
Chapter 13

Asset pricing

Doubt is not a pleasant condition, but certainty is absurd.

— Voltaire

13.1. Introduction

This chapter explores how a fear of model misspecification affects prices of

risky securities.1 Without fear of misspecification, the price of a claim to a

random future payoff equals the conditional expectation of the inner product

of a stochastic discount factor and the random future payoff, evaluated us-

ing the representative agent’s model.2 When the representative agent fears

misspecification of his approximating model, two such inner-product repre-

sentations of asset prices are available. They differ in what they take as the

model with respect to which the conditional expectation is evaluated. In the

first one, the conditional expectation is evaluated with respect to the repre-

sentative agent’s worst-case model, a model that depends on the parameter

θ that calibrates his fear of misspecification. A second representation of the

same prices exists because the approximating model and the worst-case model

put positive probabilities on the same events. This second representation eval-

uates the conditional expectation with respect to the approximating model.

The first representation captures a concern about robustness by adjusting the

probability distribution relative to the approximating model, while the second

representation instead adjusts the stochastic discount factor (a.k.a. pricing

kernel). In particular, to represent asset prices in terms of conditional expec-

tations under the approximating model, the second representation multiplies

the ordinary stochastic discount factor without fear of misspecification by the

likelihood ratio, or Radon-Nikodym derivative, of the endogenous worst-case

distorted model relative to the approximating model. When evaluated with

respect to the worst-case probability distribution, the expected value of the

logarithm of that likelihood ratio is the entropy measure that we used in chap-

ter 2 to measure the proximity of models. It is also closely related to another

entropy concept that describes bounds on the detection error probabilities of

chapter 9 (see Anderson, Hansen, and Sargent (2003)).

1 Studies of asset pricing under some form of model ambiguity include Dow and Werlang

(1992), Epstein and Wang (1994), Chen and Epstein (2002), Maenhout (2004), Rigotti and

Shannon (2005), and Hansen, Sargent, and Tallarini (1999).
2 Without fear about misspecification, an agent can discard the adjective “approximating.”
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After reviewing asset pricing formulas in a standard model without a

fear of misspecification, this chapter modifies those formulas to express a

representative agent’s fear of misspecification. As an example, we study asset

pricing in the permanent income economy of chapter 10.

13.2. Approximating and distorted models

Chapters 11 and 12 describe planning problems and competitive equilibria

for a class of linear-quadratic models. The consumption smoothing model

of chapter 10 and the occupational choice model of section 12.7 are special

cases of these models. The environment of chapter 11 is arranged so that

without a fear of misspecification, the planning problem fits into the optimal

linear regulator problem. Chapter 12 then uses a robust linear regulator to

create a model in which the representative household’s fear of misspecification

is indexed by parameter θ > 0. Equilibrium representations for prices and

quantities can be determined from the solution of the robust linear regulator.

Chapter 11 describes matrices that portray the preferences, technology,

and information structure of the economy. These can be assembled into ma-

trices that define the robust linear regulator for a planning problem. The

solution of the planning problem determines competitive equilibrium prices

and quantities. Associated with the robust planning problem is the Bellman

equation

−x′Px− p = max
u

min
w

{r(x, u) + θβw′w + βE(−x∗′Px∗ − p)} (13.2.1)

where the extremization is subject to

x∗ = Ax+Bu+ C(ε+ w), (13.2.2)

where ε ∼ N (0, I) and θ ∈ (θ,+∞] . A Markov perfect equilibrium of this

two-player zero-sum game is a pair of decision rules u = −F (θ)x,w = K(θ)x .

The equilibrium determines the following two laws of motion for the state:

xt+1 = Aoxt + Cεt+1 (13.2.3)

and

xt+1 = (Ao + CK(θ))xt + Cεt+1, (13.2.4)

where Ao = A−BF (θ). For a given θ ∈ [θ,∞), (13.2.3) is the approximating

model under the robust rule for u , while (13.2.4) is the distorted worst-case

model under the robust rule.

Where there is no fear of misspecification, θ = +∞ . Chapter 11 describes

a class of economies whose equilibria can be presented in the form (13.2.4)
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together with selector matrices that determine equilibrium prices and quan-

tities as functions of the state xt . In particular, quantities Qt and scaled

state-contingent prices pt are linear functions of the state:

Qt = SQxt (13.2.5a)

pt = pQxt. (13.2.5b)

We shall soon remind the reader what we mean by scaled prices. We showed

how to compute these in chapter 11 (see formulas (11.5.14), (11.5.21)).

