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Abstract

We survey the recent literature on learning in financial markets.

Our main theme is that many financial market phenomena that

appear puzzling at first sight are easier to understand once we

recognize that parameters in financial models are uncertain and

subject to learning. We discuss phenomena related to the volatility

and predictability of asset returns, stock price bubbles, portfolio

choice, mutual fund flows, trading volume, and firm profitability,

among others.
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INTRODUCTION

Parameter uncertainty is ubiquitous in finance. Agents are uncertain about many of the

parameters characterizing financial markets, and they learn about these parameters by

observing data. This learning is facilitated by the existence of vast quantities of financial

data, but it is also hampered by the large amount of randomness pervading financial

markets.

This article reviews selected recent work on learning in finance. The overarching

theme is that learning helps us better understand a variety of phenomena observed in

financial markets. Many facts that appear baffling at first sight seem less puzzling once

we recognize that parameters are uncertain and subject to learning. We ask questions

such as, Why are stock returns so volatile? Why are they predictable? Why do investors

trade so much? Why do stocks of young firms exhibit high valuations and high volatili-

ty? Why are technological revolutions accompanied by stock price “bubbles”? Why do

fund flows react strongly to fund performance? Why do firms become less profitable

after they go public? We show that learning helps us answer all of these questions, as

well as many others.

Our quest for the answers is guided by the principle of parsimony. We always seek the

simplest explanation, one that makes as few assumptions as possible. For example, a

single-agent model is more parsimonious than a multiagent model, symmetric information

is simpler than asymmetric information, and rationality has fewer degrees of freedom than

irrationality. If a fact can be explained in a rational single-agent model, then it can surely

be explained in more complicated models as well. Of course, many facts cannot be ex-

plained with few assumptions. Nonetheless, the world appears a lot more parsimonious

once parameter uncertainty is acknowledged.

BAYESIAN UPDATING

The cornerstone of learning is Bayes’ rule, which describes how rational agents update

their beliefs after receiving new information. To illustrate the updating process, consider

the following example of an agent who is uncertain about the parameter �. Before observ-

ing any signals, the agent’s prior beliefs about � are normally distributed with mean �0 and

variance s20. The agent observes T independent signals about �, st ¼ � þ "t, where each "t is

normal with zero mean and known variance �2. According to Bayes’ rule, the agent’s

posterior (i.e., revised) beliefs about � are normally distributed with mean ~yT and variance

~s 2
T , where

~yT ¼ y0

1
s2
0

1
s2
0

þ T
s2
þ �s

T
s2

1
s2
0

þ T
s2
; ð1Þ

~s2T ¼ 1
1
s2
0

þ T
s2
; ð2Þ

and �s is the average signal value, �s ¼ ð1=TÞPT
t¼1st. The posterior mean ~yT is a precision-

weighted average of the prior mean and the average signal. Unlike ~yT , the posterior

variance ~s2T does not depend on the realizations of the signals. This variance, which we

also refer to as uncertainty about �, decreases as the number of signals T increases

Bayes’ rule: theorem

showing how prior

beliefs are revised into
posterior beliefs after

receiving new

information
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(learning reduces uncertainty). The posterior variance is always smaller than the prior

variance, ~s2T < s20.
Bayesian updating can also be formulated recursively. Denoting D~yt ¼ ~yt � ~yt�1,

we have

D~yt ¼ mt st � ~yt�1

� �
with mt ¼ 1

1þ s2=~s2t�1

: ð3Þ

Intuitively, observing a higher-than-expected signal, st > ~yt�1, leads the agent to revise the

expectation upward, ~yt > ~yt�1, and vice versa. This revision is large when the multiplier

mt is large, which happens when the ratio of uncertainty ~s2t�1 to signal variance �2 is large.

If time is viewed as continuous rather than discrete, the signal takes the differential

form, dst ¼ �dt þ �dWt, where dWt denotes a Brownian motion. The updating formula

is then

d~yt ¼ mt dst � ~ytdt
� �

with mt ¼ ~s2t
s2

; ð4Þ

which is analogous to Equation 3. Note that mt in Equation 3 can also be written as

~s2t =s
2. Even in continuous time, uncertainty ~s2t declines over time according to the same

Equation 2.

STOCK VALUATION

When the discount rate r and dividend growth g are constant, the stock price is given by

P ¼ D

r� g
; ð5Þ

where D is the next period’s dividend. This well-known Gordon growth formula holds not

only when dividend growth is constant but also when it follows the process

dDt

Dt
¼ g dt þ s dWt; ð6Þ

in which case g represents average dividend growth. See the Appendix for proof.

Interesting things happen when g in Equation 6 is unknown. Pastor & Veronesi (2003,

2006) argue that uncertainty about g increases the stock price. The Appendix shows that

for any probability density f(g) such that r > g with probability one,

P ¼ E
D

r� g

� �
>

D

r� E gf g ; ð7Þ

where E{.} denotes an expectation with respect to f(g). The inequality in Equation 7

follows from Jensen’s inequality because 1/(r – g) is convex in g. For the same reason, the

price-to-dividend ratio (P/D) increases with the dispersion of f(g). Intuitively, uncertainty

about g makes the distribution of future dividends right-skewed, thereby increasing

expected future dividends. Loosely speaking, a firm with some probability of failing

(a very low g) and some probability of becoming the next Google (a very high g) is

very valuable. When r is endogenously determined in equilibrium with a power-utility

representative agent, uncertainty about g may increase or decrease r, but its overall effect

Uncertainty: variance
of an unknown

parameter given the

available information

Brownian motion:

continuous-time

stochastic process

with independent
normally distributed

increments

P/D: price-to-dividend

ratio
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on P/D is positive (Pastor & Veronesi 2006). Instead of focusing on P/D, which does

not exist for non-dividend-paying firms, Pastor & Veronesi focus on the market-to-book

ratio (M/B). This ratio increases with uncertainty about the firm’s average profitability,

which can be interpreted as uncertainty about the average growth rate of book value.

