1nr f )D1/2.

This inequality shows that if

(4)  1m* 2 m 29S211m* 2 m 2
is sizable and offsets the initial Sharpe ratio, 
then there is a sizable movement in the Sharpe 
ratio.

More can be said if I give myself the flexibility 
to choose the direction of the change. Suppose 
that I maximize the new Sharpe ratio by choice 
of m*, subject to a constraint on (4). With this 
optimization, the magnitude of the constraint 
gives the movement in the Sharpe ratio.

Chernoff’s formula tells us when (4) can be 
economically meaningful but statistically small. 
Squaring (4) and dividing by eight gives the 
Chernoff rate. This gives a formal link between 
the statistical discrimination of alternative mod-
els and what are referred to as risk prices. The 
link between the Chernoff rate and the maximal 
Sharpe ratio gives an easily quantifiable role 
for statistical ambiguity either on the part of an 
econometrician or on the part of investors in the 
interpretation of the risk-return trade-off.

Could the maximal Sharpe ratio be equiva-
lent to placing alternative models on the table 
that are hard to discriminate statistically? 
Maybe it is too much to ask to have models of 
risk premia that assume investor knowledge 
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of parameters bear the full brunt of explain-
ing large Sharpe ratios. Statistical uncertainty 
might well account for a substantial portion of 
this ratio.

Consider a Chernoff rate of 1 percent per 
annum or 0.25 percent per quarter. Multiply 
by eight and take the square root. This gives 
an increase of about 0.14 in the maximum 
Sharpe ratio. Alternatively, a Chernoff rate 
of 0.5 percent per annum gives an increase of 
0.1 in the maximum Sharpe ratio. These are 
sizeable movements in the quarterly Sharpe 
ratio, accounting for somewhere between 
one-third and one-half of typical empirical 
measurements.

There are two alternative perspectives on this 
link. First is measurement uncertainty faced by 
an econometrician, even when economic agents 
know the relevant parameters. For instance, the 
risk price model may be correct, but the econo-
metrician has imperfect measurements. While 
the Chernoff calculation is suggestive, there 
are well-known ways to account for statistical 
sampling errors for Sharpe ratios in more flex-
ible ways, including, for example, Michael R. 
Gibbons, Stephen A. Ross, and Jay Shanken 
(1989). Alternatively, investors may face this 
ambiguity, which may alter the predicted value 
of p and hence Z pZ coming from the economic 
model. I will have more to say about this in the 
next section.

The particular formula for the Chernoff rate 
was produced under very special assumptions, 
much too special for more serious quantitative 
work. Means and variances are dependent on 
conditioning information. Normal distribu-
tions may be a poor approximations. Evan W. 
Anderson, Hansen, and Sargent (2003) build 
on the work of Newman and Stuck (1979) to 
develop this link more fully. Under more gen-
eral circumstances, a distinction must be made 
between local discrimination rates and global 
discrimination rates. In continuous time mod-
els with a Brownian motion information struc-
ture, the local discrimination rate has the same 
representation based on normal distributions 
with common covariances, but this rate can be 
state dependent. Thus, the link between Sharpe 
ratios and the local Chernoff rate applies to an 
important class of asset pricing models. The 
limiting decay rate is a global rate that aver-
ages the local rate in a particular sense.

IV.  Statistical Challenges

In this section, I revisit model a (see equation 
(3)) of Example 2 from two perspectives. I con-
sider results, first, from the vantage point of an 
econometrician and, second, from that of inves-
tors in an equilibrium valuation model.

A. The Struggling Econometrician

An econometrician uses postwar data to esti-
mate parameters that are imputed to investors. I 
present the statistical evidence available to the 
econometrician in estimating the model. I con-
struct posterior distributions from alternative 
priors and focus on two parameters in particu-
lar: the autoregressive parameter for the state 
variable process {zt} and the mean growth rate 
in consumption. For simplicity and to antici-
pate some of the calculations that follow, I fixed 
the coefficient on u1, t11. I report priors that are 
not informative (loose priors) and priors that 
are informative (tight priors). It turns out that 
there is very little sample information about 
the coefficient on u2, t11. As a consequence, I 
used an informative prior for this coefficient in 
generating the “loose prior” results, and I fixed 
this coefficient at 0.00047 when generating the 
“tight prior” results.

I depict the priors and posteriors in Figure 3. 
There is very weak sample information about the 
auto regressive parameter, and priors are poten-
tially important. There is some evidence favor-
ing coefficients close to unity. Under our rational 
expectations solutions we took the parameter to 
be 0.98, in large part because of our interest in 
a model with a low frequency component.7 The 
posterior distribution for the mean for consump-
tion growth is less sensitive to priors. Without 
exploiting cross-equation restrictions, there is 
only very weak statistical evidence about the pro-
cess {zt} which is hidden from the econometrician. 
Imposing the cross-equation restrictions begs the 
question of where investors come up with knowl-
edge of the parameters that govern this process.

7 Without this focus one might want to examine other 
aspects of consumption dynamics for which a richer model 
could be employed. Hansen, Heaton, and Li (2006) use cor-
porate earnings as a predictor variable and document a low 
frequency component using a vector autoregression, pro-
vided that a cointegration restriction is imposed.
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B. The Struggling Investors

The rational expectations solution of impos-
ing parameter values may be too extreme, but, 
for this model, it is also problematic to use 
loose priors. John Geweke (2001) and Martin 
Weitzman (forthcoming) show dramatic asset 
return sensitivity to such priors in models with-
out consumption predictability. While loose pri-
ors are useful in presenting statistical evidence, 
it is less clear that we should embrace them in 
models of investor behavior. How to specify 

meaningful priors for investors becomes an 
important specification problem when Bayesian 
learning is incorporated into a rational expecta-
tions asset pricing model and in the extensions 
that I will consider. Learning will be featured in 
the next two sections, but before incorporating 
this extra dimension, I want to reexamine the 
risk prices derived under rational expectations 
and suggest an alternative interpretation for one 
of their components.

In Section I, I gave the risk price vector for 
an economy with predictable consumption. 

Figure 3. Prior and Posterior Probabilities

Notes: This figure displays the prior (the lines) and the posterior histograms for two param-
eters of the model with predictable consumption growth. The left column gives the densities 
for the autoregressive parameter for the hidden state and the right column the mean growth 
rate of consumption. The results from the first row were generated using a relatively loose 
prior, including an informative prior on the conditional variance for the hidden state. The 
prior for the variance is an inverse gamma with shape parameter 10 and scale parameter 
1.83 3 1027. The implied prior mode for sz is 0.00041. The prior for the AR coefficient is 
normal conditioned on sz with mean 0 and standard deviation sz 3 1.41 3 106, truncated to 
reside between minus one and one. The prior for mc has mean 0.003 and standard deviation 
0.27. The results from the second row were generated with a informative prior and fixed the 
conditional standard deviation for the hidden state at 0.00047. The prior for AR coefficient 
is normal with mean 0.98 and standard deviation 0.12. The prior for mc is normal with mean 
0.0056 and standard deviation 0.00036. The posterior densities were computed using Gibbs 
sampling with 50,000 draws after ignoring the first 5,000.
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Since investors are endowed with preferences 
for which the intertemporal composition of risk 
matters, the presence of consumption predict-
ability alters the prices. Recall the one-period 
risk price vector is

 p 5 sc 1 1g 2 12 3sc 1 ba 1I 2 bA221sz 4 .
One way to make risk prices large is to endow 
investors with large values of the risk aversion 
parameter g. While g is a measure of risk aver-
sion in the recursive utility model, Anderson, 
Hansen, and Sargent (2003) give a rather differ-
ent interpretation. They imagine that investors 
treat the model as possibly misspecified, and ask 
what forms of model misspecification investors 
fear the most. The answer is a mean shift in the 
shock vector ut11 that is proportional to the final 
term above:

(5)  3sc 1 ba 1I 2 bA221sz 4 .
This is deduced from computing the continua-
tion value for the consumption process. Instead 
of a measure of risk aversion, g 2 1 is used 
to quantify an investors’ concern about model 
misspecification.

