"Information Immobility and the Home Bias Puzzle"
Van Nieuwerburgh + Veldkamp (J. Finance, 2009)

• Traditional info.-based models of home bias focus on the supply of info.

• This paper asks why? Focuses on the demand for info. Info. structure is endogenous

• Info. immobility persists not because investors cannot learn about foreign assets, but because they choose not to.

• Basic Idea: Increasing returns to info. acquisition.
The Model

- Static 2-country RE model (Prices reveal info.)
- Each country populated by a continuum of identical investors
 - H investors have slight initial info. advantage for H assets

Timing

1.) Choose signal distribution s.t. info.-processing constraint
2.) After observing signals, choose portfolio.
3.) Prices adjust to clear markets & payoffs realized.

Key Mechanism

Interaction between info. choice and portfolio choice.

Key Idea

Equil. prices reflect average info.
Better informed investors earn “excess returns” (info. rent)
⇒ Investors want to differentiate their info. sets (specialization)
Preferences

\[U = \max_{\mathbf{g}} -E\{ -p g' (f - r p) + \varphi g' \Sigma g \} \]

- \(p \) = coeff. of absolute risk aversion
- \(r \) = risk-free rate
- \(\varphi \) = \(N \times 1 \) vector of asset demands
- \(f \) = \(N \times 1 \) vector of asset payoffs
- \(P \) = \(N \times 1 \) vector of asset prices
- \(\Sigma \) = \(N \times N \) posterior var.-cov. matrix of payoffs

Prior Beliefs

Note, distribution of \(f \) is Common Knowledge. What investors are learning about is the particular \(f \) that was drawn. That is, investors only learn about mean payoffs, not the variance.

\[H: \eta \sim N(\eta, \Sigma) \quad F \sim N(f, \Sigma^*) \quad \Sigma < \Sigma^* \]

Info. Acquisition

At time 1, each investor chooses a variance \(\Sigma_0 \) for signal

\[\eta \sim N(\eta, \Sigma_0) \]

At time 2, each investor observes \(N \times 1 \) vector of signals, \(\eta \), about \(f \).

(Investors signals are indpt. of each other).
Key Simplifying Assumptions

1.) Decompose prior var-cov matrix, $\Sigma = \Gamma \Lambda \Gamma'$

Λ_i: prior var. of each risk factor

Γ_i: loadings of each asset on i^{th} risk factor

2.) H & F priors have same eig.vectors, but different eig.values

\Rightarrow Investors choose different levels of risk for the same risk factors.

\Rightarrow Investors observe signals Γ' about risk factor payoffs $\Gamma'f$

\Rightarrow Posterior Var: $\hat{\Sigma} = \Gamma \hat{\Lambda} \Gamma'$

$\Lambda_i - \hat{\Lambda}_i$: decrease in uncertainty about risk factor i

Info. Processing Constraints

1.) $|\hat{\Sigma}| \geq \frac{1}{K} |\Sigma| \quad K \geq 1$ is overall "capacity constraint"

Comments:

a.) This is a cost of processing info., not a cost of purchasing/acquiring it

b.) Same for all investors + assets

c.) Everybody must process their own info. Can't pay a port. manager to do it!

2.) No forgetting. Can't increase uncertainty about some risks in order to reduce other risks. $\Lambda_{qi} \geq 0$ where $\Sigma_{ii} = \Gamma \Lambda_i \Gamma'$
Belief Updating

\[\hat{\Sigma}^i = \mathbb{E}[f | \hat{m}^i, \hat{q}^i, \rho] = \left(\hat{\Sigma}^i \right)^{-1} \left(\hat{\Sigma}^i \right)' \hat{m}^i + \left(\hat{\Sigma}^i \right)' \hat{q}^i + \Sigma^i \right)_{\rho - \sigma} \]

\[\hat{\Sigma}^i = \nabla [f | \hat{m}^i, \hat{q}^i, \rho] = \left[(\hat{\Sigma}^i)' + (\hat{\Sigma}^i)' + \Sigma^i \right]^{-1} \]

Asset Demands

\[\hat{q}^i = \frac{1}{\rho} (\hat{\Sigma}^i)' \left[\hat{m}^i - \rho \right] \]

Market-Clearing

\[\int_0^1 \hat{q}^i \, d\hat{s} = \bar{x} + x \]

Noise ~ \text{N}(0, \sigma^2 I)

Fixed Pt. Problem: Demand depends on info, revealed by prices. But info, revealed by prices depends on demand!

Guess & Verify: \(P = A + B \cdot f + C \cdot x \)

\[A = -\rho \left[\frac{1}{\rho \sigma^2} (\hat{\Sigma}^i \hat{\Sigma}'^i)' + (\hat{\Sigma}^i)' \right]^{-1} \bar{x} \]

\[B = 1 \]

\[C = -\left[\frac{1}{\rho \sigma^2} (\hat{\Sigma}^i \hat{\Sigma}'^i)' + (\hat{\Sigma}^i)' \right]^{-1} \left(\rho \bar{x} + \frac{1}{\sigma^2} (\hat{\Sigma}^i)' \right) \]
1st period Info. Choice Problem

\[\hat{U} = \max_{\hat{\lambda}_i} E \left[\frac{1}{2} (\hat{\lambda}_i - pr)' \left(\Sigma^i \right)^{-1} (\hat{\lambda}_i - pr) \right| \lambda_0, \Sigma \]

Note, \(\hat{\lambda} - pr \) is a Normal r.v., so we must calculate mean of a \(\chi^2 \) r.v. Can write as,

\[\hat{U} = \max_{\hat{\lambda}_i} \sum \left[\Lambda_{pi} + (\rho \hat{\lambda}_i \times \hat{\lambda}_i)' \right] (\hat{\lambda}_i)' \]

s.t. info. processing constraint

Defn: Investor j's learning index for risk factor i is

\[\tilde{L}_i = \left(e^{\hat{\lambda}_i} \hat{\lambda}_i \right)^{1/2} \left[(\hat{\lambda}_i)' + \Lambda_{pi} \right] + \frac{\Lambda_{pi}}{\Lambda_i} \]

Proposition: Each investor j sets \(\hat{\lambda}_i = \lambda_i \) \(\forall k \neq i \)

and \(\hat{\lambda}_i < \lambda_i \) for risk factor i, where

\[i = \arg \max \{ \tilde{L}_i \} \Rightarrow \text{specialisation in learning} \]

Implications:

Investors learn more about:

1.) "Important" stocks \((\tilde{L}_i \text{ big}) \)

2.) Risk factors where avg. uncertainty is big \((\tilde{L}_i \text{ big}) \)

3.) Risk factors with less initial uncertainty \((\tilde{L}_i \text{ low}) \)
Graphical Depiction of Equil.

\[\hat{U} = \max \hat{\Lambda}_N + \hat{\Lambda}_F \]

Indiff Curve
IP constraint \(\hat{\Lambda}_N \hat{\Lambda}_F = K \)

Exog. Portfolio Benchmark

\[\hat{U} = \min \hat{\Lambda}_N + \hat{\Lambda}_F \]