Because uncertainty declines over time due to learning (see Equation 2), the Pastor &

Veronesi (2003) model predicts that M/B declines over a typical firm’s lifetime, so that

younger firms should have higher M/B’s than otherwise identical older firms. This pre-

diction is confirmed in U.S. stock data: The median M/B falls monotonically from 2.25 for

1-year-old firms to 1.25 for 10-year-old firms, and the cross-sectional relation between

firm age and M/B is reliably negative. The model also implies that the effect of age on

M/B should be stronger for younger firms and non-dividend-paying firms. Furthermore,

M/B should decrease with expected return and increase with both the level and the

volatility of profitability. All of these predictions are confirmed empirically.

Stock Price “Bubbles”

Pastor & Veronesi (2006) extend their 2003 model and calibrate it to match the observed

stock valuations at the peak of the Nasdaq “bubble.” They argue that stocks were not

necessarily overvalued in the late 1990s because uncertainty about g was unusually high.

The higher the uncertainty about g, the higher the stock price in Equation 7. The authors

compute the level of uncertainty that allows their model to match the Nasdaq valuation at

its peak in March 2000. This uncertainty, which they call implied uncertainty for its

similarity to implied volatility in option pricing, seems plausible because it matches not

only the level but also the volatility of Nasdaq stock prices. In the late 1990s, these prices

were not only high but also highly volatile, and both facts are consistent with high

uncertainty about g. (We show later that uncertainty about g increases return volatility.)

Moreover, cross-sectionally, stocks with high M/B’s also had highly volatile returns, sug-

gesting that these stocks had highly uncertain future growth rates. In general, the authors

argue that the level and volatility of stock prices are positively linked through firm-specific

uncertainty about g.

The same learning model also seems capable of explaining the bursting of the Nasdaq

bubble. Nasdaq’s profitability plummeted in 2000 and 2001. As a result, investors revised

their expectations of Nasdaq’s future profitability downward, pushing prices down. Be-

cause the investors’ prior uncertainty was large, their expectation revision was also large

(see Equation 3). Starting with prior beliefs that match Nasdaq’s level and volatility in

March 2000, the model predicts a postpeak Nasdaq price decline that is comparable to

that observed in the data.

The Nasdaq bubble, which developed during the Internet boom, is an example of a

more general pattern. Technological revolutions tend to be accompanied by bubbles in the

stock prices of innovative firms. This evidence is typically attributed to market irrationali-

ty, but Pastor & Veronesi (2009) argue that it is also consistent with a rational general

equilibrium model of learning. They argue that new technologies are characterized by high

uncertainty about their future productivity, and that the time-varying nature of this uncer-

tainty can produce the observed bubbles. In their model, a representative agent is learning

about a new technology’s productivity. If the agent learns that the technology is sufficient-

ly productive, he adopts it on a large scale, creating a technological revolution. Most new

technologies do not cause revolutions, but those that do exert two opposing effects

M/B: market-to-book
ratio

Implied uncertainty:

level of uncertainty

that equates model-

implied valuations
with observed

valuations

Stock-price bubble:

phenomenon

occurring when stock
prices exhibit a

substantial increase

followed by a sharp

fall without being
accompanied by an

obvious similar

pattern in the

fundamentals
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on stock prices: a positive cash flow effect and a negative discount rate effect. On the

one hand, the new technology must surprise the agent with high realized productivity

(otherwise he would not adopt it), and this positive cash-flow news pushes stock prices

up. On the other hand, the risk associated with the new technology gradually changes from

idiosyncratic to systematic, thereby pushing up discount rates and thus depressing stock

prices. The cash flow effect prevails initially, but the discount rate effect prevails eventually,

producing an apparent bubble in stock prices. Importantly, these bubbles are observable

only in hindsight—they are unexpected by investors in real time but we observe them ex

post when we focus only on technologies that eventually lead to technological revolutions.

The Pastor-Veronesi model makes numerous additional predictions, which are sup-

ported by the evidence from 1830–1861 and 1992–2005 when the railroad and Internet

technologies spread in the United States. A key prediction is that the market beta of

innovative firms—a measure of systematic risk—should increase during technological

revolutions. Indeed, the beta of the technology-loaded Nasdaq index doubled between

1997 and 2002, and the beta of railroad stocks increased sharply in the 1850s. Because

stories based on irrationality do not predict increases in systematic risk during revolutions,

this evidence suggests that rational learning about new technologies is useful in explaining

the bubble-like patterns in stock prices.

Technological revolutions exhibit not only stock price bubbles but also apparent over-

investment. This fact is also consistent with rational learning, as shown by Johnson

(2007). Johnson develops an equilibrium model of investment in a new industry whose

production function has an unknown return to scale. The model implies that the most

efficient way to learn about returns to scale is by overinvestment relative to the full-

information case. This overinvestment is accompanied by high stock prices and low

expected returns.

Other models that link stock price bubbles to learning include Scheinkman & Xiong

(2003) and Hong et al. (2006, 2008). Unlike the models discussed above, these models

feature heterogeneous beliefs, and they produce bubbles with the help of additional assump-

tions such as short-sale constraints and behavioral biases. Battalio & Schultz (2006) argue

that short-sale constraints were not responsible for the Nasdaq bubble. Li & Xue (2008)

argue that this bubble can be explained by uncertainty about a possible structural break in the

economy’s productivity. Finally, Donaldson & Kamstra (1996) argue against a bubble in the

1920s based on a neural network model of dividend expectations.

STOCK RETURN VOLATILITY

The volatility of stock returns exhibits interesting empirical features. For example, it is

high relative to the volatility of the underlying dividends, and it varies over time in a

persistent fashion. Learning helps us understand these facts.

The Level of Volatility

When the discount rate r and the average dividend growth g are both constant and known,

the stock price is given by Equation 5, and return volatility equals the volatility of

dividend growth. In reality, however, the postwar volatility of market returns has averaged

17% per year, whereas the dividend growth volatility has averaged only 5%. To reconcile

this difference, it helps to view g in Equation 6 as unknown (Timmermann 1993). Agents

www.annualreviews.org � Learning in Financial Markets 365

A
nn

u.
 R

ev
. F

in
an

c.
 E

co
n.