Is this distortion statistically large? Could 
investors be tolerating statistical departures of 
this magnitude because of their concern about 
model misspecification? Our earlier Chernoff 
calculations are informative. Even with temporal 
dependence in the underlying data-generating 
process, the Chernoff discrimination rate is

 0g 2 1 0 2  0sc 1 ba 1I 2 bA 221sz 0 2
8

.

Consider, now, the parameter values given in the 
first model of Example 2. Then

(6)  0g 2 1 0 2  0sc 1 ba 1I 2 bA 221sz 0 2
8

   < 0.000061 0g 2 1 0 2.

For instance, when b 5 0.998 and g 5 5, the 
implied discrimination rate is just about 0.5 
percent per year. This change endows the state 

 variable process {zt} with a mean of 20.002 
and a direct mean decrease in the consumption 
growth equation of 20.0001, which is incon-
sequential. The contribution to Z pZ measure by 
the norm of (5) scaled by g 2 1 5 4 is about 
0.09. While both distortions lower the average 
growth rate in consumption, only the second 
one is substantial. Investors make a conserva-
tive adjustment to the mean of the shock process 
{u2, t} and hence to the unconditional mean of 
{zt}. This calculation gives a statistical basis for 
a sizeable model uncertainty premium as a com-
ponent of p. Similar calculations can be made 
easily for other values of g.

While a mean distortion of 20.002 in the con-
sumption dynamics looks sizable, it is not large 
relative to sampling uncertainty. The highly 
persistent process {zt} makes inference about 
consumption growth rates difficult.8 Moreover, 
my calculation is sensitive to the inputs that 
are not measured well by an econometrician. 
Conditioned on 0.98, the statistical evidence for 
sz is not very sharp. Reducing sz by one-half 
changes the log-likelihood function9 only by 
0.3. Such a change in sz reduces the Chernoff 
rate and the implied mean distortion attributed 
to the {zt} process by factors in excess of three.

Suppose that investors use only data on 
aggregate consumption. This presumes a dif-
ferent model for consumption growth rates, but 
one with the same implied probabilities for the 
consumption process. This equivalent represen-
tation is referred to as the innovations represen-
tation in the time series literature and is given 
by

 ct11 2 ct 5 0.0056 1 zt 1 0.0056ut11,

 zt11 5 0.98zt 1 0.00037ut11,

where {ut11} is a scalar i.i.d. sequence of stan-
dard normally distributed random variables. 
The implied distortions for the consumption 
growth rate given, say g 5 5, are very close to 

8 For the persistence and volatility parameters assumed 
in this model, mc is estimated with much less accuracy than 
that shown in Figure 3. The posteriors reported in this fig-
ure assign considerable weight to processes with much less 
persistence.

9 As a rough guide, twice the log-likelihood difference is 
a little more than half the mean of a x2(1) random variable.
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those I gave previously, based on observing both 
consumption growth and its predictor process.

In this subsection, I used a link between dis-
torted beliefs and continuation values to reinter-
pret part of the risk price vector p as reflecting 
a concern about model misspecification. This is  
a special case of a more general approach called 
exponential tilting, an approach that I will 
have more to say about in sections VI and VII. 
Investors tilt probabilities, in this case means of 
shocks, in directions that value functions sug-
gest are most troublesome. This tilting gives a 
justification for pessimism in beliefs. Stephen G. 
Cecchetti, Pok-sang Lam, and Nelson C. Mark  
(2000) and Andrew B. Abel (2002) have shown 
how endowing investors with pessimistic beliefs 
can help to solve asset pricing puzzles.10

While the tilted probabilities in this section 
are represented as time-invariant mean shifts, 
by considering learning, I will obtain a source 
of time variation for the uncertainty premia.

V.  Learning

Up until now, we have explored econometric 
concerns and statistical ambiguity without any 
explicit reference to learning. Our next task is to 
explore the real time implications of learning on 
what financial econometricians refer to as risk 
prices. To explore learning in a tractable way, 
consider what is known in many disciplines as a 
hidden Markov model (HMM). In what follows, 
we let j be a realized value of the signal, while 
s* denotes the signal, which is a random vec-
tor. We make the analogous distinction between 
realized values of the state z versus the random 
state vector . Suppose that the probability den-
sity for a signal or observed outcome s*, given a 
Markov state , is denoted by f 1 # 0z 2 . This den-
sity is defined relative to an underlying measure 
dh 1j 2  over the space of potential signals S. A 
realized state is presumed to reside in a space Z 
of potential states.

In a HMM, the state  is disguised from the 
decision maker. The vector  could be (a) a discrete 
indicator of alternative models, (b) an unknown 
parameter, or (c) a hidden state that evolves over 

10 Abel (2002) also suggests that sampling uncertainty 
and a concern for robustness might be important compo-
nents in justifying pessimism and doubt on the part of pri-
vate agents.

time in accordance to a Markov process, as in 
a regime shift model of W.M. Wonham (1964), 
Stanley L. Sclove (1983), and James D. Hamilton 
(1989). The signal or outcome s* is observed 
in the next time period. If z were observed, we 
would just use f as the density for the next period 
outcome s*. Instead, inferences must be made 
about z to deduce the probability distribution for 
s*. For simplicity, we consider the case in which 
learning is passive, that is, actions do not alter 
the precision of the signals.

A. Compound Lottery

To apply recent advances in decision theory, 
it is advantageous to view the HMM as speci-
fying a compound lottery repeated over time. 
Suppose, for the moment, that  is observed. 
Then for each , f 1 · Z 2 is a lottery over the out-
come s*. When  is not observed, randomness 
of z makes the probability specification a com-
pound lottery. Given a distribution p, we may 
reduce this compound lottery by integrating out 
over the state space Z:

 f̄  1j 2 5 3f 1j 0z 2  dp 1z 2 .

This reduction gives a density for s* that may be 
used directly in decision making without knowl-
edge of . In the applications that interest us, p 
is a distribution conditioned on a history H of 
signals.11

B. Recursive Implementation

In an environment with repeated signals, the 
time t distribution, pt, inherits dependence on 
calendar time through the history of signals. 
Bayes’s rule tells us how to update this equa-
tion in response to a new signal. Repeated appli-
cations gives a recursive implementation of 
Bayes’s rule.

Consider some special cases.

Case �: Time-Invariant Markov State.—Sup- 
pose that z is time invariant, as in the case of 

11 Formally, H is a sigma algebra of conditioning events 
generated by current and past signals.
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an unknown parameter or an indicator of a 
model. Let p denote a probability distribution 
conditioned on a history H, and let p* denote 
the updated probability measure given that s* is 
observed. Bayes’s rule gives:

 p*(dz) 5 
 f 1s* 0z 2  dp 1z 2
ef 1s* 0z 2  dp 1z 2 .

The signal s* enters directly into this evolution 
equation. Applying this formula repeatedly for 
a sequence of signals generates a sequence of 
probability distributions {pt} for  that reflect 
the accumulation of information contained in 
current and past signals.

Since  is time invariant, the constructed state 
probability distribution {pt} is a martingale. Since 
pt is a probability distribution, this requires an 
explanation. If the set of potential states Z con-
sists of only a finite number of entries, then each 
of the probabilities is a martingale. More gener-
ally, let f be any bounded function of the hidden 
state .12 An example of such a function is the 
so-called indicator function that is one on set and 
zero on its complement. The integral ef(z)dp(z) 
gives the conditional expectation of f( ) when 
dp(z) is the conditional distribution for  given 
the current and past signal history H.

In contrast to p, the distribution p* incorpo-
rates information available in the signal s*. Then

(7)  E s3f(z)  dp*(z) Z Ht

   5 3s
ef 1s* 0z 2  f 1z 2  dp 1z 2

ef 1s* 0z 2  dp 1z 2 t

 3 s3f(s* Z z)p(dz) t  dh(s*)

 5 33f(s* Z z)f(z)  dp(z)dh(s*)

 5 3f(z)  dp(z)

12 Formally, we also restrict f to be Borel measurable.

since ef(j Z z) dh(j) 5 1. This implies the familiar 
martingale property associated with parameter 
learning. The best forecast of ef(z)pt11 (dz), giv- 
en current period information, is ef(z)pt (dz). 
Thus, given the sequence of probability distri-
butions {pt(dz) : t 5 0, 1, … .}, the sequence ran-
dom variables {ef(z)pt(dz) : t 5 0, 1, … .} is a 
martingale. In fact, it is a bounded martingale, 
and it necessarily converges.