To determine equilibria under a fear of misspecification, we simply set

θ < +∞ in (13.2.1). Formulas for equilibrium prices and quantities from

chapter 11 (i.e., the SQ,MQ in (13.2.5)) apply directly. Associated with an

equilibrium under a fear of misspecification are the approximating transition

law (13.2.3) and the distorted transition law (13.2.4) for the state xt , as well

as auxiliary equations for prices and quantities of the form (13.2.5).

The approximating and distorted equilibrium laws of motion (13.2.3) and

(13.2.4) induce Gaussian transition densities3

f(xt+1|xt) ∼ N (Aoxt, CC
′) (13.2.6a)

f̂(xt+1|xt) ∼ N ((Ao + CK)xt, CC
′), (13.2.6b)

where we use f without a (̂·) to denote a transition density under the ap-

proximating model and f with a (̂·) to denote a probability associated with

the distorted model (13.2.4). These transition densities induce joint densities

f (t)(xt) on histories xt = [xt, xt−1, . . . , x0] via

f (t)(xt) = f(xt|xt−1)f(xt−1|xt−2) . . . f(x1|x0)f(x0),

and similarly for f̂ (t)(xt). Let ft(xt|x0) denote the t-step transition densities

ft(xt|x0) ∼ N (Aotx0, Vt) (13.2.7a)

f̂t(xt|x0) ∼ N ((Ao + CK)tx0, V̂t), (13.2.7b)

where Vt satisfies the recursion Vt = Ao′Vt−1Ao +CC ′ initialized from V1 =

CC ′ , and V̂t satisfies the recursion V̂t = (Ao + CK)′V̂t−1(Ao + CK) + CC ′

initialized from V̂1 = CC ′ .

3 An alternative formulation in chapter 3 allows for a broader set of perturbations of a

Gaussian approximating model by letting the minimizing agent choose an arbitrary density.

Under that formulation, the minimizing agent would still choose a Gaussian transition

density with the same conditional mean as (13.2.6b) but with conditional covariance ĈĈ′ =

C(I − θ−1C′PC)−1C′ .
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13.3. Asset pricing without robustness

In section 11.7, we explained how the value of claims on risky streams of re-

turns can be represented as the inner product of price and payout processes,

where both the price and payout are expressed as functions of the planner’s

state vector xt . In portraying the household’s problem in a recursive compet-

itive equilibrium, we needed to distinguish between the individual household’s

xt and its “market wide” counterpart Xt that drives prices. Nevertheless, we

showed that for the purpose of computing asset prices, we can exclude Xt

from the state vector and simply use xt as the state vector. Accordingly, in

the remainder of this chapter, we express prices in terms of xt and histories

xt .4

When θ = +∞ , there is no discrepancy between the distorted and worst-

case models and the following standard representative agent asset pricing

theory applies. Let ct denote a vector of time-t consumption goods. The

price of a unit vector of consumption goods in period t contingent on the

history xt is5

q(t)(xt|x0) = βt u′(ct(xt))

e1 · u′(c0(x0))
f (t)(xt|x0), (13.3.1)

where ct(x
t) is a possibly history-dependent state-contingent consumption

process, u′(c) is the vector of marginal utilities of consumption, and e1 is a

selector vector that pulls off the first consumption good, the time-zero value

of which we take as numeraire. To make (13.3.1) well defined, we assume that

e1 · u′(c0(x0)) 6= 0 with probability one. If we assume that the consumption

allocation is not history-dependent, so that ct(x
t) = c(xt), as it is true in the

models that occupy us, then we can use the t-step pricing kernel

qt(xt|x0) = βt u′(c(xt))

e1 · u′(c(x0))
ft(xt|x0). (13.3.2)

Let the owner of an asset be entitled to {y(xt)}∞t=0 , a stream of a vector

of consumption goods whose state-contingent price is given by (13.3.2). The

time-zero price of the asset is

a0 =

∞∑

t=0

∫

xt

qt(xt|x0) · y(xt)d xt

4 The household in a competitive economy would face prices that are the same functions

of Xt and Xt .
5 We denote by u′(ct) the vector of marginal utilities of the consumption vector ct . In

our model, u′(ct) = Mcxt .
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or

a0 =
∞∑

t=0

∫

xt

βt u′(c(xt))

e1 · u′(c(x0))
y(xt)ft(xt|x0)d xt. (13.3.3)

We can represent (13.3.3) as

a0 =
E0

∑∞
t=0 β

tu′(c(xt)) · y(xt)

e1 · u′(c(x0))
. (13.3.4)

In linear-quadratic general equilibrium models, u′(c(xt)) and y(xt) are

both linear functions of the state. This means that the price of an asset is the

conditional expectation of a geometric sum of a quadratic form, as portrayed

in (13.3.4). Equation (13.3.4) implies a Sylvester equation (see page 97).