 2
00

9.
1:

36
1-

38
1.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
Si

m
on

 F
ra

se
r 

U
ni

ve
rs

ity
 o

n 
07

/0
2/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 



learn about g by observing realized dividends. Unexpectedly high dividends increase the

stock price not only through current dividends but also by raising expectations of future

dividends. This double kick to the stock price increases return volatility compared to the

case in which g is known.

To formalize Timmermann’s intuition, let r be constant and known, let g have a

truncated normal distribution that assigns zero probability to g � r, and let ~gt and ~s2t
denote the mean and variance of g as perceived at time t. Extending Timmermann’s work,

we show in the Appendix that the standard deviation of returns is approximately equal to

Return Volatility � Dividend Growth Volatility� 1þ @logðP=DÞt
@~gt

� �
mt

� 	
; ð8Þ

where dividend-growth volatility stands for � in Equation 6, @logðP=DÞt=@~gt > 0, and

mt > 0 is given in Equation 4. This formula shows that return volatility exceeds the

volatility of dividend growth. The difference can be substantial. For example, let s ¼
5%, r ¼ 10%, ~gt ¼ 3%, and ~st ¼ 2%. Return volatility is then approximately 20%, four

times higher than the 5% volatility of dividend growth. Equation 8 also shows that return

volatility increases with �, and it also increases with uncertainty ~s2t , through mt. If ~s2t ! 0,

then mt ! 0, and return volatility converges to �. Finally, return volatility increases with

the sensitivity of log P/D to ~gt. This sensitivity is higher when the discount rate is lower

because distant future dividends then matter more for today’s stock price.

The key implications of the simple model used above carry over to more sophisticated

models. For example, Brennan & Xia (2001a) consider a general equilibrium model with a

representative agent who learns about time-varying gt. They obtain results similar to ours

in a model successfully calibrated to aggregate consumption and dividend data.

Uncertainty ~s2t declines over time as investors learn about g (see Equation 2), so return

volatility should decline over time as well (see Equation 8). One might therefore expect the

stocks of younger firms to have more volatile returns than the stocks of older firms.

Indeed, Pastor & Veronesi (2003) find a negative cross-sectional relation between volatili-

ty and firm age. The median return volatility of U.S. stocks falls monotonically from 14%

per month for 1-year-old firms to 11% per month for 10-year-old firms. The authors’

model predicts higher stock volatility for firms with more volatile profitability, firms with

more uncertain average profitability, and firms that pay no dividends. These predictions

are confirmed empirically.

Time Variation in Volatility

Stock return volatility varies dramatically over time—it has been as low as 10% per year

in the mid-1990s and as high as 70% in October 2008. Moreover, volatility is persistent,

as there are extended periods of sustained high or low volatility. Learning helps us under-

stand the variation in volatility. The models of Timmermann (1993) and Pastor & Ver-

onesi (2003) cannot generate increases in volatility because they feature a constant g, and

uncertainty about a constant g declines deterministically to zero (in Equation 2, ~s2T ! 0 as

T ! 1). Even when g varies over time in a smooth manner, as in Brennan & Xia (2001a),

the posterior uncertainty about g converges deterministically to a constant. However, if g

follows a process with unobservable regime shifts, then uncertainty about g can fluctuate

stochastically, and return volatility can rise. For example, if a dividend growth realization
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is far from the current estimate of g, the probability of a regime shift in g increases. The

posterior uncertainty about g then increases because after a regime shift, past data become

less useful for forecasting. The higher uncertainty pushes up return volatility through a

mechanism similar to that in Equation 8: Investors’ expectations react more swiftly to

news when uncertainty is higher. Moreover, volatility is persistent because perceptions of

regime shifts change slowly.

David (1997) develops a model with unobservable regime shifts in the average produc-

tivities of linear technologies, which are subject to learning by a representative agent.

Learning induces time-varying allocations to these technologies, resulting in persistent

stochastic variation in return volatility. Veronesi (1999) uses similar means to show that

even if dividends display low constant volatility, stock returns may possess high volatility

with persistent variation. He also shows that learning about a regime-shifting g generates

stock price overreaction to bad news in good times. Such news increases uncertainty about

g, which might have shifted from a high-g to a low-g regime. This increase in uncertainty

increases not only volatility but also the equilibrium discount rate, thereby amplifying the

stock price drop. In a similar setting, Veronesi (2004) shows that a small probability of a

long recession can induce volatility to cluster at high levels during recessions. Johnson

(2001) shows that learning about the degree of persistence of fundamental shocks gener-

ates time-varying return volatility, as well as a novel relation between volatility and

momentum. David & Veronesi (2002) employ unobservable regime shifts to explain the

dynamics of option-implied volatility and skewness spreads. David & Veronesi (2008)

develop a structural model for volatility forecasting that exploits learning-induced rela-

tions between volatility and price multiples. This model improves upon regression-based

volatility forecasts.

RETURN PREDICTABILITY

Stock returns are somewhat predictable. When the aggregate P/D is low, future stock

market returns tend to be high. Timmermann (1993, 1996) explains that such pre-

dictability can arise due to learning about g. When the current estimate of g, ~gt, is below

the true value of g, investors are pessimistic about future dividends, so P/D is low. The

future returns are likely to be high, however, because ~gt is likely to be revised upward. As a

result, low P/D forecasts high future returns.

This learning-induced predictability is observable only in hindsight, as explained by

Lewellen & Shanken (2002). Returns appear predictable to econometricians analyzing

historical data, but real-time investors cannot exploit this predictability. Learning drives a

wedge between the distribution perceived by investors and the true distribution estimated

by empirical tests. Lewellen & Shanken show that learning can also induce cross-sectional

predictability. For example, econometricians may observe violations of the capital asset

pricing model (CAPM) even if all real-time investors believe this model holds. Coles &

Loewenstein (1988) argue that the CAPM should hold even with estimation risk, but that

is true only for the perceived, not the empirical, distribution of returns.