By making an invariant  unobservable, we 
have introduced a strong form of stochastic 
dependence as reflected by the martingale prop-
erty. Note, however, that the stochastic structure 
will become degenerate as the martingale con-
verges. When learning problems are difficult, 
the convergence will be slow, as we have seen in 
our discussion of Chernoff (1952).

Case 2: Time-Varying Markov State.—Con-
sider the case in which  is not invariant and its 
evolution is modeled as a Markov process. The 
dynamics for this hidden Markov state directly 
influence the learning dynamics in ways I will 
illustrate. Let T(z* Z z) be the transition density 
of  relative to a measure l(dz) over the hidden 
states. The measure l is chosen for convenience 
depending upon the details of the application. 
Later, I will feature examples in which state 
space Z contains a finite set of values, and the 
measure l just assigns one to each element of 
this set. Other measures are used when  is 
continuous.

Our previous calculations extend, except that 
the updating equation for the * posterior dis-
tribution p* must accommodate this evolution. 
From Bayes’s rule:

(8)  p*(dz*)

 5 
3eT(z* Z z) f (s* Z z) dp(z)4dl(z*)

eeT(z̃ Z z) f (s* Z z) dp(z) dl(z̃)

 5 T̄(s*, p).

The distribution p* evolves from p as a function 
of the signal s* in accordance to the function 
T̄. Given the stochastic evolution of the hidden 
state, we lose the martingale property. The case 
in which  is invariant, considered previously, 
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is a special case with a degenerate specification 
of the transition law: * 5 . When the hidden 
state has a nondegenerate transition law, we lose 
the martingale property. If the transition law T 
is stochastically stable (that is, there is unique 
stationary distribution associated with T ), then 
this asymptotic stability carries over to the evo-
lution of the probability distributions: {pt} cap-
tured by T̄.

C. A New Markov Process

It follows from what we have just shown that 
we can represent this form of learning as a new 
Markov process. For this new process, the hid-
den state  is replaced by a distribution over the 
hidden state. The density for the signal is

 f̄  (j Z p) 5 3f(j Z z) dp(z),

and p evolves according to T̄ given in (8). Thus 
we may conceive of learning as justifying a 
Markov process with a “state variable” p.

I derived this learning solution using Bayes’s 
rule, but, otherwise, we did not appeal to a spe-
cific decision problem. The hidden state may be 
hidden to the econometrician or it may be sub-
jective uncertainty in the minds of investors. If 
the former, its estimation is a problem only for 
an econometrician. If the latter, both the econo-
metrician and the investor being modeled may 
aim to integrate it out or reduce the compound 
lottery. For instance, I could use this learning 
solution to alter the model of exogenous shock 
processes such as technology shocks. I simply 
replace one state variable, , by another, the dis-
tribution p. The recursive solution becomes an 
input into our rational expectations model with 
the additional econometric challenge of specify-
ing an initial condition for p, a priori.13 Since p 
is a distribution, for many state spaces it can be 
an infinite dimensional state variable, but that is 
a computational issue, not a conceptual one.

Given this change, I may define a rational 
expectations equilibrium to determine the endog-
enous state variables such as capital stocks and 

13 Moreover, since  may be disguised, identification of 
its dynamics as captured by T may be more challenging.

the endogenous prices. More generally, I could 
introduce private signals and endogenously 
determined price signals. This approach to learn-
ing is an enrichment of rational expectations to 
include subjective uncertainty while preserv-
ing the essential equilibrium components. The 
resulting equilibrium model is what Margaret 
Bray and David M. Kreps (1987) call learning 
within a rational expectations model. After all, 
Lucas’s (1972b) use of rational expectations in a 
private information economy has agents learn-
ing from price signals, so aspects of learning 
have been central features in rational expecta-
tions equilibria from the outset.

There are other ways to introduce learning 
that push us outside the realm of rational expec-
tations in a more substantial way. For instance, 
we might pose the learning challenge directly 
on the price dynamics or the endogenous state 
variables. This has led to what Bray and Kreps 
(1987) call a model of learning about a ratio-
nal expectations equilibrium. Adaptive control 
methods or Bayesian methods are applied that 
fail to impose some of the internal consistency 
conditions of a rational expectations equilib-
rium. See Bray (1982), xiaohong Chen and 
Halbert White (1998), Albert Marcet and Sargent 
(1989), Sargent (1999), and George W. Evans 
and Seppo Honkapohja (2001) for examples 
of what has become an important literature in 
macroeconomics. Agents are assumed to apply 
Bayesian learning methods to misspecified but 
typically simpler models, or they apply adap-
tive methods that aim to provide a more flexible 
approximation. The outcomes of these misspeci-
ficied Bayesian or adaptive learning algorithms 
are fully embraced as beliefs by the economic 
agents when making forward-looking decisions. 
There is typically no acknowledgment of the 
potential misspecification. The dynamic sys-
tems may have limit points, but they may imply 
weaker consistency requirements than a rational 
expectations equilibrium.14 Since this approach 
to learning does not presume that decision mak-
ers in the model fully perceives the uncertainty 
they confront, the resulting equilibria ignore 
a potentially important source of uncertainty 

14 The weaker equilibrium concept is known as a 
self-confirming equilibrium. See Sargent (1999) for a 
discussion.
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premia that might show up in prices that clear 
security markets. The economic agents in such 
models experience no specification doubts.

D. Dynamic Learning in a Regime Shift Model

To illustrate the dynamics of learning, we use 
a solution first characterized by Wonham (1964) 
to a filtering problem that economists sometimes 
refer to as a regime shift model. The model and 
solution are given most conveniently in continu-
ous time. Consider a signal,

 dst 5 k # ztdt 1 sdBt,

where {Bt} is standard Brownian motion, and 
{ t} is a hidden state Markov chain with inten-
sity matrix A. The intensity matrix conveniently 
summarizes the matrix of transition probabili-
ties for the hidden state via the formula: exp(tA) 
for any positive number t. The realized value 
of t is a coordinate vector. Thus, k · t selects 
among the entries in the vector k in determining 
the local growth rate for the signal process. This 
specification is a continuous-time counterpart 
to the regime switching model of Sclove (1983) 
and Hamilton (1989). It has been used in asset 
pricing models by Alexander David (1997) and 
Pietro Veronesi (2000). Given this model, we 
can think of dst conditioned on the state t as a 
compound lottery.

The Wonham filter gives the solution to 
reducing the compound lotteries while updat-
ing probabilities based on past data. Since t is 
a coordinate vector, its conditional expectation, 
given the signal history, is the vector of hidden 
state conditional probabilities. As for notation, 
we let ¯t 5 E( t Z Ht ), which is the vector of hid-
den state probabilities. Thus, the conditional 
mean ¯t contains the vector of state probabilities 
used to depict pt. The recursive filtering solution 
is a stochastic differential equation represented 
in terms of an alternative standard Brownian 
motion {B# t}:

 dst 5 k · ¯t dt 1 sdB# t ,

 d ̄ t 5 A9 ¯t dt 1 D( ¯)(dst 2 k · ¯t dt) ,

 D( ¯) 5 
1

s2 diag( ¯t)(k 2 1nk · ¯t).

The first equation gives the continuous-time 
counterpart to f̄ , the density for the signal. The 
second equation gives the counterpart to T̄, the 
evolution equation for the probabilities. The 
Brownian motion increment dB# t can be inverted 
from the signal evolution equation.

There are notable features of this solution. 
First, the matrix A used to model the hidden state 
dynamics plays a central role in the dynamics 
for ¯. It enters directly into the formula for the 
local conditional mean, A9 ¯. Second, the new 
information contained in the signal evolution 
is captured by the increment to the Brownian 
motion dB# , which we express as:

(9)  dB# t 5 k · 1 t 2 ¯t 2dt 1 dBt.

This represents the new information encoded in 
the signal history as a compound lottery. Both 
Brownian motions B  and  B#  are standardized 
(they have unit variance over a time interval of 
length one). The reduced information does not 
alter the local accuracy of our forecast of the sig-
nal. While this is a special property of continu-
ous-time models with signal noise generated by 
a Brownian motion, it does give us an informa-
tive limiting case. Finally, the vector D contains 
the local (in time) regression coefficients of the 
hidden state onto the new information in the sig-
nal. These coefficients depend on the state prob-
ability vector ¯t. When one of the entries of ¯t is 
close to unity, the vector D is close to zero.