Thus, let

pc(xt) =
u′(c(xt))

e1 · u′(c(x0))
.

Then the asset price can be represented as

a0 = E0

∞∑

t=0

βtpc(xt) · y(xt). (13.3.5)

We can regard pc as a scaled Arrow-Debreu price. We scale the Arrow-Debreu

state price by dividing it by βt times the pertinent conditional probability.

Scaling the price system in this way facilitates computation of asset prices

as conditional expectations of an inner product of state prices and payouts.

Often βtpc(xt) is called a t-period stochastic discount factor. Below we shall

also denote the stochastic discount factor as m0,t ≡ βtpc(xt), so that (13.3.5)

becomes

a0 = E0

∞∑

t=0

m0,t · y(xt).

Hansen and Sargent (2008) provide a more complete treatment of asset

pricing within linear-quadratic general equilibrium models. They show that

(1) equilibrium scaled Arrow-Debreu prices and quantities have representa-

tions (13.2.5); (2) the information required to form the matrix SQ is embed-

ded in F,A,B from the optimal linear regulator problem; and (3) the matrices

Mp that pin down the scaled Arrow-Debreu prices can be extracted from the

matrix P in the value function −x′Px − p and the matrix Ao = A − BF

that emerge from the planner’s problem (see formulas (11.5.14), (11.5.21)).

Thus, in such models

pc(xt) = Mcxt/e1Mcx0. (13.3.6)

See (11.5.11), (11.5.13) in chapter 11 for a formula for Mc and more details.
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13.4. Asset pricing with robustness

We activate a fear of misspecification by setting θ < +∞ , which causes the

transition densities (13.2.6a), (13.2.6b) under the approximating and dis-

torted models to disagree. In addition, the formulas for SQ and MQ in

(13.2.5) respond to the setting for θ , via the dependence of SQ on F (θ) and

the dependence of MQ on the P that solves the Bellman equation (13.2.1).

Again, see (11.5.14), (11.5.21). We give an example in section 12.7.

The price system that supports a competitive equilibrium can be repre-

sented in the forms (13.3.1) and (13.3.2), with the distorted densities f̂ (t)

and f̂t replacing the corresponding densities for the approximating model in

(13.3.1) and (13.3.2). Thus, with a fear of misspecification, the time 0 price

of the asset corresponding to (13.3.3) is

a0 =

∞∑

t=0

∫

xt

βtpc(xt) · y(xt)f̂t(xt|x0)d xt. (13.4.1)

We can represent (13.4.1) as

a0 = Ê0

∞∑

t=0

βtpc(xt) · yt (13.4.2)

where Ê denotes mathematical expectation using the distorted model (13.2.4),

and u′(c(xt)) must be computed using the MQ in representation (13.2.5b)

associated with θ .

13.4.1. Adjustment of stochastic discount factor for fear of model
misspecification

Formula (13.4.2) represents the asset price in terms of the distorted mea-

sure that the planner uses to evaluate future utilities in the Bellman equation

(13.2.1). To compute asset prices using this formula, we must solve a Sylvester

equation using transition matrix Ao + CK(θ) from equation (13.2.4) to re-

flect that we are evaluating the expectation using the distorted transition law.

We can also evaluate asset prices by computing expectations under the ap-

proximating model, but this requires that we adjust the stochastic discount

factor to make the asset price satisfy (13.4.1). By dividing and multiplying

by ft(xt|x0), we can represent (13.4.1) as

a0 =

∞∑

t=0

∫

xt

βtpc(xt)

(
f̂t(xt|x0)

ft(xt|x0)

)
· y(xt)ft(xt|x0)d xt (13.4.3)

or

a0 = E0

∞∑

t=0

βtpc(xt)

(
f̂t(xt|x0)

ft(xt|x0)

)
· y(xt), (13.4.4)
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where the absence of a (̂·) from E denotes that the expectation is evaluated

with respect to the approximating model (13.2.3).6

In summary, with a fear of misspecification, if we want to evaluate asset

prices under the approximating model, we have to adjust the ordinary t-

period stochastic discount factor m0,t = βtpc(xt) for a concern about model

misspecification and to use the modified stochastic discount factor 7

m0,t

(
f̂t(xt|x0)

ft(xt|x0)

)
.