Learning can also generate risk-driven predictability that is detectable by real-time

investors. Veronesi (1999, 2000) shows how learning induces time-varying expected

returns that are correlated with P/D. Massa & Simonov (2005) and Ozoguz (2009)

argue that uncertainty is a priced risk factor in the cross section of stock returns.
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Croce et al. (2006) show that learning helps explain the cross-sectional value effect. In

their model, consumption growth has a small but persistent long-run component (see

Bansal & Yaron 2004), as well as a transitory short-run component. Stocks that are

more exposed to the long-run component command higher risk premia. Even though

value stocks tend to have shorter-duration cash flows, they can exhibit more long-run

risk and therefore higher risk premia than growth stocks. When the long-run component

of consumption is unobservable, its optimal forecasts covary with short-run consump-

tion shocks. Learning induces positive correlation between the long-run and short-run

consumption risks.

Another cross-sectional puzzle that can be understood via learning is the negative rela-

tion between stock returns and the dispersion of analysts’ earnings forecasts, as documented

by Diether et al. (2002). The authors interpret their result as evidence of market frictions

that preclude investors with pessimistic views from shorting stocks, which are then tempo-

rarily overvalued. Johnson (2004) delivers the same result in a frictionless rational learning

model. He interprets dispersion as a proxy for uncertainty about asset value. After adding

leverage to a model similar to Pastor & Veronesi (2003), Johnson shows that expected

stock return decreases with this uncertainty. Equity is a call option on the levered firm’s

assets. More idiosyncratic uncertainty raises the option value, which lowers the stock’s

exposure to priced risk, thereby reducing the expected return. The model also predicts that

the negative relation found by Diether et al. should be stronger for firms with more

leverage. Johnson finds empirical support for this prediction.

Uncertainty about the value of a firm’s assets also helps us understand credit spreads on

corporate bonds. In structural models of corporate bond valuation à la Merton (1974), the

firm’s value follows an observable diffusion process. These models imply counterfactually

small credit spreads for short-term bonds because they imply that the default probability

over a short period is small. Uncertainty about firm value increases short-term credit

spreads, as Duffie & Lando (2001) explain, because investors are uncertain about the

nearness of current assets to the default-triggering level. Supporting this explanation, Yu

(2005) finds empirically that firms with more accounting disclosure (and as a result less

uncertainty about firm value) tend to have lower credit spreads, especially on short-term

bonds. Finally, David (2008a) uses learning about unobservable regime shifts in the funda-

mentals to explain why the observed credit spreads are higher than spreads produced by

Merton-like models calibrated to the observed default frequencies.

Empirical Bayesian studies that analyze return predictability include Kandel & Stam-

baugh (1996), Stambaugh (1999), Avramov (2002), Cremers (2002), Avramov & Chordia

(2006), Pastor & Stambaugh (2009), Wachter & Warusawitharana (2009), and others.

THE EQUITY PREMIUM

Learning can help us understand the equity premium puzzle. Uncertainty about average

dividend growth g can increase or decrease the equity premium. In Veronesi (2000), this

uncertainty decreases the equity premium. Veronesi considers an endowment economy

with a power-utility representative agent whose elasticity of intertemporal substitution

(EIS) is below one. The agent consumes aggregate dividends. Bad news about dividends

decreases not only current consumption but also expected future consumption, as the

agent revises ~gt downward. The agent’s desire to smooth consumption leads him to save

more today and demand more stock, which cushions the decline in the stock price.

Value effect: value

stocks (with low M/B)
have historically
outperformed growth

stocks (with highM/B)

Credit spread:

difference between the

yields of a risky bond

and a safe bond

EIS: elasticity of
intertemporal

substitution
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Therefore, learning about g decreases the covariance between stock returns and consump-

tion growth compared to the case with known g. As a result, the equity premium is

lower as well.

The opposite is obtained under different preferences. When EIS exceeds one, down-

ward revisions in ~gt lead the agent to save less and demand less stock, resulting in a

positive relation between uncertainty and the equity premium (e.g., Brandt et al. 2004

and Ai 2007). The relation is positive also when the agent has exponential utility

(Veronesi 1999) and when dividends and consumption follow separate processes

with correlated unobservable drift rates (Li 2005). Finally, if the agent learns about

average consumption growth, the expected consumption growth varies over time. Such

variation increases the equity premium under Epstein-Zin preferences (e.g., Bansal &

Yaron 2004).

The equity premium is also affected by uncertainty about the volatility of consumption

growth. Weitzman (2007) considers an endowment economy with unknown consumption

volatility. He shows that the posterior distribution of consumption growth is fat-tailed,

which induces a power-utility representative agent to demand a substantially higher equity

premium compared to the case of known volatility. Lettau et al. (2008) also assume that

consumption volatility is unobservable, but they allow it to jump between two states. They

find empirically that the posterior probability of the low-volatility state increased in the

1990s, helping justify the stock price run-up in that period.

Learning can also generate higher equity premia when investors are averse to ambiguity

(e.g., Cagetti et al. 2002, Leippold et al. 2008, Epstein & Schneider 2008). When investors

worry about model misspecification, their learning must take into account the set of

possible alternative models. Model uncertainty is penalized and investors maximize utility

over worst-case beliefs. This cautious behavior increases the risk premia in equilibrium.

LEARNING ABOUT THE CONDITIONAL MEAN RETURN

The studies discussed in the previous section let investors learn about fundamentals

and analyze the equilibrium implications for expected returns. Another way of relat-

ing learning to expected returns is to let investors-econometricians, who do not

necessarily set prices, learn about expected returns by observing realized returns and

other information.

Let rtþ1 denote a return from time t to time t þ 1. This return can be decomposed as

rtþ1 ¼ mt þ utþ1; ð9Þ
where �t is the conditional expected return and utþ1 is the unexpected return with mean

zero, conditional on all information at time t. In reality, investors observe only a subset of

all information, so they do not observe the true value of �t. How do rational investors

learn about �t from realized returns?