The following example is of some pedagogi-
cal interest because it illustrates how varying 
parameters of this model alter the temporal 
dependence of the probabilities and the sensitiv-
ity of these probabilities to new information.

ExAMPLE 3: Consider the following two-state 
example. The two-by-two intensity matrix is 
parameterized by

 A 5 s2a1 a1

a2 2a2
t ,

where a1 $ 0 and a2 $ 0. Since probabilities 
add up to one, it suffices to consider only one of 
the probabilities, say the probability of being in 
state one. Substituting from our parameteriza-
tion of A,
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 d z#1, t 5 2 1a1 1 a2 2 az#1, t 2
a2

a1 1 a2
bdt

      1 z#1, t 11 2 z#1, t 2 a
k1 2 k2

s
bdB# t.

In this example, the unconditional mean of the 
probability of being in state one is a2/(a1 1 a2).  
The local volatility of the probability scales with 
the difference between means relative to the sig-
nal volatility. When the difference in the k’s is 
large relative to s, the probabilities are more 
responsive to the new information contained in 
the signals. This responsiveness becomes arbi-
trarily small if the probability is close to zero 
or one. If a1 5 a2 5 0, then the probability is 
a positive martingale. When a1 and a2 are both 
positive, the probability process is asymptoti-
cally stationary. Larger values imply more mean 
reversion in the probabilities.15

While I feature the Wonham filter in this 
essay, there are other well-known filtering meth-
ods, including the Kalman filter, the particle fil-
ter, and the Zakai equation. There are alternative 
ways of characterizing the solutions to f̄  and T̄.

E. Real Time Model Detection

I began this essay by considering a model 
detection problem posed by Chernoff (1952). 
The stochastic specification of the Wonham fil-
ter gave me a way to move across regimes in real 
time, but it also includes time-invariant indica-
tors of models as envisioned by Chernoff. Such 
indicators are natural limits of low-frequency 
movements in regimes. Learning about low 
frequencies will be an important component to 
some of our calculations, and, therefore, it war-
rants special consideration.

When time-invariant indicators are included 
as possibilities, it is no longer fruitful to appeal 
to a stochastic steady state. While such steady 
states exist, they are degenerate and the interest-
ing question becomes one of convergence. The 

15 We do not mean to imply that the drift determines 
the pull of the process toward the center of its distribu-
tion. Given that volatility is state dependent, it also plays 
a role in pulling the distribution away from the boundar-
ies. When volatility is relatively low, the pull by the drift 
is more potent.

rate of convergence is precisely what Chernoff’s 
analysis allows us to investigate. The inferential 
problem that is presumed in my application of 
the Wonham filter includes a model selection 
problem where the invariant state is a model 
indicator indexed by an invariant state.

I now use the stochastic structure of the 
Wonham (1964) filtering model to explore 
dynamics of model selection.

ExAMPLE 4: Consider an example with three 
states. Two states give rise to movements in 
the growth rate for consumption. Movements 
between states are random and shift the growth 
rate in the signal as in Example 3. The third 
state is invariant. It cannot be reached from the 
first two states. Formally, the A matrix is

 A 5 £	
2a1 a1 0
a2 2a2 0
0 0 0

 § ,

where a1 . 0 and a2 . 0. There is no possible 
movement from states one and two to state three 
or from state three to states one and two. While 
the third state is invariant, the decision maker 
does not know if this third state or regime is the 
relevant one. Thus, he faces a model selection 
problem.

Given the existence of a time-invariant hid-
den state, the dynamic extension of the Chernoff 
(1952) analysis determines the asymptotic dis-
crimination rate between models (states one and 
two versus state three). This leads to the study 
of the asymptotic behavior of the filtering solu-
tion when the signal is restricted to spend all its 
time in states one and two, or when the signal is 
restricted to spend all its time in state three. In 
the former case, the process {z#3, t} will converge 
to zero eventually at an exponential rate, while 
in the latter case {z#1, t 1 z#2, t} will converge to 
zero eventually at this same rate.

The local counterpart to Chernoff’s discrimi-
nation rate is

 

ck1a
z#1, t

z#1, t 1 z#2, t
b 1 k2a

z#2, t

z#1, t 1 z#2, t
b 2 k3 d

2

8s2 .
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This rate depends on the local mean difference 
between the two models where the first model 
is the original two-state model of Example 3, 
and the second model has local mean of k3dt 
that is time invariant. Small mean differences 
across the models relative to the volatility make 
model discrimination challenging. Since this 
local rate is time varying, as I argued before, the 
asymptotic discrimination rate is an average of 
this local rate with respect to an appropriately 
defined mixture model (see Newman and Stuck 
1979).

In addition to considering learning with time-
invariant hidden states, I will explore the impli-
cations of recent decision theory that will allow 
us to feature learning and concerns about model 
specification but preserve many other useful 
features of a rational expectations equilibrium.

VI.  Beliefs and Preferences

Expected utility theory embraces the axiom 
that compound lotteries should be reduced. If, 
as suggested previously, we view f(j* Z z) and 
dp(z) as a compound or two-step lottery, then 
the ranking induced by expected utility prefer-
ences depends on the reduced lottery:

 f̄  (j) 5 3f 1j 0z 2  dp 1z 2 .

The integration defines a lottery that does not 
condition on  5 z, and compounding is just a 
way to depict or even restrict lotteries of interest. 
Similarly, decisions or actions that depend on s* 
can be represented as a compound lottery that 
can be reduced using the density f̄ . For the exam-
ple economies we explore, the use of expected 
utility theory implies that rational learning has 
only modest implications for predicted risk pre-
mia. This leads me to employ generalizations 
of this theory that avoid the presumption that 
compound lotteries should simply be reduced. 
Kreps and Porteus (1978); Uzi Segal (1990);  and 
Peter Klibanoff, Massimo Marinacci, and Sujoy 
Mukerji (2005) provide alternative decision 
theories that resist the reduction of compound 
lotteries. Associated with some of these formu-
lations are alternative beliefs that are tilted in 
ways that I characterize.

A. Irreducible Lotteries

Segal (1990) studies two-stage lotteries and 
axioms that do not imply reduction. Instead, 
the conditional composition of risk matters. We 
explore two distinct motivations for why condi-
tioning might matter. First, we distinguish the 
riskiness of s* conditioned on  from riskiness 
over the hidden state or time-invariant parame-
ter z. Klibanoff, Marinacci, and Mukerji (2005) 
develop this idea further to distinguish risk or 
objective uncertainty, captured by the signal 
density f 1 # 0z 2 , from subjective uncertainty, 
captured by probability distribution p over hid-
den states. They give an axiomatic justification 
for a convenient representation of preferences.

Let the adjustment for risk conditioned on  
be represented by an increasing concave func-
tion h:

(10)  V(a Z ) 5 h21a3h 3a 1j 2 4 f 1j 0z 2  dh 1j 2b ,

where a is some action or decision expressed 
as a function of the signal. The h21 transforma-
tion is convenient because if the random s* can 
be perfectly predicted given , the right-hand 
side of (10) gives the state contingent action. 
Construct a second-stage ranking based on the 
utility function

(11)  3 Cg 3V(a Z z)4 D dp(z),

using the strictly increasing concave utility 
function g. As a special case, if g 5 h,

 33h[a(j)] f (j Z z) dh(j)dp(z)

   5 3h[a(j)] f̄  (j) dh(j).

Preferences that do not reduce compound lot-
teries permit h to differ from g. The behav-
ioral responses to the two different forms of 
risk or uncertainty are allowed to be differ-
ent. Klibanoff, Marinacci, and Mukerji (2005) 
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defend this as allowing for a smooth version of 
ambiguity aversion when g + h21 is concave.