For our linear-quadratic-Gaussian setting, the likelihood ratio is

Lt =
f̂t(xt|x0)

ft(xt|x0)
= exp

[
t∑

s=1

{ε′sws − .5w′
sws}

]
.

13.4.2. Reopening markets

This section describes how to extend our asset pricing formulas to allow us

to price “tail assets” that are traded at time t and that pay vectors of con-

sumption {yτ}∞τ=t for t > 0. We want the price to be stated in time-t units

of the numeraire good.

Letting the t-step discount factor at time 0 be m0,t ≡ βtpc(xt), (13.4.2)

can be portrayed as

a0 = Ê0

∞∑

t=0

m0,t · yt (13.4.5)

where m0,t is a vector of time-0 stochastic discount factors for pricing a

vector of time-t payoffs. Define mt,τ as the vector of corresponding time-t

stochastic discount factors for pricing time τ ≥ t payoffs8

mt,τ = βτ−tpc(xτ )/e1pc(xt). (13.4.6)

Then in time t units of the numeraire consumption good, the vector of payoffs

{yτ}∞τ=0 is

at = Êt

∞∑

τ=t

mt,τyτ . (13.4.7)

6 Notice the appearance of the same likelihood ratio in (13.4.4) used to define entropy

in chapters 2 and 3 and to describe detection error probabilities in chapter 9.
7 Such a multiplicative adjustment to the stochastic discount factor m0,t carries over

to nonlinear models.
8 We assume that e1pc(xt) 6= 0 with probability 1 .
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Equation (13.4.7) is equivalent to

at = Et

∞∑

τ=t

(mt,τm
u
t,τ ) · yτ , (13.4.8)

where the appropriate multiplicative adjustment mu
t,τ to the stochastic dis-

count factor is the likelihood ratio

mu
t,τ =

f̂τ−t(xτ |xt)

fτ−t(xτ |xt)

= exp

[
τ∑

s=t

{ε′sws − .5w′
sws}

]
.

(13.4.9)

13.5. Pricing single-period payoffs

We now use the permanent income model of chapter 10 to shed light on

the implications of a fear of misspecification for the equity premium. Let

consumption be a scalar process and yt+1 be a scalar random payoff at time

t + 1. Without a fear of misspecification, the price at time t of a time t+ 1

payout is

at = Etmt,t+1yt+1. (13.5.1)

We follow Hansen and Jagannathan (1991) by applying the definition of a

conditional covariance to (13.5.1) and using the Cauchy-Schwarz inequality

to obtain

(
at

Etmt,t+1

)
≥ Etyt+1 −

(
σt(mt,t+1)

Etmt,t+1

)
σt(yt+1). (13.5.2)

The bound is attained by payoffs on the efficient frontier. The left side is the

price of the risky asset relative to the price Etmt,t+1 of a risk-free asset that

pays out 1 for sure next period. The term
(

σt(mt,t+1)
Etmt,t+1

)
is the “market price

of risk”: it indicates the rate at which the price ratio at/Etmt,t+1 deteriorates

with increases in the conditional standard deviation of the payout yt+1 .

Without imposing any theory about mt,t+1 , various studies have esti-

mated the market price of risk
(

σt(mt,t+1)
Etmt,t+1

)
from data on (at, yt+1). For

post World War II quarterly data, estimates of the market price of risk hover

around .25. Hansen and Jagannathan’s (1991) characterization of the equity

premium puzzle is that .25 is much higher than would be implied by many

theories that explicitly link mt,t+1 to aggregate consumption. A standard

benchmark is the theory mt,t+1 = βu′(ct+1)/u
′(ct), where u(·) is a power
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utility function with power γ . That specification makes mt,t+1 = β
(

ct+1

ct

)γ

.