If the conditional mean is constant, �t ¼ �, the updating formula in Equation 3 applies:

Unexpectedly high returns increase the posterior mean ~mt, and vice versa. Under non-

informative prior beliefs about � (�0 ¼ 1 in Equation 1), ~mt is simply the historical

sample mean.

If �t varies over time, however, the sample mean is no longer the best estimate of �t.

Given a process for the unobservable �t, we obtain the best estimate of �t by optimal

filtering. For example, if �t follows an AR(1) process with normal shocks,

Equity premium

puzzle: standard

economic models

cannot explain the

large gap between the
average historical

returns on U.S. stocks

and government
bonds
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mtþ1 ¼ ð1� bÞ�mþ bmt þwtþ1; ð10Þ
then the Kalman filter implies that the best estimate of �t (and hence also the best forecast

of rtþ1) is a weighted average of all past returns,

Eðrtþ1jFtÞ ¼
Xt�1

s¼0

ksrt�s;

where Ft contains the full history of returns up to time t (see Pastor & Stambaugh 2009).

The weights in this average, ks, crucially depend on ruw, the correlation between unex-

pected returns, utþ1 in Equation 9, and innovations in expected returns, wtþ1 in Equation

10. This correlation is likely to be negative because unexpected increases in discount rates

tend to push prices down. If this correlation is sufficiently negative, then recent returns

receive negative weights and more distant returns receive positive weights in computing

the average.

To understand this result, suppose recent returns have been unusually high. On the one

hand, one might think the expected return has risen because a high mean is more likely to

generate high realized returns, and �t is persistent. On the other hand, one might think the

expected return has declined because declines in expected returns tend to be accompanied by

high realized returns. When ruw is sufficiently negative, the latter effect outweighs the former

and recent returns enter negatively when estimating the conditional expected return. At the

same time, more distant past returns enter positively because they are more informative

about the unconditional mean �m than about recent changes in the conditional mean �t.

The above analysis assumes that the information set Ft consists only of past returns.

However, investors might use more information to forecast returns. For example, investors

might believe that �t is given by a linear combination of observable predictors xt:

mt ¼ aþ bðxt � �xÞ; ð11Þ

where �x is the unconditional mean of xt. Viewing � as unobservable, Xia (2001) uses

continuous-time filtering to derive an updating rule for ~bt ¼ E½bjFt�. This rule features

time-varying covariance between updates to ~bt and realized returns. The sign of the

covariance depends on whether xt is above or below �x. When xt exceeds �x, an unusually

high return implies that ~bt is revised upward, and vice versa.

The assumption in Equation 11 is unlikely to hold exactly. If the true mean �t is not a

linear function of xt, the updating rule for �t involves not only xt but also past returns

(Pastor & Stambaugh 2009). Past dividends can also be useful in estimating �t, as shown

by van Binsbergen & Koijen (2008) and Rytchkov (2008). These studies exploit present

value relations to estimate not only �t but also expected dividend growth rates.

Learning about �t also affects long-horizon return volatility. Let rt;tþk ¼ rtþ1þ
rtþ2 þ . . .þ rtþk denote the return in periods t þ 1 through t þ k. The variance of rt,tþk

conditional on data available at time t, Var(rt,tþk | Ft), depends on uncertainty about �tþj.

Consider the following example from Pastor & Stambaugh (2008): Suppose rt’s are inde-

pendently and identically distributed with known variance �2 and unknown constant

mean �. Conditional on �, the mean and variance of rt,tþk are k� and k�2, respectively.

An investor who knows � faces the same per-period variance, �2, regardless of k. How-

ever, an investor who does not know � faces variance that increases with k. Applying the

variance decomposition,

Kalman filter:

recursive filter that

estimates the state of a

dynamic system from

a series of noisy
observations
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Varðrt;tþkjFtÞ ¼ Efks2jFtg þ VarfkmjFtg ¼ ks2 þ k2Var mjFtf g:

Because � remains uncertain after seeing the data, (1/k) Var(rt,tþkjFt) increases with k.

Thus, an investor who believes that stock prices follow a random walk but who is

uncertain about � views stocks as riskier in the long run. When �t is time-varying, pre-

dictability induces both mean reversion, which reduces long-run variance, and additional

uncertainty, which increases long-run variance. The overall effect, according to Pastor &

Stambaugh (2008), is a higher per-period variance at longer horizons, contrary to conven-

tional wisdom.

PORTFOLIO CHOICE

Investors appear to invest too little in stocks. Consider an investor with risk aversion � who

can invest in risky stocks and riskless T-bills. If the mean � and variance � of excess stock

returns are both constant and known, the investor’s optimal stock allocation is given by

Myopic Demand ¼ m
gs2

: ð12Þ

Based on the historical estimates, � ¼ 7% and � ¼ 16% per year, the optimal stock

allocation is 273% for � ¼ 1, 91% for � ¼ 3, and 55% for � ¼ 5, but households typically

invest much less in stocks. This fact could in part be due to learning, as explained below.

If � is unobservable, investors learn about it by observing realized returns. Even though

� is constant, its posterior mean ~mt is not, and investors wish to hedge against learning that

� is low (Williams 1977, Detemple 1986, Dothan & Feldman 1986, Gennotte 1986).

Gennotte (1986) shows that uncertainty about � reduces the stock allocation, as the

variation in ~mt generates a negative hedging demand. Following Merton (1971), investors

tilt their portfolios to hedge against fluctuations in marginal utility induced by changes in

the state variable ~mt. The size of the hedging demand is

Hedging Demand ¼ �r~m;r
s~m

s

� � @UW=@~m
W@UW=@W

; ð13Þ

where r~m;r is the correlation between d~mt (revisions in ~mt) and instantaneous returns, s~m is the

volatility of d~mt, � is return volatility, and UW is marginal utility with respect to wealth W.