Following Kreps and Porteus (1978), we may 
use the same setup to consider a rather differ-
ent question. Consider two lotteries. One is 
a(s*), where z is observed at an intermediate 
date. Then V(a Z z) can be thought of as the con-
ditional utility at this intermediate date and the 
initial period utility is given by (11). How does 
this lottery compare to a second lottery with the 
 identical reduced distribution, but with all infor-
mation revealed at the final date? The second 
lottery uses the density f̄  for s*. At the interme-
diate date, no new information is revealed about 
the lottery and the resulting valuation is

	 V̄(a) 5 h21 c3h 3a 1j 2 4 f̄  1j 2  dh 1j 2 d .

This valuation is not conditional on any informa-
tion, so at the outset we simply evaluate g at V̄(a) 
to obtain the initial period utility. Provided that 
g + h21 is convex, the first lottery is preferred to 
the second. The converse is true if this function 
is concave. Knowing z at an intermediate date 
alters preferences, even when the a is allowed 
to depend only on the signal s*. In contrast to 
expected utility preferences, the timing of when 
uncertainty is resolved matters.

Thus, there are two rather different moti-
vations for building preferences that depend 
on more than reduced lotteries: (a) wanting to 
incorporate a formal distinction between risk 
conditioned on a hidden state versus subjective 
uncertainty about that state, and (b) wanting 
preferences that are sensitive to when informa-
tion is revealed even when the (reduced) decision 
distribution is unaltered. Epstein and Zin (1989) 
build on this latter motivation by featuring an 
implied distinction between risk aversion and 
intertemporal substitution. In the next section, I 
will implement both these modifications to pref-
erences in dynamic settings. Both can amplify 
the impact of learning on risk prices.

B. Exponential Tilting

For some convenient parameterizations, there  
are substantially different interpretations of this  
utility representation that will allow us to ex-
plore implications of statistical ambiguity. These 

 different interpretations are implications of a 
well-known result from applied probability:

(12)    min  EmV 1 uE(m log m)

 5 2u log E expa2
1
u

Vb,

where V is a random variable that represents the 
future value of a stochastic process of consump-
tion, and m is a random variable used to distort 
probabilities. The right-hand side of (12) is a 
special case of

 h21 1E 3h 1V 2 4 2 ,

where h is minus the negative exponential func-
tion parameterized by 1/u: h(V) 5 2exp[2(1/u)V].  
As featured by David H. Jacobson (1973), Peter 
Whittle (1981), and others in the control theory 
literature, the left-hand side of (12) offers a 
rather different perspective than the apparent 
risk adjustment made on the right-hand side of 
(12). The computation,

 EmV,

for a positive random m with a mean of one, 
gives an alternative way to form expectations. 
Formally, the random variable m induces a 
different probability distribution and the term 
uE(m log m) is a convex penalty in the distortion 
m. The left-hand side of (12) explores expecta-
tions of V using different probability distribu-
tions. By setting the parameter u arbitrarily 
large, probability distortions are penalized so 
severely as to approximate the original expecta-
tion EV. Finite values of u permit consideration 
of alternative probability measures subject to 
penalty. Thus, formula (12) gives an explicit link 
between robustness (left-hand side) and risk 
sensitivity (right-hand side), where the latter is 
modeled using an exponential risk adjustment.

Robustness allows us to endow our decision 
maker with an operational form of skepticism 
about his model. It is implemented by the choice 

m$0, Em51m$0, Em51
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of a tilted or distorted probability measure in-
duced by the minimizing m. The solution is

(13)  m 5
exp 1 2 1

uV 2
E 3exp 1 2 1

uV 2 4 ,

provided that the denominator is finite. This 
solution gives what is known as an exponential 
tilting of the original probability. Smaller values 
of V receive relatively more weight than larger 
values in the altered probability distribution. 
The altered distribution is tilted toward states 
with lower continuation values.

The implementation via a tilted probabil-
ity turns out to be of considerable value. The 
minimizing solution is useful for represent-
ing uncertainty premia and providing a differ-
ent perspective on the source of those premia. 
Previously, I described the potential role for 
statistical latitude among alternative probability 
models given data histories. I now have a way 
to construct these alternative models and to ask 
how large the resulting statistical discrepancy 
between the minimized solution and the origi-
nal benchmark probability model is.16

While this representation of preferences 
using exponential tilting relies on a particu-
lar parametric structure, it is mathematically 
convenient. In what follows, I will apply (12) 
in multiple ways. In dynamic contexts, it is 
most fruitful to work with continuation values 
for optimal plans because of the usefulness of 
Bellman-equation methods. First, I will exploit 
(12) as applied to future continuation values 
by either endowing the decision maker with a 
concern about the specification of Markov state 
transition probabilities (left-hand side) or a con-
cern about the intertemporal composition of risk 
as in Kreps and Porteus (1978), Epstein and Zin 
(1989), and others (right-hand side). Second, by 
characterizing the dependence of future contin-
uation values computed as a function of a hid-
den state , I will use (12) in conjunction with a 

16 Typically, the minimizing solution will differ as alter-
native choices are considered. It will often be the case that 
the minimization can be done after maximization of util-
ity without changing the value. Thus, a min-max theorem 
can be invoked. In such circumstances, we can still infer a 
worst case probability distribution by exchanging the order 
of minimization and maximization.

negative exponential specification of the g func-
tion to endow decision makers either with a con-
cern about the specification of the probabilities 
assigned to the hidden states (left-hand side) or 
a smooth ambiguity adjustment as in Klibanoff, 
Marinacci, and Mukerji (2005) (right-hand side).

These ideas are developed more formally 
in several recent papers. While (12) exploits a 
particular functional form, Fabio Maccheroni, 
Marinacci, and Aldo Rustichini (2006a) pro-
vide an axiomatic justification for a more gen-
eral version of this penalization formulation 
given by the left-hand side of (12), where the 
convex function m log m is replaced by a more 
general convex function. Hansen, Sargent, 
Turmuhambetova and Williams (2006) show 
how the intertemporal counterpart to (12) is 
related to the max-min expected utility of Itzhak 
Gilboa and David Schmeidler (1989) by for-
mally interpreting the penalization parameter u 
as a Lagrange multiplier on a constraint over a 
family of probability distributions. Maccheroni, 
Marinacci, and Rustichini (2006b) explore 
more general dynamic formulations of prefer-
ences based on penalization. Finally, Hansen 
and Sargent (forthcoming) use two versions of 
negative-exponential formulation to address 
simultaneously two forms of misspecification 
described previously: (a) misspecification in the 
underlying Markov law for the hidden states, 
and (b) misspecification of the probabilities 
assigned to the hidden Markov states.17

VII.  Learning and Uncertainty Premia

Empirical evidence suggests that risk premia 
move in response to aggregate fluctuations (e.g., 
see Campbell and John H. Cochrane 1999, and 
Martin Lettau and Sydney Ludvigson (forth-
coming). I now explore how learning might 
contribute to an explanation for this phenom-
enon. While I will present some highly stylized 
models, the lessons from this analysis are infor-
mative for more ambitious quantitative investi-
gations. The Wonham (1964) filter will be a key 
input into our characterization.

17 Epstein and Schneider (2003, 2006) make similar dis-
tinctions while developing other interesting formulations 
and applications of ambiguity aversion and learning.
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My characterizations of prices will focus on 
what is usually termed the “local risk return 
trade-off.” In continuous-time environments, 
“local” means instantaneous and the trade-off 
answers the question: “How do we compen-
sate investors for risk borne in the immediate 
future?” I use the term “uncertainty premia” to 
capture the additional components to pricing 
that emerge from using the decision theory of 
Section VI that in some way or another does not 
simply reduce compound lotteries. In dynamic 
economies valuation of cash flow exposure 
uncertainty is pertinent for all horizons, not 
just the immediate one. The recursive nature of 
asset pricing allows us to, in effect, integrate the 
local consequences into implications for longer 
horizons. There is good reason to suspect that 
learning can have a more potent impact for 
valuation over longer horizons. Constructing a 
model in which learning matters for short-term 
risk analysis is a tall order, but such a model will 
likely pay off by also implying substantial con-
sequences for risk-return trade-offs for longer 
horizons.