But aggregate consumption is a smooth series, so that the growth rate of

consumption has a standard deviation so small that unless γ is implausibly

large, the market price of risk implied by this theory of the stochastic dis-

count factor mt,t+1 remains far below the observed value of .25. Similarly,

the permanent income model of chapter 10 that sets mt,t+1 = Mcxt+1/Mxxt

also implies too low a value of the market price of risk, again because the

volatility of consumption growth is too small.9

How does imputing a concern about robustness to the representative

agent impinge on these calculations? When the representative household is

concerned about robustness, we have

at = Et(mt,t+1m
u
t,t+1)yt+1 (13.5.3)

where from (13.4.9)

mu
t,t+1 = exp

[
ε′t+1wt+1 − .5w′

t+1wt+1

]
. (13.5.4)

By construction, Etm
u
t,t+1 = 1. Hansen, Sargent, and Tallarini (1999) (HST)

computed that Et(m
u
t,t+1)

2 = exp(w′
t+1wt+1) so that

σt(m
u
t,t+1) =

√
exp(w′

t+1wt+1 − 1) ≈ |w′
t+1wt+1|. (13.5.5)

HST refer to σt(m
u
t,t+1) as the one-period market price of model uncertainty.

Similarly, the (τ − t)-period market price of model uncertainty is the condi-

tional standard deviation of mu
t,τ defined by (13.4.9). A fear of misspecifi-

cation can boost the market price of risk by increasing these multiplicative

adjustments to stochastic discount factors.

13.5.1. Calibrated market prices of model uncertainty

At this point, it might be useful for the reader to review the observational

equivalence result in chapter 10. There we discussed the fact that there is

a locus of (σ, β) pairs, all of which imply the same equilibrium quantities,

i.e., the same consumption, investment, and output.10 As in chapter 10, we

follow HST and use the parameterization σ ≡ −θ−1 . HST computed one-

period market prices of risk for a calibrated version of the permanent income

model described in chapter 10. In particular, they proceeded as follows:

9 We return to these issues in chapter 14.
10 Such observational equivalence seems also to be an excellent approximation in the non

LQ model of Tallarini (2000).
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Figure 13.5.1: Market price of model uncertainty for one-

period securities σt(mt,t+1)
u as a function of detection er-

ror probability in the HST model.
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Figure 13.5.2: Market price of model uncertainty for four-

period securities σt(mt,t+4)
u as a function of detection er-

ror probability in the HST model.

1. Setting σ = 0 and βR = 1, HST used the method of maximum likelihood

to estimate the remaining free parameters of the permanent income model

of chapter 10.

2. HST used those maximum likelihood parameter estimates as the approx-

imating model of the endowment processes d∗t , d̂t for a representative

agent whose continuation values they used to price risky assets. Thus,

HST took a stand on how the representative agent created his approxi-

mating model, something that robust control theory is silent about.

3. To study the effects of a fear of misspecification on asset prices while leav-
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ing the consumption-investment allocation (ct, it) intact, HST lowered σ

below zero, but adjusted the discount factor according to the relation

β = β̂(σ) given by equation (10.3.18), which defines a locus of (σ, β)

pairs that freeze {ct, it} . For each (σ, β) thereby selected, HST calcu-

lated market prices of model uncertainty and the detection error proba-

bilities associated with distinguishing the approximating model from the

worst-case model associated with σ . Figure 10.7.1 in chapter 10 reports

those detection error probabilities as a function of σ . We are interested

in the relation between the detection error probabilities and the j -period

market prices of model uncertainty.

4. For one- and four-period horizons, figures 13.5.1 and 13.5.2 report the

calculated market prices of model uncertainty plotted against the detec-

tion error probabilities. These graphs reveal two salient features. First,

there appear to be approximately linear relationships between the detec-

tion error probabilities and the market prices of model uncertainty. For

a continuous-time diffusion specification, Anderson, Hansen, and Sargent

(2003) establish an exact linear relationship between the market price

of risk and a bound on the detection error probabilities. To the extent

that their bound is informative, their finding explains the striking pat-

tern in these figures. Second, the market price of model uncertainty is

substantial even for values of the detection error probability sufficiently

high that it seems plausible to seek robustness against models that close

to the approximating model. Thus, a detection error probability of .3

leads to a one-period market price of uncertainty of about .15, which can

explain about half of the observed equity premium.

13.6. Concluding remarks

The asset pricing example of HST indicates how a little bit of concern about

model misspecification can potentially substitute for a substantial amount of

risk aversion when it comes to boosting theoretical values of market prices of

risk. The boost in the market price of risk emerges from pessimism relative

to the representative agent’s approximating model. The form that the pes-

simism takes is endogenous, depending both on the transition law and the

representative agent’s discount factor and one-period return function. Pes-

simism has been proposed by several researchers as an explanation of asset

pricing puzzles, e.g., Reitz (1988) and Abel (2002). The contribution of the

robustness framework is to discipline the appeal to pessimism by restricting

the direction in which the approximating model is twisted, and by how much,

through the detection probability statistics that we use to restrict θ .