The sign of the hedging demand depends on �. Under power utility with � > 1, the hedging

demand is negative because @UW/@W < 0, @UW=@~m < 0, and learning about a constant

� induces r~m;r > 0 (see Equation 4). Intuitively, a negative stock position (relative to the

myopic demand) is a good hedge because it profits from unexpectedly low stock returns,

which are accompanied by decreases in ~mt that increase marginal utility. The higher the

uncertainty about �, the higher the value of s~m, and the more negative the hedging demand.

Brennan (1998) shows that the learning-induced hedging demand can be large. For

example, with a � estimate of 8.5%, prior uncertainty about � of 4.5%, and volatility of

� ¼ 14%, an investor with � ¼ 4 and a 20-year investment horizon invests only 56% in

the stock market, down from 102% when only the myopic demand is considered. Where-

as Brennan assumes that � is constant, Xia (2001) considers time-varying �t, with inves-

tors learning about the slope � in the predictive relation (Equation 11). The hedging

demand now has two components. The first one, which is well understood outside the

learning literature, stems from time variation in the predictor xt. The second component

Hedging demand:

deviation of the
optimal allocation

from the myopic

allocation due to
changes in the

investment

opportunity set
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stems from learning about �, and it involves the covariance between returns and ~bt, as
discussed earlier. Xia shows that both hedging demands are economically important.

The portfolio literature under learning has been extended to multiple assets. Brennan &

Xia (2001b) assess the importance of the value and size anomalies from the perspective of

an investor who is uncertain whether the anomalies are genuine. They find the value

anomaly attractive even after incorporating parameter uncertainty. Pastor (2000) provides

similar evidence in a single-period context, and also finds the home bias anomaly signifi-

cant from the investment perspective. Cvitanic et al. (2006) analyze how optimal alloca-

tions depend on the correlation between the assets’ expected returns. This correlation

reduces uncertainty by allowing learning across assets, but it also makes estimation risk

more difficult to diversify. Another extension incorporates nonlinear dynamics of �t.

David (1997) and Honda (2003) solve for optimal allocations when �t undergoes unob-

servable regime shifts. Guidolin & Timmermann (2007) study asset allocation when

regime shifts affect not only the mean but the whole return distribution. They empirically

identify four regimes and solve for the optimal allocation among four asset classes. They

find that unobservable regimes have a large impact on asset allocation.

The learning models discussed above are set in continuous time. There is also a growing

discrete-time portfolio literature that relies on Bayesian econometric techniques. This

literature typically does not estimate learning-induced hedging demands, but it integrates

portfolio choice with empirical estimation of the parameters of the return-generating

process. Parameter uncertainty is incorporated by focusing on the predictive distribution

of asset returns. Letting � denote the unknown parameters and Ft denote the data available

at time t, the predictive distribution of returns at time t þ k is given by

pðRtþkjFtÞ ¼
Z

pðRtþkjy; FtÞpðyjFtÞdy; ð14Þ
where p(� | Ft) is the posterior distribution of �. Investors maximize expected utility computed

with respect to the predictive distribution. Early contributions to this literature include

Zellner & Chetty (1965), Brown (1976), Klein & Bawa (1976), and Bawa et al. (1979).

Recent contributions include Kandel & Stambaugh (1996), Barberis (2000), Pastor (2000),

Pastor & Stambaugh (2000, 2002b), Tu & Zhou (2004, 2008), Avramov (2004), Brandt

et al. (2005), Avramov & Chordia (2006), Avramov & Wermers (2006), Kan & Zhou

(2007), and Wachter & Warusawitharana (2009). Whereas the early contributions used

noninformative prior distributions, recent contributions increasingly emphasize informative

priors motivated by economic theory. Other recent studies analyze portfolio choice of ambi-

guity-averse investors (e.g., Uppal &Wang 2003, Wang 2005, Garlappi et al. 2007).

INVESTOR BEHAVIOR

Mutual Fund Flows

The way investors allocate their capital to mutual funds might seem puzzling. For exam-

ple, net capital flows into mutual funds respond positively to past fund performance, even

though there is little persistence in performance. Also, the performance-flow relation is

convex and stronger for younger funds.

Berk & Green (2004) show that these facts are consistent with rational learning. Their

model makes three key assumptions. First, the fund managers’ ability is unobservable, and

investors learn about it by observing fund returns. Second, this ability exhibits decreasing
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returns to scale. Third, rational investors compete for superior returns. To illustrate the

model’s implications, suppose that a given fund achieved higher-than-expected returns

recently. From these returns, investors infer that the fund manager’s ability is higher than

they previously thought, and they allocate more capital to this fund. This additional

capital reduces the fund’s ability to generate abnormal returns due to decreasing returns

to scale. Given perfect competition in the provision of capital, investors pour capital into

the fund until its abnormal performance disappears. As a result, a fund that outperformed

in the past will attract new money, but it will not outperform in the future.

The positive performance-flow relation is stronger for younger funds because recent

returns of a younger fund represent a bigger portion of the fund’s track record, and so they

are more informative about the fund manager’s ability. Put differently, investors are more

uncertain about the ability of funds with shorter track records, so any signal about ability

has a bigger impact on the investors’ beliefs. The performance-flow relation is convex at

least in part because investors expect underperforming funds to change their strategies

(Lynch & Musto 2003). Therefore, poor past performance contains less information

about future performance than does good past performance. As a result, fund flows are

less sensitive to past performance when that performance is poor.

Dangl et al. (2008) extend the Berk-Green model to allow the management company to

replace portfolio managers. They derive the optimal replacement strategy and examine

fund flows and portfolio risk around manager replacements. Their model rationalizes

several empirical facts: (a) Managers are more likely to be fired after poor performance,

(b) manager turnover is more performance-sensitive for younger managers, (c) managers

with longer tenure tend to manage larger funds and are more likely to retain their jobs,

and (d) manager replacement is generally preceded by capital outflows and increases in

portfolio risk then followed by inflows and decreases in risk. Taylor (2008) develops a

related model in which a board of directors learns about CEO skill and repeatedly decides

whether to keep or fire the CEO. Taylor estimates his model and finds that very high

turnover costs are needed to rationalize the observed rate of forced CEO turnover. Huang,

Wei, and Yan (2007) present a rational learning model that relates the asymmetric perfor-

mance-flow relation for mutual funds to investors’ participation costs.