For the equilibrium calculation, I imitate a 
device used in the rational expectations literature 
(see Lucas and Prescott 1971) by introducing a 
fictitious social planner. Given a consumption 
endowment, the role of this planner is to compute 
value functions and the exponentially slanted 
probabilities associated with these functions. 
The sole purpose of this planning problem is to 
characterize these implied probability distor-
tions. If production were incorporated, then the 
planner’s problem would be more ambitious, but 
it would still include the computation of these 
distortions. Behind this solution to the planner’s 
problem is a counterpart to rational expecta-
tions equilibrium with decentralized prices. The 
planner’s continuation values are the utility val-
ues assigned to consumption processes looking 
forward, and they will be computed as functions 
of the Markov state using continuous-time ver-
sions of Bellman’s equation.

Conveniently, the probability distortion asso-
ciated with exponential tilting, formula (13), 
is computed using continuation values. This 
approach can be viewed as a device for comput-
ing risk premia, as a way to generate alternative 
beliefs, or as a reflection of statistical ambiguity 
on the part of investors. It is the latter interpreta-
tion that I feature here.

Following Veronesi (2000), we use the prob-
ability model assumed by Wonham (1964) in 
which the signal is the growth rate in consump-
tion. In this specification, the expected growth 
rate of consumption has infrequent jumps:

 dct 5 k # zt 1 sdBt .

By solving the filtering problem, I compute a 
second evolution for consumption that endows 
investors with less information. In this second 
specification, the expected growth rate of con-
sumption moves continuously as a function of 
the probabilities, the ¯t’s. To an econometrician 
looking only at consumption data, these two 
specifications are indistinguishable. I will make 
reference to both information structures and 
their implications for pricing.

In what follows, I compute alternative value 
functions and probability distortions, begin-
ning with expected utility. My approach in this 
paper will be derivation by assertion, and the 
interested reader will have to look elsewhere for 
formal derivations.

A. Continuation Values for Expected utility

Given the assumption of a unitary elasticity 
of substitution, we look for continuation values 
of the form, Vt 1 ct,  where Vt depends either 
on the state vector t or the hidden state prob-
abilities ¯t.

Suppose for the moment that t is observed 
as of date t. For a reference point consider dis-
counted expected utility in continuous time. In 
this case, we may represent the continuation 
value as Vt 1 ct 5 v · t 1 ct, where v is an n-
dimensional vector of numbers. The vector v 
satisfies the linear equation

(14)  0 5 2dv 1 Av 1 k,

and hence v 5 (dI 2 A)21k. The continuation 
value when t is not observed is Vt 5 v · ¯t 1 ct, 
which may be computed by applying the Law of 
Iterated Expectations or equivalently by reduc-
ing the associated compound lottery.

When the jumps are observed, there are 
two risk components to price: the Brownian 
 increment dBt and the jump process { t}. Since 
the consumption does not jump (only its condi-
tional mean jumps), the local risk price for the 
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jump component is zero. Since the elasticity of 
substitution is unity, the Brownian motion risk 
price is s. In the reduced information economy 
in which the jump component is not observed, 
only the increment dB# t is priced. Since the coef-
ficients on dBt and dB# t are the same for both 
information structures, the local risk prices 
remain the same for this economy. In this sense, 
the introduction of learning within a rational 
expectations equilibrium is inconsequential for 
the local risk price vector.18

In defense of rational learning, the prices 
of cash flows over finite time intervals will be 
sensitive to the information structure, and this 
sensitivity can be substantial depending on 
the model specification. In order to generate a 
model in which learning alters local prices, how-
ever, I explore other preferences as described 
previously.

B. Continuation Values and  
Exponential Tilting

Consider, next, a modification as in Kreps and 
Porteus (1978) under the assumption that z can 
be observed. Let h be the negative exponential 
function with parameter value uf. This function 
is used to adjust future continuation values. In 
this case we modify Bellman’s equation:

(15)  0 5 2dv 1 k 2 uf diag cexp a v
uf
b d

 3 aA cexp a2 v
uf
bd b	2

1
2uf

 s21n ,

where 1n is an n-dimensional vector of ones. The 
new terms included in the Bellman equation 
adjust the continuation values for risk, both 
jump risk and the Brownian motion risk (see 
Anderson, Hansen, and Sargent 2003 for a deri-
vation). As uf  gets arbitrarily large, this Bellman 

18 Arguably, this conclusion takes time separability in 
preferences too literally in a continuous-time model. Ayman 
Hindy and Chi-fu Huang (1992) and John Heaton (1995) 
argue that locally durability should be an important feature 
of preferences specified at high frequencies. Nevertheless, I 
find this local analysis to be revealing because it shows how 
to amplify the role of learning.

equation collapses to the equation (14) used for 
evaluating discounted expected utility.

This Bellman equation is the counterpart to 
the right-hand side of (12). Associated with the 
left-hand side is probability distortions induced 
by exponential tilting. While we will not formally 
derive this distortion, it is easy to characterize. 
For this continuous time limit, the exponential 
tilting has a simple impact on the underlying 
Brownian motion. A constant drift is added of 
the form 2(s/uf ). The negative of this drift is the 
uncertainty premia added to the risk premium s 
derived for the expected utility model.

Under this distorted probability, consumption 
evolves according to:

 dct 5 k · ztdt 2 
s2

uf
 dt 1 sdB̃t 

for some standard Brownian increment dB̃t . 
Thus, we have subtracted s2/uf from all of the 
hypothetical growth states. This constant adjust-
ment is a feature of other models as well, includ-
ing the discrete time models of Tallarini (2000) 
and Hansen, Heaton and Li (2006b).

The transition probabilities for the Markov 
process are also distorted by the exponential 
tilting. The transitions to states with the smaller 
continuation values will be made more prob-
able. The jump risk exposure now has nonzero 
uncertainty premia in contrast to the zero risk 
premium from the expected utility economy.19

This gives a continuous time counterpart to 
the discussion in Section IV. By interpreting the 
uncertainty premia as reflecting statistical ambi-
guity on the part of investors, Anderson, Hansen, 
and Sargent (2003) and Pascal Maenhout (2006) 
argue that the statistical discrimination analy-
sis of Chernoff (1952) suggests how large this 
uncertainty component could plausibly be. It 
suggests how much statistical latitude there 
might be in distorting the consumption growth 
rates from the vantage point of skeptical inves-
tors, investors whose doubts about their model 
 specification cannot be dismissed easily with 
statistical evidence.

19 See Jun Liu, Jun Pan, and Tan Wang (2005) for a 
related example featuring jump risk.
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Alternatively, a rational expectations econo-
metrician calibrating the model could have 
made a mistake in building a rational expec-
tations model by not endowing agents with 
lower potential growth rates for consumption. 
A Chernoff-type calculation based on real data 
controls the extent to which growth rates could 
be diminished, but they are set at this new level 
with full investor confidence.

This model of investor preferences increases 
the predicted uncertainty premia associated 
with the Brownian motion increment dB̃t , but it 
does not cause them to be time varying. I now 
examine another modification to the model 
which delivers time-varying premia.

C. Exponential Tilting and Less Information

Suppose now that the state variable z is not 
observed. Instead it is disguised requiring that 
statistical inferences be made using the Wonham 
(1964) filter. I may not just average the solution 
to equation (15) over the hidden states to obtain 
the solution to this problem. Instead, as Kreps 
and Porteus (1978) and Epstein and Zin (1989) 
show, the intertemporal composition of risk 
matters. Thus, I must solve a new Bellman equa-
tion that includes an alternative risk adjustment 
to the continuation value

(16) 

  0 5 2dV 1 k · ¯ 1 ¯9A9
0V

0 ¯

   1 
1
2

D9
02V

0 ¯0 ¯9
 D

   2 
1

2uf
 £ p	0V

0 ¯ 		· D p
2

 1 2s 
0V

0 ¯   · D 1 s2§ ,

where the value function is V( ¯) 1 c. The last 
term captures the risk adjustment to continua-
tion values necessary for the Kreps and Porteus 
(1978) recursion (see Darrell Duffie and Epstein 
1992).

Again, I use a link to robustness to construct 
an implied change in probability measure. The 

distortion again adds a drift to the Brownian 
motion, but now the drift depends on the state 
probabilities. Three contributions to the uncer-
tainty premia are given in Table 1. While I will 
not derive this formula, it follows from the 
analysis in Hansen, Sargent, Turmuhambetova, 
and Williams (2006). The first term is the risk 
adjustment from expected utility theory when 
the IES is unity. The second term is familiar 
from our analysis of the model in which the 
jump component is observed.20 The impact of 
learning is reflected in the third term, which 
depends explicitly on z̄ . The second two terms 
depend on the derivatives of the value function 
and the local volatility. They distort the evolu-
tion of consumption and the state probabilities 
from the Wonham filter via exponential tilting. 
Unfortunately, we lose some pedagogical sim-
plicity because the value function, and hence its 
derivative, must be computed numerically.