The above studies assume learning by agents in theoretical models, but a learning

perspective also seems useful in empirical work. Examples of studies that use Bayesian

empirical techniques to analyze the performance of money managers include Baks et al.

(2001), Pastor & Stambaugh (2002a), Jones & Shanken (2005), Busse & Irvine (2006),

and Kosowski et al. (2007).

Individual Investor Trading

The trading behavior of individual investors exhibits interesting regularities. Individuals

lose money by trading, on average, but they trade frequently nonetheless. Individuals’

trading intensity depends on their past performance. Poor performance is often followed

by exit. More active traders outperform less active ones. Performance exhibits persis-

tence. Explanations offered for these facts range from overconfidence to utility from

gambling.

Mahani & Bernhardt (2007) and Linnainmaa (2008) show that these facts are also

consistent with rational learning. When individuals are uncertain about their own trad-

ing ability, they can learn by trading and observing their profits. Individuals can find it
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optimal to trade even if they expect to lose money, as long as the expected short-term

loss from trading is offset by the expected gain from learning. Individuals increase their trade

sizes after successful trades and decrease them after unsuccessful trades because successful

(unsuccessful) trades lead to upward (downward) revisions of perceived ability. More active

traders perform better because good news about one’s ability leads one to trade more.

Linnainmaa finds empirically that the above-mentioned empirical regularities can be ex-

plained with moderate uncertainty about trading ability. In contrast, alternative explanations

such as overconfidence and risk-seeking seem unable to explain all of the regularities.

How do investors learn from their trading experience? Is their ability a constant subject

to learning, as in the models described above, or does it improve as a result of more

trading, as in the learning-by-doing literature? Seru et al. (2008) find evidence of both

types of learning. They find that poorly performing households are more likely to cease

trading, which is consistent with the former type of learning, and they estimate this type of

learning to be quantitatively more important than learning by doing.

Trading Volume

Why do investors trade so much? Why is trading volume correlated with volatility?

Learning combined with information asymmetry can shed light on these questions. How-

ever, heterogeneous information alone cannot induce trading; given the no-trade theorem,

trading requires additional motives, such as liquidity (e.g., Kyle 1985, Admati &

Pfleiderer 1988, Wang 1993), hedging (e.g., Wang 1994), different prior beliefs (e.g.,

Detemple & Murthy 1994, Zapatero 1998, Basak 2000, Buraschi & Jiltsov 2006), or

different interpretation of common signals (e.g., Harrison & Kreps 1978, Harris & Raviv

1993, Kandel & Pearson 1995, Scheinkman & Xiong 2003, David 2008b).

Wang (1994) helps us understand the correlation between trading volume and return

volatility. His model features informed agents, who trade for both informational (specu-

lative) and noninformational (hedging) reasons, and uninformed agents, who trade for

noninformational reasons only. When the informed agents sell stocks, the stock price

must drop to induce the uninformed agents to buy. As information asymmetry increases,

the uninformed agents demand a larger discount to cover the risk of trading against

private information. Therefore, trading volume is positively correlated with return vola-

tility, and the correlation increases with information asymmetry. Wang’s model also

implies that hedging-motivated trading induces return reversals, whereas speculative

trading induces return continuations. Llorente et al. (2002) find empirical support for

these predictions.

Another way of modeling trading relies on differences in beliefs. In Scheinkman &

Xiong (2003), heterogeneous beliefs arise from the presence of overconfident agents who

believe their information is more accurate than it really is. These agents observe the same

signals but, due to their behavioral bias, they interpret the signals differently. The resulting

fluctuations in the differences of beliefs induce trading. The amount of trading in this

model can be large, even infinite.

ENTREPRENEURIAL FINANCE

Firm profitability tends to rise before the firm’s initial public offering (IPO) and fall after

the IPO. Common explanations for these facts include irrationality and asymmetric

IPO: initial public

offering

374 Pastor � Veronesi

A
nn

u.
 R

ev
. F

in
an

c.
 E

co
n.

 2
00

9.
1:

36
1-

38
1.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
Si

m
on

 F
ra

se
r 

U
ni

ve
rs

ity
 o

n 
07

/0
2/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 



information. Pastor et al. (2009) show that these facts are also consistent with a rational

symmetric-information model of learning. This model features two types of agents:

investors, who are well diversified, and an entrepreneur, whose wealth is tied up in a

private firm. All agents learn about the average profitability of the private firm by

observing realized profits. The entrepreneur solves for the optimal time to go public,

trading off diversification benefits of going public against benefits of private control.

The model produces a cutoff rule whereby going public is optimal when the firm’s

expected future profitability is sufficiently high. Therefore, expected profitability must

go up before the IPO. According to Bayes’ rule, agents revise their expectations upward

only if they observe realizations higher than expected. As a result, realized profitability

exceeds expected profitability at the time of the IPO, and thus profitability is expected

to drop after the IPO.

The model also predicts that the post-IPO drop in profitability is larger for firms

with more volatile profitability and firms with less uncertain average profitability. These

predictions also follow from Bayesian updating. Agents revise their expectations by less

if their prior uncertainty is lower (because prior beliefs are stronger) and if signal

volatility is higher (because signals are less precise). In both cases, realized profitability

must rise more sharply to pull expected profitability above the IPO cutoff. As a result,

the expected post-IPO drop in profitability is larger when volatility is higher and when

uncertainty is lower. These predictions are supported empirically. Volatility and uncer-

tainty can be separated by estimating the stock price reaction to earnings announce-

ments, which is strong when uncertainty is high and volatility is low. Firms with weaker

stock price reactions experience larger post-IPO drops in profitability, as predicted by

the model. Because the volatility and uncertainty predictions seem unique to learning,

this evidence suggests that learning is at least partly responsible for the observed profit-

ability patterns around IPOs.

Sorensen (2008) develops a model of learning by investing, extending the multiarmed

bandit model literature (e.g., Gittins 1989). In his model, each investment brings not only a

monetary payoff but also more information, which helps improve future investment deci-

sions. Investors learn from their own investment returns. Their optimal strategy trades off

exploiting investments with known high payoffs and exploring investments with uncertain

payoffs but a higher option value of learning. Sorensen estimates his model on U.S. data

from venture capital (VC) investments. He finds that VCs’ investment decisions are affected

not only by immediate returns but also by the option value of learning. He also finds that

VCs who engage in more learning are more successful. A related model is presented in

Bergemann et al (2008).

Empirically, the performance of VC funds managed by the same general partner (GP)

exhibits high persistence (unlike the performance of mutual funds). This fact raises the

question why successful GPs do not raise their fees or fund size to capture all the

surplus, as in Berk & Green (2004). Hochberg et al. (2008) rationalize VC performance

persistence in a learning model in which investors learn about a GP’s skill over time.

The idea is that limited partners (LPs) who invest in a GP’s fund learn more about the

GP’s skill than do other investors. This asymmetric learning enables incumbent LPs to

hold up the highly-skilled GP when he raises his next fund because other potential

investors would interpret incumbent LPs’ failure to reinvest as a negative signal about

the GP’s skill. Due to their hold-up power, incumbent LPs continue to earn high net-of-fee

returns in their investments in the follow-on funds of the same GP. In contrast, perfor-

VC: venture capital

VCs: venture capitalists

GP: general partner

LP: limited partner
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mance persistence is weaker for mutual funds where asymmetric information between

the incumbent investors and outsiders is smaller. Hochberg et al. also predict that LPs

should earn higher returns in follow-on funds than in first-time funds, and there should

be persistence in the LP composition across the funds run by the same GP. These

predictions are supported empirically in a large sample of U.S. VC funds. Glode &

Green (2009) also develop a model that relies on learning to rationalize performance

persistence in private equity partnerships.

FUTURE ISSUES

1. Much work on the role of learning in finance still lies ahead. Some promising

directions are evident in recent work that is not examined in this review. For

example, in most existing learning models, agents learn by observing cash flows

or asset returns, but they could also learn from the prices of derivative securities

(e.g., Dubinsky & Johannes 2006, Beber & Brandt 2009, Johannes et al. 2009).

Other interesting topics not covered here include endogenous information acqui-

sition (e.g., Veldkamp 2006; Peng & Xiong 2006; van Nieuwerburgh & Veld-

kamp 2008, 2009), non-Bayesian learning (e.g., Gervais & Odean 2001, Brav &

Heaton 2002, Piazzesi & Schneider 2007), learning by doing (e.g., Arrow 1962,

Berk et al. 2004), informational cascades (e.g., Welch 1992), incomplete infor-

mation equilibria (e.g., Feldman 2007), and higher-order beliefs (e.g., Allen et al.

2006, Banerjee et al. 2009).

2. Another promising direction is to separate systematic and idiosyncratic un-

certainty, which have different implications for asset prices. Although idio-

syncratic uncertainty increases both return volatility and asset valuations,

systematic uncertainty increases volatility but decreases valuations. Time var-

iation in the two types of uncertainty produces dynamic relations between

prices, expected returns, and volatility. Separating the two types of uncer-

tainty, perhaps with the help of option prices, could shed new light on the

asset price dynamics.

3. Future work can also analyze strategic information generation. We have dis-

cussed learning from exogenously specified signals, but what agents observe

may depend on the actions of other agents whose objectives are different. For

example, corporate insiders may manipulate earnings, which are used by outside

investors as signals about average profitability. It seems interesting to analyze

dynamic agency models with asymmetric information. More generally, we need

more dynamic learning models in corporate finance.

4. New learning models should be held to high standards. For each model, one

should identify testable predictions that are unique to learning so the model can

be empirically distinguished from alternatives. It is also important to assess the

magnitude of the learning-induced effects, either by calibration or by structural

estimation. Examples of the latter approach include Linnainmaa (2008), Soren-

sen (2008), and Taylor (2008). We expect to see more structural estimation of

learning models down the road.
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APPENDIX

Let ft(g) denote the probability density function of g at time t, with Pr(r > g) ¼ 1.

The stock price is given by

Pt ¼ Et

Z 1

t

e�rðt�tÞDtdt
� 	

¼
Z r

�1
E

Z 1

t

e�rðt�tÞDtdtjg
� 	

ftðgÞdg:

Conditional on g, Dt ¼ Dte
ðg�s2=2Þðt�tÞþsðWt�WtÞ, with Wt � Wt � N(0, t � t). Therefore,

Pt ¼
R r
�1

R1
t E e�rðt�tÞDte

ðg�s2=2Þðt�tÞþsðWt�WtÞjg
h i

dtftðgÞdg
¼ Dt

R r
�1

R1
t e�ðr�gÞðt�tÞdtftðgÞdg ¼ Dt

R r
�1

1

r� g
ftðgÞdg; ð15Þ

which is Equation 7. When g is observable, ft(g) is degenerate and we obtain Equation 5.

The volatility in Equation 8 obtains from Equation 15 as follows: Let ft(g) represent the

normal distribution with mean ~gt and variance ~s2t , except for the truncation g < r.

Approximate the dynamics of ~gt and ~s2t by Equation 4 with dst ¼ dDt/Dt, so that

d~gt � mt dDt=Dt � ~gtdtð Þ. This is an approximation because Equation 4 holds exactly only

when ft(g) is non-truncated normal. Let Fð~gt; ~s2t Þ 	 logðPt=DtÞ. From Ito’s Lemma,

dPt

Pt
¼ dDt

Dt
þ @Fð~gt; ~s2t Þ

@~gt

� �
d~gt þ oðdtÞ;

where o(dt) denotes deterministic terms of order dt. Substituting for d~gt and rearranging,

dPt

Pt
� dDt

Dt
� 1þ @Fð~gt; ~s2t Þ

@~gt

� �
mt

� 	
þ oðdtÞ:

Taking standard deviations of both sides, we obtain return volatility in Equation 8.
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