To illustrate this solution, consider an exam-
ple with two states as in Marco Cagetti et al. 
(2002).21 From Example 3, when there are two 
hidden states, the vector D has

 z#1, t 11 2 z#1, t 2 a
k1 2 k2

s
b

as its first entry and the negative of this as its 
second entry. The scale factor z#1, t 11 2 z#1, t 2  is 

20 An astute reader will notice that I have also distorted 
the dynamics for z̄ . We retain use of this as a state variable, 
but we lose its interpretation as the solution to a simple fil-
tering problem.

21 Cagetti et al. (2002) consider formally a production 
economy and they do not impose a unitary elasticity of 
substitution.

Table 1—Risk and Uncertainty Premia

 Exponential tilting Exponential tilting
Exp. Utility consumption  state estimation
IES 5 1 dynamics dynamics

s s/uf (1/uf)D(z̄) · [0V(z̄)/0z̄]
Time invariant Time invariant Time varying

Notes: The value function has functional form: V(z̄) 1 c, s 
is the response of consumption to new information, and 
D(z̄) is the vector of responses of the probabilities to new 
information.
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close to zero when there is a preponderance of 
evidence for one or the other states. This term 
is large when it is hard to tell the two states 
apart, that is when z#1, t 5 1 2 z#1, t 5 1/2. The 
actual uncertainty prices depend on value func-
tion derivative as well, but it remains true that 
uncertainty prices become large when there is 
ambiguity about the hidden state probabilities, 
as illustrated in Figure 4.

When Cagetti et al. (2002) fit a technology 
shock model with two regimes using economet-
ric methods, like Hamilton (1989), they found 
growth rate regimes that moved over what mac-
roeconomists typically refer to as the business 
cycle. The time series of resulting uncertainty 
prices are large at dates at which investors do 
not know which regime they are in: these are 
dates at which both regime probabilities are one-
half. Repeated observations of low consumption 
growth strengthen investor beliefs that they are 
in the low growth regime, thereby resolving 
some of the uncertainty and reducing the pre-
mium. I imagine that by including more states,  
in particular more low-frequency movements in 
growth rates, I can modify this outcome so that 
some repeated observations with low growth 

increase the uncertainty about an underlying 
growth rate regime.22

While this example produces interesting time-
series variation in local uncertainty premia, it does 
so by distorting the dynamic evolution equation 
for the state vector. This includes distorting the 
component originally constructed as Wonham’s 
(1964) solution to a filtering problem. Investors 
treat state estimates from the Wonham (1964) 
filter like any other observable state variable, 
and they do not distort the current period state 
probabilities.

D. Estimation Ambiguity

I now explore alternative approaches that 
directly distort the state probabilities. To feature 
the role of ambiguity in the assignment of state 
probabilities, I follow Klibanoff, Marinacci, and 
Mukerji (2005) and Hansen and Sargent (forth-
coming) by introducing a separate adjustment 
for ambiguity over the probabilities assigned to 
states.

Using a continuous-time counterpart to a 
decision model of Hansen and Sargent (forth-
coming) and decomposition (9), we may obtain 
a modified version of the Bellman equation (16). 
To feature the role of hidden states, the fictitious 
planner modifies the equation by considering 
the evolution of continuation values prior to the 
information reduction. Even though the value 
function depends only on ¯ and c, its evolu-
tion now depends on the realized hidden states. 
Hansen and Sargent (forthcoming) introduce a 
second parameter, say ub, to penalize distortions 
to the probability vector ¯ used by the planner 
for computing the averages required for a new 
continuous-time Bellman equation. The result-
ing solution remains difficult to compute unless 
the number of states is small.

For my numerical examples, I use a second 
approach suggested by Hansen and Sargent 
(forthcoming). The solution can be easier to 
compute, which we exploit in solving the four 
hundred state Markov chain example which 
 follows.23 Consider again the Kreps and Porteus 

22 Such extensions are worthwhile, but the value func-
tion for this model must be solved numerically. This limits 
the scope of such an analysis.

23 While computationally simpler, its game theoretic 
underpinnings are more subtle.
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Figure 4. Uncertainty Price Function

Notes: The uncertainty price is the sum of the second and 
third components given in Table 1. It is computed for a 
two-state Markov chain. To produce this curve, I assumed 
an intensity matrix A from Cagetti et al. (2002) with off-
diagonal elements equal to 0.0736 and 0.352. The growth 
rates are k1 5 0.0071 and k2 5 0.0013. The value function 
was computed taking a quadratic approximation around 
the implied unconditional mean of the probability of being 
in the first state with parameter values uf 5 0.1 and d 5 
2log 0.998.
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(1978) recursion conditioned on the hidden state 
. Recall that the value function is v ·  1 c, 

where v is a vector of real numbers. I use the 
continuation values in conjunction with (12) for 
u 5 ub to infer a distortion of the hidden state 
probabilities. Recall that the probability dis-
tortion results in an exponential tilting of the 
 probability assignment toward states with the 
lowest continuation values. That is, let

 v*
i  5 exp a2vi

ub
b

for some positive value of the parameter uf. 
Large values of ub make v*

i ’s close to a constant 
value of unity. The distorted or exponentially 
tilted probabilities assigned to hidden state are

 z̃t
i 5 

v*
i z#i, t

g iv*
i z#i, t

.

These tilted probabilities induce a distortion 
in the expected growth rate for consumption 
and hence add a component to the uncertainty 
premia.

Three contributions to the uncertainty premia 
are given in Table 2. The first two are familiar 
from our previous example economies and the 
third is unique to this example. The first is a risk 
premia, and the second term is determined by 
the continuation values conditioned on  and the 
parameter uf. Both are constant. The third term 
is unique to this example. Since it depends on 
the hidden state probabilities and their distor-
tions, this term is time varying. Its magnitude 
is determined in part by the parameter ub used 

in computing the exponential tilted state prob-
abilities. The third term reflects the contribution 
of learning. From a robustness standpoint, the 
parameter uf reflects forward-looking skepti-
cism about assumed dynamics and the param-
eter ub a backward-looking skepticism about the 
constructed state probabilities.

The time series plots in Figure 5 display the 
sum of the second and third components of the 
uncertainty premia, which are the components 
associated with probability slanting. I con-
struct a Markov chain to approximate four dif-
ferent parameter configurations or submodels. 
Formally a submodel is a collection of states 
for which there is no chance of leaving that 
collection. I design a 400 state Markov chain 
to approximate a model selection problem or 
estimation problem for investors. One hundred 
states were used for each of the four submod-
els. The corresponding intensity matrix A is 

Figure 5. Time Series of Uncertainty Prices

Notes: The uncertainty prices are the sums of the sec-
ond and third components given in Table 2. The Markov 
chain has 400 states, 100 for each of 4 submodels. The four 
submodels are (i) AR1 with an AR coefficient of 0.97, a 
shock standard deviation of 0.00058, and an unconditional 
mean of 0.0056; (ii) AR1 with an AR coefficient of 0.98, 
a shock standard deviation of 0.00047, and unconditional 
mean of 0.0056; (iii) AR1 with an AR coefficient of 0.99, 
a shock coefficient of 0.00024, and an unconditional mean 
of 0.0056; (iv) i.i.d. model with prior on the mean given by 
0.0056 and a prior standard deviation of 0.00036. The 2 
curve was computed assuming that ub 5 24, and the 2 2 
curve was computed assuming that ub 5 6. The upper two 
plots were computed assuming that uf 5 0.05, and the lower 
two plots were computed assuming that uf 5 0.1. For all of 
the plots, d 5 2log 0.998.

Table 2—Risk and Uncertainty Prices

 Exponential tilting Exponential tilting
Exp. Utility consumption  state estimation
IES 5 1 dynamics dynamics

s s/uf [(z̄ 2 z̃ ) · k]/s
Time invariant Time invariant Time varying

Notes: The value function as functional form: V(z) 1 c, s 
is the response of consumption to new information, z̄ is 
the vector of probabilities from the Wonham filter, z̃ is the 
exponentially tilted counterpart and k is the vector of alter-
native growth rates.
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block diagonal with four blocks. I construct 
the first three submodels by approximating the 
consumption dynamics given in Example 2, in 
which the process { t} is hidden from the agents. 
I use three different values of the autoregres-
sive parameter 0.97, 0.98, and 0.99. The cor-
responding coefficients on the shock u2, t11 (the 
conditional standard deviations of the hidden 
state process) were obtained by maximizing 
the likelihood over this parameter conditioned 
on the autoregressive parameter and the coeffi-
cient 0.0054 on the shock u1, t11 to the consump-
tion growth rate equation. I use the method of 
George Tauchen and Robert Hussey (1991) to 
obtain a discrete state approximation for each 
of these three models. The other 100 states are 
all invariant states designed to approximate 
alternative mean growth rates. I apply a stan-
dard quadrature method in constructing the 
discrete states.24 For computational purposes 
and for the computation of uncertainty prices, 
I take the discrete states literally; but the setup 
is designed to be similar to an economy studied 
in great depth by Hansen and Sargent (2006). 
In that paper, we used Kalman filtering meth-
ods for two alternative models and computed 
the sequence of posterior probabilities for these 
models given sample evidence on consump-
tion. Here, I use the same data as used in that 
analysis to solve the filtering problem.

The second term in Table 2 is time invariant. 
By changing uf, I alter the level of the uncer-
tainty premia. This is reflected in Figure 5. The 
two lower curves were computed for uf 5 0.10 
and upper curves for uf 5 0.05. A smaller value 
of uf implies less penalization in the investors’ 
search over alternative probability distributions. 
The third term in Table 2 induces time series 
variation in the uncertainty premia while hav-
ing little impact on the level. The smooth curves 
in Figure 5 are computed for ub 5 24 and the 
more volatile curves for ub 5 6. By construction, 
the time series trajectories are similar to those 
reported in the more comprehensive analysis by 
Hansen and Sargent (2006) except that I have 
introduced additional models to approximate 

24 To form an (approximate) intensity matrix for the con-
tinuous-time Markov chain, I subtracted an identity matrix 
from the discrete-time transition probability matrix.

the problem of estimating the parameters gov-
erning the dynamics of { t}.

I find it convenient to think of the first three 
submodels as three different parameter specifi-
cations of predictability in consumption growth. 
By including all three in the analysis I have 
approximated an estimation problem. The fourth 
submodel is different because consumption 
growth rates are not predictable. As a conse-
quence it implies less long-run uncertainty. The 
signal history of postwar consumption growth 
does not allow investors either to confirm or 
reject this fourth submodel with full confidence. 
Probabilities are tilted away from this submodel 
based on the continuation values. A string of rel-
ative high or relatively low consumption growth 
rates both give evidence for consumption pre-
dictability. The relatively high growth rates 
induce less tilting toward the submodels with 
predictability in consumption because if con-
sumption is predictable it should remain high, 
at least temporarily. In contrast, relatively low 
growth rates in consumption induce more tilt-
ing toward the submodels with predictable con-
sumption growth and this in turn gives a larger 
uncertainty premia.

VIII.  Extensions

There are very special ingredients in my 
example economies. They were designed in part 
to magnify the impact of learning on uncertainty 
prices. On the other hand, there are empirical 
limitations to these economies that can be antic-
ipated from previous literature.

My example economies have arguably with-
held too much information from economic 
agents. For instance, multiple signals make 
learning more informative, and it remains valu-
able to explore implications that allow for an 
econometrician to understate the knowledge 
of economic agents. Learning within a rational 
expectations equilibrium already adds to the 
econometrician’s challenge by requiring an ini-
tial specification or prior for the beliefs about 
hidden Markov states, parameters, or model 
indicators. The decision theory that we explored 
avoids the reduction of compound lotteries and 
thus prevents direct application of the Law of 
Iterated Expectations as commonly used in 
rational expectations econometrics to deduce 
robust implications. While econometric analysis 
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may be more challenging, it is a challenge with 
potentially valuable payoffs.

I chose not to feature models in which there 
is conditional volatility present in the evolution 
for consumption. I did this to show how learning 
can induce time variation in uncertainty prices 
without an additional exogenous source of 
variation. Low-frequency volatility movements, 
however, are a potentially important additional 
ingredient.25

Similarly, I restricted the IES (intertemporal 
elasticity of substitution) to be unity to simplify 
the characterization of value functions and 
probability distortions. For models that seek to 
understand better wealth and aggregate stock 
price dynamics, this restriction is problematic 
because it implies constant wealth consumption 
ratios. On the other hand, approximating around 
an economy with IES 5 1 can be a useful char-
acterization device as I illustrated in Section I.

My focus on one-period (in discrete time) or 
local (in continuous-time) uncertainty prices 
made it more difficult for learning to matter. 
If learning matters for short-horizon valuation, 
then its impact should be more potent for lon-
ger horizons. Recent asset pricing literature has 
focused on the role of long-run uncertainty on 
cash flow valuation. (For example, see Campbell 
and Tuomo Vuolteenaho 2004; Bansal, Robert 
F. Dittmar, and Christian T. Lundblad 2005; 
Jesus Santos and Pietro Veronesi 2005; Hansen, 
Heaton, and Li 2006; and Mariano Croce, 
Martin Lettau, and Sydney C. Ludvigson 2006.) 
Since statistical measurements for long-horizons 
are known to be fragile, formally incorporat-
ing learning into such analysis is an obvious but 
important extension.

My models imposed homogeneity on inves-
tors. This allowed me to compute a single tilted 
probability model and simplified my analy-
sis. While introducing heterogeneity among 
 investors will complicate model solution, it has 
intriguing possibilities. The investors will slant 
probabilities in different directions giving rise 
of a form of ex post heterogeneity in beliefs. 
There is much more to be done.

25 Weitzman (2007) has recently shown that for some 
priors on volatility, learning can be particularly challeng-
ing and consequently can have a big impact on the pre-
dicted asset returns.

IX.  Conclusion

The cross-equation restrictions used in ratio-
nal expectations econometrics get much of their 
empirical power by endowing agents with more 
precise information than econometricians. This 
includes information on endowments, cash flows 
and technology shocks. The rational expectations 
agents have done a lot of unmodeled work before 
the econometrician steps in. In this paper I have 
explored ways to close this informational gap by 
giving economic agents some skepticism about 
the models they use. I showed how investor con-
cerns about statistical ambiguity are reflected in 
equilibrium prices. In our example economies, 
I avoided endowing economic agents with full 
confidence in probability models that are demon-
strably hard to estimate. By introducing learning 
within an equilibrium, I showed how learning is 
reflected in the dynamic evolution of local uncer-
tainty prices. These uncertainty premia reflect 
investors’ doubts about their probability models. 
Learning about very low frequency events includ-
ing the primitive model specification can lead to 
uncertainty premia that are large when macro-
economic growth is sluggish. This changes the 
structure of cross-equation restrictions, but not 
necessarily their potency. While there are other 
possible interpretations for the equilibrium out-
comes I displayed, including changing beliefs or 
embracing preferences that decompose risks in 
alternative ways, I find the relation to statistical 
ambiguity to be the most appealing.

There are analogous questions regarding the 
role of uncertainty in the exploration of hypo-
thetical government interventions. The models 
I used drew a distinction between risks con-
ditioned on a hidden model specification or a 
hidden state, and uncertainty about that speci-
fication or hidden state. If this distinction is 
important in understanding evidence from secu-
rity market data, then use of this evidence in the 
analysis of stochastic interventions will require 
a careful accounting of the probability struc-
ture of the policy intervention. What skepticism 
will economic agents have about the alternative 
probability structure, and what role will learn-
ing play in validating or altering beliefs? While 
such distinctions are not typical in the formal 
analysis of policy changes, perhaps they should 
become part of the normative vocabulary as 
argued in the context of monetary policy by 
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Milton Friedman. Rational expectations models 
have been demonstrably successful in featuring 
the role of credibility in policy making, but there 
is scope to explore further the role of beliefs, 
doubts, and learning in a formal way.
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